
PHYSICAL REVIEW E 104, 064214 (2021)

Frequency chimera state induced by differing dynamical timescales
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We report the occurrence of a self-emerging frequency chimera state in spatially extended systems of coupled
oscillators, where the coherence and incoherence are defined with respect to the emergent frequency of the oscil-
lations. This is generated by the local coupling among nonlinear oscillators evolving under differing dynamical
timescales starting from random initial conditions. We show how they self-organize to structured patterns with
spatial domains of coherence that are in frequency synchronization, coexisting with domains that are incoherent
in frequencies. Our study has relevance in understanding such patterns observed in real-world systems like
neuronal systems, power grids, social and ecological networks, where differing dynamical timescales is natural
and realistic among the interacting systems.
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I. INTRODUCTION

Among the variety of the collective behavior observed in
coupled nonlinear oscillators, the chimera state is the most
fascinating and intriguing. It is a state in which coherence
and incoherence coexist in the spatiotemporal patterns of the
system [1]. Although initially limited to phase chimeras [2],
with nonlocal coupling and specially prepared initial con-
ditions, subsequent studies indicate that chimeras can occur
with local [3] or global coupling [4] and distance-dependent
power-law coupling [5] and that may not even require spe-
cial initial conditions in many cases [6,7]. Recent research
established the occurrence of chimera states in complex net-
works [8–10], star networks [11], multilayer networks [12],
in time-varying topologies [13], networks with hierarchical
connectivity [14], structured heterogeneous networks [15],
two-dimensional (2D) lattices with fractal connectivity [16],
and oscillating medium [17]. Interest in this special type of
emergent behavior is sustained mainly by the fact that it is un-
derstood to have a prominent role in brain function and disease
[18,19] especially in the context of unihemispheric sleep of
some birds and marine mammals [20,21] and first-night effect
in human sleep [22]. Hence this phenomenon is studied in
great detail in models of coupled spiking and bursting neurons
[18,23,24]. It has been observed in many experimental setups
and physical systems like optomechanical arrays [25], chem-
ical oscillators [26], mechanical oscillators [27], and active
camphor ribbons [28].

We note that the notion of chimera state itself seems to
be changing and expanding within the last decade [1,29] to
encompass a wide range of phenomena, with several types
added, like amplitude chimera [30,31], amplitude-mediated
chimera [32], chimera-like states [33], chimera death [34],
phase-flip chimera [35], breathing chimera [36], traveling
chimera [37], coherence-resonance chimera [38], multi-
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chimeras [39,40], spiral wave chimera [41], self-propelled
chimeras [42], etc.

In this article, we present our study on a new type of
frequency chimera in which the coherence and incoherence
are characterized in terms of the frequency of the oscillations,
coherence corresponds to frequency synchronized state and
incoherence relates to varying frequencies. This is generated
by the coupling among nonlinear oscillators that evolve under
differing dynamical timescales.

Natural systems evolve with many intrinsic rhythms and
cycles and often different timescales occur in a single system,
such as models of neurons. But in complex systems, this
difference in timescales can manifest across the constituent
dynamical units as well. Thus a network of oscillators with
differing dynamical timescales is a better approximation to
realistic interacting systems such as neuronal networks, power
grids, social networks, etc. Hence a study on the possibility
of emergent states in such a network is novel and relevant.
We find that this type of mismatch in dynamical timescales
can induce a new type of frequency chimera state, without
special initial conditions or nonlocal coupling. We note that
this mismatch in timescales is different from nonidentical
intrinsic frequency, or mismatch in the timescale among the
variables of the same intrinsic dynamics.

The article is organized as follows: We introduce the
governing equations for coupled oscillators in Sec. II. We
present the frequency chimera state in Sec. III, and chimera-
like and chaotic traveling wave states in Sec. IV, for coupled
oscillators with Rössler dynamics. The characterization and
conditions of emergence of such states are discussed in Sec. V.
We also discuss the emergence of frequency chimera states in
coupled van der Pol oscillators, in Sec. VI. Our main results
with their scope and relevance are summarized in Sec. VII.

II. GOVERNING EQUATIONS

We start by considering the framework of a system of
coupled nonlinear oscillators that, in general, is described by

Ẋi = τiF(Xi) + τiεH(Xi, Xj), (1)
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where i = 1, 2 . . . N . Here N is the number of oscillators and
Xi is an n-dimensional vector representing the state of the
ith oscillator. F(Xi) represents the intrinsic dynamics of the
ith oscillator, and H(Xi, Xj) represents the coupling function
between oscillators i and j. Here the dynamical timescale of
each oscillator is decided by the parameter τi. Without loss
of generality, we take the case of two different timescales
in the system by considering a mismatch parameter τ such
that τ < 1, would mean a slow timescale for the oscillators,
relative to the fast oscillators that are assigned τ = 1. Then,
decreasing the value of τ increases the mismatch between
oscillators.

The other parameter of relevance is the coupling strength
ε and the emergent behavior of the coupled system depends
mostly on the choice of these two parameters τ and ε. For the
specific case of a coupling pattern corresponding to complex
networks of random or scale-free type, emergent phenomena
like suppression of dynamics, cluster synchronization, and
reorganization into a state of common emergent frequency
are reported for coupled slow and fast systems [43]. Also, the
inhibitory coupling between the neuronal modules with two
timescales, is reported to generate synchronized frequency-
locked clusters with traveling burst sequences of recurring
patterns [44].

We consider the standard spatially extended system as a
ring with diffusive coupling. As nodal dynamics we take the
Rössler oscillator, which is a prototypical nonlinear oscillator,
and study the possible collective behavior in a system of
coupled oscillators in this framework. The dynamics is then
given by

dxi

dt
= τi(−yi − zi ) + τiε

i+P∑
j=i−P

(x j − xi ),

dyi

dt
= τi(xi + ayi ),

dzi

dt
= τi[b + zi(xi − c)], (2)

with periodic boundary conditions. Here a, b, and c are pa-
rameters that are chosen such that the local dynamics is in
the chaotic regime (a = b = 0.1, c = 18). P represents the
range of coupling (P = 1 for nearest-neighbor coupling). The
system is evolved numerically with random initial conditions,
with Ns randomly chosen systems as slow with their τi < 1.
We show that the variations in the two parameters τ and ε,
result in the system self-adjusting to a rich variety of spa-
tiotemporal dynamics such as frequency chimera, chimeralike
states, and multicluster states, in addition to amplitude death
(AD) and frequency synchronized state for all the oscillators.

We also study coupled van der Pol oscillators, which model
relaxation oscillations in a similar configuration.

The governing equations in this case are

dxi

dt
= τiy + τiε

i+P∑
j=i−P

(x j − xi ),

dyi

dt
= τiμ

(
1 − x2

)
y − τix + τiA cos (ωt ), (3)

with periodic boundary conditions. Here, μ = 8.53 is the non-
linear damping parameter, A = 1.2 is the forcing amplitude,
and ω = 2π

10 is the angular frequency. For this set of parameter
values, the intrinsic dynamics is chaotic [45]. The system
is evolved with random initial conditions, with Ns randomly
chosen oscillators as slow with their τi < 1.

III. FREQUENCY CHIMERA STATES

For a ring of N = 100 oscillators, we take Ns = 50 slow
nodes distributed randomly over the ring. When started with
initial conditions that are randomly distributed between −1
and 1, under suitably chosen values of ε and τ , we observe
the coexistence of multiple domains with coherence in fre-
quency, separated by domains of incoherence in frequency.
We call this interesting new state a frequency chimera state.
The domains with synchronized frequency do not have syn-
chronized amplitude or phase and hence this state is different
from amplitude-mediated chimera [32], where the phase and
amplitude are correlated.

To identify the coherent and incoherent domains in fre-
quency, the frequency of the ith oscillator, fi, is calculated
from the time interval between adjacent zero crossings aver-
aged over a finite number of crossings using the time series of
its x variable (after removing transients) [43]:

fi = 1

L

L∑
j=1

1

t i
j+1 − t i

j

, (4)

where L is the number of zero crossings in one direction, and
t i

j is the jth zero crossing point for xi.
In Fig. 1 we show the frequency chimera state with co-

existing domains of coherence and incoherence in frequency
for ε = 0.7 and τ = 0.76. The frequency of the oscillator
at every node and the snapshot of its x variable are shown
in Figs. 1(a) and 1(b), respectively. By studying the Fourier
transform and time series of a few typical oscillators from
coherent and incoherent domains, we find the nodes in co-
herent domains self-organize to an emergent frequency of
periodic oscillations, while those in incoherent regions are in
two frequency states. For lower values of coupling strength,
the incoherent regions can be in chaotic states. The time series
from three typical nodes from coherent and incoherent do-
mains are shown in Fig. 1(c), and the spatiotemporal behavior
in Fig. 1(d).

We evolve the system for longer times and observe the
same behavior where a few oscillators are in incoherent fre-
quencies while most of them settle to clusters of two or more
coherent frequencies (Fig. 2). When repeated for a large set
of different initial conditions, with the same distribution of
slow nodes we find that the frequency chimera state prevails
for all of them for the same parameters as shown in Fig. 1.
However, the location of clusters and their frequencies may
change for a different distribution of slow and fast nodes in
the network. When a small random perturbation of strength
� � 0.5 is added to every node, we find the system settles
back to the same frequency chimera state.
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FIG. 1. Frequency chimera state for 100 locally coupled Rössler
oscillators with coupling strength ε = 0.7, mismatch parameter τ =
0.76, and number of slow oscillators, Ns = 50. (a) Frequencies fi,
(b) snapshots xi at the last instant of time, and (c) time series from
three different nodes 25 (blue, dotted) and 60 (green, dashed) from
the coherent domain, and 41 (red, solid) from the incoherent domain.
(d) Spatiotemporal plot for the emergent dynamics. The slow oscil-
lators are randomly distributed and the network is initialized with
random values in [−1, 1].

IV. CHIMERALIKE STATES

As τ decreases for the same coupling strength, the sys-
tem self-organizes into two types of spatial clusters. We see
partial amplitude death (AD) with some of the oscillators in
AD while the others form clusters with incoherent oscillatory
states. These types of states have been reported in the liter-
ature as chimeralike states [33]. A typical case is shown in
Fig. 3 where the oscillating clusters have either settled to an
emergent frequency or are in two frequency state while others
have settled to AD.

As τ further decreases below 0.5, we find the whole net-
work settles to a state of AD. Also with τ higher than 0.8,
we observe chaotic traveling waves as shown in Fig. 4. When
characterized with frequency, this state has multiclusters of
differing frequency with the number and size of clusters
changing in time, since the dynamics at each site is chaotic.
With a further increase in τ , the network reorganizes to a state
of uniform emergent frequency or frequency synchronization.

FIG. 2. Frequency chimera state at two different instants of time.
Frequencies calculated after (a) 50 000, and (b) 100 000 time steps
of size 0.05 (after discarding transients). This indicates that the
frequency chimera state is stable and persists for a long time.

V. CHARACTERIZATION OF FREQUENCY CHIMERA

In the system under study, with random initial distribution
of slow and fast oscillators, spontaneous clusters of oscillators
can form with coherence in frequency due to their mutual
interaction. If the mismatch in timescales is less, these clusters
can synchronize on a global scale, giving rise to frequency
synchronized state (τ > 0.9), with an emergent frequency
that is different from those corresponding to their intrinsic
timescales. However, the mutual interaction of neighboring
nodes competes with the intrinsic dynamical timescale that
has a mismatch and as a result the oscillator can either set-
tle into a coherent cluster, or remain incoherent. Since the
initial distribution of slow and fast oscillators is random, dif-
ferent spontaneous clusters of frequency emerge in different
locations. With decrease in τ we observe them separated
by incoherent oscillators that fail to synchronize with their
neighbors, giving rise to frequency chimera state. In addition,
the interaction among slow and fast oscillators also results
in amplitude suppression. For τ < 0.7, the suppression of
amplitude can drive some oscillators to amplitude death. It
then manifests as chimeralike state in which some oscillators
decay to a single fixed point while the rest can settle either
to frequency clusters or remain chaotic. As τ decreases (τ <

0.5), the whole system goes to amplitude death (AD). Thus a
random mixing of slow and fast oscillators with intermediate
values of mismatch can display a variety of collective behav-
ior, such as multicluster states, frequency chimera states, and
chimeralike states.

Since the coherence and incoherence are assigned using the
frequencies, to understand the mechanism of onset of different
emergent dynamics we compute the distribution of difference
in frequencies, zi, calculated as

zi = | fi − fi+1|. (5)

If all the oscillators are coherent in frequency, zi is zero for all
i, but nonzero for some i if a few oscillators are incoherent.
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FIG. 3. Chimeralike state for 100 locally coupled Rössler oscil-
lators. Here coupling strength ε = 0.7, mismatch parameter τ = 0.7,
and Ns = 50. (a) Frequencies fi, (b) snapshots xi at the last instant
of time. (c) Time series from three different nodes 13 (blue, dotted)
from AD, and 56 (red, solid) and 63 (green, dashed) from the inco-
herent domain. (d) Spatiotemporal plot.

Thus this quantity will also give the extent of incoherence
and coherence among the oscillators. This measure is usually
employed for quantifying coherence in terms of amplitudes,
but we modify it for frequencies in the present context
[46,47].

We plot the distribution, N (zi ) for different parameter val-
ues in Fig. 5. We see that for a large τ in timescale (for
τ > 0.9), the oscillators are in a frequency-synchronized state
within a single cluster, so there is a single peak at zi = 0. As
we decrease τ , the oscillators settle to frequency chimera, and.
for lower values of τ , some of the oscillators reach the AD
state, in isolated clusters, giving rise to a chimeralike state.
In both these cases, zi is distributed over a range of values,
the peak at zero still giving coherent clusters of frequency-
synchronized or death states. On further decreasing τ , all
oscillators settle to a state of suppressed oscillations (AD)
with zi peaking again at zero.

The frequently used measure of chimera, strength of inco-
herence (S) [47], is adapted to characterize the new frequency
chimera state by using frequencies of each node in its calcula-
tion. The first step is to divide the oscillators into bins of equal
size n = N/M and then calculate the local standard deviation

FIG. 4. Chaotic traveling-wave state or moving multicluster state
for 100 locally coupled Rössler oscillators. Coupling strength ε =
0.7, mismatch parameter τ = 0.9, and number of slow nodes, Ns =
50. (a) Frequencies fi, (b) snapshots xi at the last instant of time, and
(c) time series from three different nodes 10 (blue, dotted), 20 (red,
solid), and 30 (green, dashed). (d) Spatiotemporal plot.

in frequencies σl for bins l = 1, 2, . . . M as follows:

σl (m) =
√√√√1

n

mn∑
j=n(m−1)+1

[ fl, j − 〈 fl〉]2, (6)

where fi is the frequency of ith oscillator.
From σl , we can calculate strength of incoherence in fre-

quencies, S( f ), as

S( f ) = 1 −
∑M

m=1 fm

M
, fm = �(δ − σl (m)), (7)

where � represents the Heaviside step function, and δ is
the threshold that decides coherence. Here, we set it to be
0.05 of the standard deviation. Then S( f ) = 1 indicates an
incoherent state, S( f ) = 0 indicates either a coherent state
or amplitude death, and 0 < S( f ) < 1 indicates a frequency
chimera, chimeralike state, or multicluster state. [47]. The
strength of incoherence S( f ) computed as above for the sys-
tem under study is shown in Fig. 6. We see S( f ) = 0 for
τ < 0.58 and τ > 0.98, with AD on one end and frequency
synchronization on the other end over the full network. For
very small values of τ we get incoherence with S( f ) = 1.
In between we get frequency chimera, chimeralike states,
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FIG. 5. Distribution of zi for τ = 0.7 (chimeralike), 0.76 (fre-
quency chimera), and 0.95 (frequency synchronization) for 100
locally coupled Rössler oscillators with Ns = 50 and ε = 0.7. Slow
and fast nodes are distributed randomly in the network and are
initialized with random initial conditions in [−1, 1]. The peaks are
stacked near each other for clarity.

and chaotic traveling-wave (or moving multicluster) states,
with 0 < S( f ) < 1. Specifically, the values of S( f ) for the
frequency chimera state shown in Fig. 1 is 0.28, that for a
chimeralike state in Fig. 3 is 0.35, and for a multicluster state
or traveling chaotic waves in Fig. 4 it is 0.08. Thus, for Rössler
dynamics studied here, with τ decreasing from 1 to 0 (with
coupling strength at 0.7), the system undergoes transitions
from frequency synchronization (1 < τ < 0.9) to a moving
multicluster or chaotic traveling-wave state (0.8 < τ < 0.9),
to a frequency chimera state (0.8 < τ < 0.7). Upon further
decreasing τ , some nodes go to amplitude death, resulting in
a chimeralike state (0.7 < τ < 0.5). With lower values (i.e.,
τ < 0.5), all nodes go to the amplitude death state. Finally, at
very low values, there is no adjustment of frequencies and all
the nodes show incoherence.

Conditions for emergence of frequency chimera

The emergence of different types of spatiotemporal dy-
namics presented above mostly depends on the parameters

FIG. 6. Strength of incoherence in frequencies, S( f ) as a func-
tion of mismatch parameter τ for 100 coupled Rössler oscillators for
coupling strengths ε = 0.5 (blue, dotted), 0.7 (red, solid), and 0.8
(green, dashed). Number of slow oscillators, Ns = 50. S( f ) = 0 for
amplitude death (AD) state and fully coherent state. For incoherent
state, S( f ) = 1, while it stays between 0 and 1 for frequency chimera,
chimeralike, and multicluster states.

FIG. 7. Parameter plane (τ, ε) for 100 locally coupled Rössler
oscillators with 50 slow nodes distributed randomly. Region I: fre-
quency synchronization, II: chaotic traveling-wave or multicluster
state, III: frequency chimera, IV: incoherence, V: chimeralike state,
and VI: amplitude death (AD) state.

τ and coupling strength ε. We plot this parameter plane to
indicate the regions where these different emergent dynamics
can occur in Fig. 7. The regions of various dynamical states
are identified by using the characterizing measure, S( f ) and
average amplitude of oscillators. Region I corresponds to
the frequency synchronized state, with S( f ) = 0. Region II
indicates moving multicluster or chaotic traveling wave state
[S( f ) < 0.2], that occurs as τ decreases for a given ε. The fre-
quency chimera state exists in the region III [0 < S( f ) < 1],
while region IV corresponds to the incoherent state [S( f ) =
1]. The chimeralike [0 < S( f ) < 1, with partial amplitude
death] and AD [S( f ) = 0, with all nodes in AD] states exist in
regions V and VI, respectively. We note the frequency chimera
state prevails for a wide range of the system parameters τ and
ε.

In addition to the above parameters, and their range of
values for the emergence of frequency chimera and other
states mentioned above, we find that the onset of chimera
depends critically on the number of slow nodes. For this, we
compute the S( f ) values for ε = 0.7, τ = 0.8 and varying the
number of slow nodes in the system (Fig. 8). Corresponding
to all slow and all fast cases, at the extreme ends, we see
coherence in frequency while in between for a range of values
of the fraction of slow systems ( Ns

N ), frequency chimera states
emerge. Here, we distinguish frequency chimera states from
multicluster states by the existence of incoherent nodes in
the former, indicated by vertical gray lines in Fig. 8. This
range decreases with an increase in τ . Thus for a given τ

and ε within region III of Fig. 7, we require a specific range
of values for Ns

N for frequency chimera to emerge. In Fig. 8,
frequency chimera occurs for the range 0.2 < Ns

N < 0.8. On
both sides, for 0 < Ns

N < 0.2 and 0.8 < Ns
N < 1, we find

multicluster oscillations. We extend the study to another spe-
cific configuration where the first 50 are fast and next 50 are
slow in their timescales. We find that the system settles to two
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FIG. 8. Variation of strength of incoherence with number of slow
nodes, for ε = 0.7, τ = 0.8. The frequency chimera for this partic-
ular set of parameters occurs for 0.2 < Ns

N < 0.8, as indicated by
the region within dashed lines (identified by existence of incoherent
nodes).

clusters of differing frequencies with incoherent oscillators
existing at the boundary. With increase in the range of cou-
pling or nonlocal coupling, we get chimera states in which
two clusters of frequency synchronized state coexist, with
oscillators within each cluster shifted in phase and incoherent
systems at the boundary, as indicated in Fig. 9.

We also study the case where periodic Rössler oscillators
form the intrinsic dynamics and find that with the mismatch in
dynamical timescales, mostly chimeralike state prevails over
a range of coupling strength.

VI. FREQUENCY CHIMERA STATES IN COUPLED
VAN DER POL SYSTEMS

In this section, we present the existence of similar emer-
gent states observed in a ring of coupled driven van der Pol
oscillators, given in Eq. (3). With local coupling and random
initial conditions, we find frequency chimera state as shown in
Fig. 10. However, in this case, the different coherent clusters
settle to a single frequency, unlike the multichimera state ex-
hibited by coupled Rössler oscillators of Sec. III. The coherent
clusters display a periodic behavior, while the incoherent ones
display chaos.

With intrinsic dynamics in the periodic regime (A = 0),
for nonlocal coupling (P = 10), we find frequency chimera
states. We also observe chimeralike states with coexistence of
incoherent oscillators and coherent clusters with suppression
of dynamics. However, these states display oscillation death
state for the coherent clusters, which is different from AD
observed in the case of chimeralike states in coupled Rössler
oscillators.

VII. CONCLUSION

The emergence of chimera states in coupled oscillators
has been associated with heterogeneity in otherwise identical
systems. Such heterogeneity could be introduced in multiple
ways, such as network topology, range of coupling, delay,
initial conditions, etc. In many real systems, heterogeneity
can arise due to differences in timescales of evolution. In

FIG. 9. Chimera state for 100 nonlocally coupled (P = 5)
Rössler oscillators, where first 50 are slow with τ = 0.6 and the
next 50 are fast. In this case, we observe two coherent clusters of
frequency (with phase shift within each cluster), and some incoherent
oscillators at the boundary of these two regions. Coupling strength,
ε = 0.6. (a) Frequencies fi, (b) snapshots xi at the last instant of time,
and (c) time series from three different nodes 20 (blue, dotted), 45
(red, solid), and 70 (green, dashed). (d) Spatiotemporal plot for the
emergent dynamics.

such cases, a simple network of coupled systems with dif-
ferent dynamical timescales can serve as a model to study
their emergent dynamics. The possibility of the occurrence
of chimera states in such systems is a question of relevance
due to the ubiquity of real systems displaying heterogeneity
in timescales.

In this article we report the study of a type of chimera
called frequency chimera that can exist in timescale-
mismatched systems, with only local coupling and random
initial conditions. The study includes two types of nonlinear
oscillators, Rössler and forced van der Pol systems. Underly-
ing the apparent incoherence in spatiotemporal patterns, we
find there exist domains with a certain level of coherence
in terms of the frequency of the oscillators. In this context,
to characterize the different possible states of spatiotemporal
dynamics, we redefine the measure of strength of incoherence
in terms of frequencies and compute its values for a range of
parameter values. We also find chimeralike state with part of
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FIG. 10. Frequency chimera state exhibited by locally coupled
(forced) van der Pol oscillators at ε = 0.1, τ = 0.5, Ns = 50. (a) Fre-
quencies fi, (b) snapshots xi at the last instant of time, (c) time
series from nodes 20 (blue, dotted) and 70 (green, dashed) from the
coherent region, and node 34 (red, solid) from the incoherent region.
(d) Spatiotemporal plot.

the system in amplitude death and multiclusters of frequency
synchronization on varying the parameters. We present the
τ -ε parameter plane that indicates the prevalence of fre-
quency chimera and the regions of different possible emergent
states.

Thus a random distribution of slow and fast oscillators,
coupled with sufficiently strong mismatch in timescales and

coupling strength, facilitates the emergence of frequency
chimera state. It is the intermediate state of the system, be-
tween amplitude death and frequency synchronization. The
required heterogeneity in this case is the mismatch in dynami-
cal timescales among otherwise identical oscillators. We note
frequency chimera state due to nonisochronicity parameter
was reported earlier in a different context [48].

Our study reveals how the presence of differing dynamical
timescales leads to the organization of coupled systems into
frequency chimeras, where the coexisting coherence and in-
coherence are defined with respect to the frequency of their
oscillations. They also can have other emergent states like
chimeralike states with coexisting amplitude death and os-
cillatory states or settle to a common emergent frequency.
The emergence of such diverse states in complex systems
is not uncommon and our study reveals yet another model
to understand their dynamics. The cognitive activity of the
brain depends on the emergence of spatiotemporal patterns
emerging from collective regional or local activities and hence
a variety of states of partial synchrony can form, including
chimera states [49]. We propose that such patterns can arise
from the differing timescales at the neuronal level where
the difference in dynamical timescales can be attributed to
the differences in the properties of the axonal membranes
in individual biological neurons. Hence our study has rel-
evance in understanding brain functions involving chimera
states. Another real-world system of practical importance is
power grids and transmission networks, which are susceptible
to chimera states, where the level of coherence expected is
mostly in the frequency of the states [50]. A recent study also
indicates that frequency clusters that occur in coupled systems
are very sensitive to external signals and such states of partial
synchronization are utilized by natural systems to optimize
their ability to detect weak signals [51]. Since mismatch in
dynamical timescales can occur in many real-world systems,
we hope the present study is relevant to understand their
complex spatiotemporal dynamics.
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