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Time-reversal-invariant hexagonal billiards with a point symmetry
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A biparametric family of hexagonal billiards enjoying the C3 point symmetry is introduced and numerically
investigated. First, the relative measure r(�, θ ; t ) in a reduced phase space was mapped onto the parameter
plane � × θ for discrete time t up to 108 and averaged in tens of randomly chosen initial conditions in each
billiard. The resulting phase diagram allowed us to identify fully ergodic systems in the set. It is then shown
that the absolute value of the position autocorrelation function decays like |Cq(t )| ∼ t−σ , with 0 < σ � 1 in the
hexagons. Following previous examples of irrational triangles, we were able to find billiards for which σ ∼ 1.
This is further evidence that, although not chaotic (all Lyapunov exponents are zero), billiards in polygons might
exhibit a near strongly mixing dynamics in the ergodic hierarchy. Quantized counterparts with distinct classical
properties were also characterized. Spectral properties of singlets and doublets of the quantum billiards were
investigated separately well beyond the ground state. As a rule of thumb, for both singlet and doublet sequences,
we calculate the first 120 000 energy eigenvalues in a given billiard and compute the nearest neighbor spacing
distribution p(s), as well as the cumulative spacing function I (s) = ∫ s

0 p(s′) ds′, by considering the last 20 000
eigenvalues only. For billiards with σ ∼ 1, we observe the results predicted for chaotic geometries by Leyvraz,
Schmit, and Seligman, namely, a Gaussian unitary ensemble behavior in the degenerate subspectrum, in spite of
the presence of time-reversal invariance, and a Gaussian orthogonal ensemble behavior in the singlets subset. For
0 < σ < 1, formulas for intermediate quantum statistics have been derived for the doublets following previous
works by Brody, Berry and Robnik, and Bastistić and Robnik. Different regimes in a given energy spectrum have
been identified through the so-called ergodic parameter α = tH/tC , the ratio between the Heisenberg time and
the classical diffusive-like transport time, which signals the possibility of quantum dynamical localization when
α < 1. A good quantitative agreement is found between the appropriate formulas with parameters extracted
from the classical phase space and the data from the calculated quantum spectra. A rich variety of standing wave
patterns and corresponding Poincaré-Husimi representations in a reduced phase space are reported, including
those associated with lattice modes, scarring, and high-frequency localization phenomena.
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I. INTRODUCTION

Regular and chaotic motions in classical conservative sys-
tems can be quantitatively distinguished through magnitudes
associated with the distance between two different trajectories
starting from nearby points in the phase space. Such methods
of characterization are hampered in quantum mechanics due
to Heisenberg’s uncertainty principle. Thus, the term quan-
tum chaos has been largely used in the literature in the last
four decades to encompass major theoretical and conceptual
frameworks in the search for genuine quantum mechanical
properties that could distinguish the two categories observed
in classical Hamiltonian systems. Since the 1970s, it has been
recognized that such properties must show up well beyond the
ground state of closed quantum systems. A common strategy
is to investigate possible correlations of energy eigenvalues
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and compare the results with predictions of random matrix
theory [1]. In order to characterize universality, one must
first unfold the energy spectrum, so that a unit mean nearest-
neighbor spacing (nns) is obtained. This approach became
popular after two important results found by inference: (1)
the Berry-Tabor (BT) conjecture [2] and (2) the Bohigas-
Giannoni-Schmit (BGS) conjecture [3,4]. The BT conjecture
states that, in the semiclassical limit, the statistical properties
of the energy spectrum of a classically integrable system
must correspond to the prediction of uncorrelated randomly
distributed energy levels. As a result, the semiclassical nns
distribution p(s) must be Poissonian (p(s) = e−s). On the
other hand, according to the BGS conjecture, in the case of a
classically chaotic system, the spectral properties must follow
the universal statistics of the eigenvalues of Gaussian random
matrices [1]. If one disregards spin, in the presence or absence
of time-reversal symmetry p(s) must correspond to that of the
Gaussian Orthogonal Ensemble (GOE) or Gaussian Unitary
Ensemble (GUE), respectively.

A convenient way to test predictions of random matrix
theory in quantum chaos is to consider a billiard. Billiards
are prototype models in the ergodic theory of Hamiltonian
systems [5]. In a billiard one considers the dynamics of a
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particle (unit mass) inside a closed planar domain � where
it moves freely (unit speed) between specular reflections off
the boundary ∂�. The phase space of such a system can
vary from completely regular to fully chaotic depending on
the geometry of ∂�. Quantization of a billiard corresponds
to solving the Schrödinger (Helmholtz) equation in � with
Dirichlet boundary condition in ∂�. Several numerical meth-
ods have been proposed for that purpose in the past decades,
so that nowadays one can calculate routinely 100 000 energy
eigenvalues for a given ∂�.

For classically chaotic systems with time-reversal (TR) in-
variance and a point-group (PG) symmetry, Leyvraz, Schmit,
and Seligman (LSS) [6] have shown that if the TR and the
PG operations do not commute, non-self-conjugate-invariant
subspaces of the PG must exhibit GUE spectral fluctuations,
instead of GOE ones. For example, consider a billiard in the
xy plane with the C3 symmetry. Such a billiard has eigenfunc-
tions ψm (m = −1, 0,+1), such that ψ0 is symmetric and
repeats itself after a rotation of 2π/3 about the symmetry
axis, whereas ψ±1 will be repeated only after three consec-
utive rotations of 2π/3. In other words, if R(2π/3) is the
rotation operator for an angle of 2π/3, one has R(2π/3)ψm =
exp(i 2π

3 m)ψm. Let 
 be the time-reversal operator and H the
Hamiltonian with eigenvalue Em, i.e., Hψm = Emψm. 
 is an
antiunitary operator that commutes with H . It follows that
H
ψm = 
Hψm = Em
ψm, i.e., 
ψm is also an eigenfunc-
tion of H with the same eigenvalue Em. Now, are ψm and

ψm the same eigenstate? For this subspace one can write

ψm = (−1)mψ−m. Thus, 
ψ0 = ψ0, i.e., ψ0 is a singlet. On
the other hand, ψ1 and ψ−1 must correspond to distinct states.
One refers to this doublet state as a Kramers degeneracy.
Since these degenerate states are not TR-invariant, they must
follow the GUE of random matrices, providing the billiard is
classically chaotic, according to the LSS results. Notice that
ψ−1 is the complex conjugate of ψ1, so that they have the
same C3-invariant probability distribution (|ψ1|2 = |ψ−1|2).
In numerical experiments, however, one accesses real linear
combinations of ψ1 and ψ−1, say, ϕ1 and ϕ2, which are not, in
general, C3-symmetric. In this case, the underlying C3 symme-
try can be observed from the orthogonal pair (ϕ1, ϕ2) through
the sum |ϕ1|2 + |ϕ2|2.

While the BT and BGS conjectures have been extensively
investigated in the past four decades [7], there has been com-
paratively scarce studies on the LSS findings. A semiclassical
explanation based on periodic orbit theory was reported by
Keating and Robbins [8]. Later, microwave and numerical
experiments [9–12] addressed the problem, still in chaotic
geometries and with a somewhat limited number of eigenval-
ues. In addition, good statistics were observed for just 2500
eigenvalues in a theoretical model for the electron-phonon
interaction in a NEMS coupled to a quantum dot [13]. To our
knowledge, little has been said in regard to the situations of
(1) fully ergodic but not chaotic classical phase spaces and
(2) partially random phase spaces. These gaps are filled here
through numerical experiments in a biparametric family of
C3-symmetric hexagonal billiards for which sequences of the
first 120 000 singlets and doublets have been calculated sepa-
rately. For statistical purposes, we disregard the first 100 000
levels, so that only the higher-lying 20 000 eigenvalues are
considered in the statistics. The systems studied in this work

1 

FIG. 1. A C3-symmetric irregular hexagonal billiard. Alternating
adjacent sides with length � and 1, and alternating angles θ and
4π/3 − θ , define the boundary ∂�. The intervals 0 < � < 1 and
π/3 < θ < 2π/3 define the biparametric family.

are described as follows: The polygonal cells are irregular
hexagons comprising two alternating adjacent sides, one with
fixed unit length, the other one with length �, and two alternat-
ing angles, θ and 4π/3 − θ , as depicted in Fig. 1. Parameters
(�, θ ) with 0 < � < 1 and π/3 < θ < 2π/3 define the bi-
parametric family studied here. As θ → π/3, the hexagon
approaches an equilateral triangle, regardless of the � value.
Also, notice that the intervals π/3 < θ < 2π/3 and 2π/3 <

θ < π are equivalent. As a reference, we report preliminary
results in another C3-symmetric family of billiards with a
smooth ∂�. These are similar to the domain studied by LSS,
built from an equilateral triangle whose vertices were rounded
by two circumferences with radii related through R = 2r.
We replaced the circumferences by two ellipses with major
and minor axes related by (a2, b2) = (2a1, 2b1). A detailed
analysis on this family will be reported separately [14]. Here
we refer to a C3-symmetric billiard with a smooth border in
this family as C3S-X, where X = E, if the billiard displays
full ergodicity, and X = D, if it exhibits a divided (chaotic
and regular regions) phase space.

The paper is organized as follows: Classical properties
(relative measure, phase space portraits, position correlation
function) of the hexagons are reported in Sec. II. Spec-
tral properties of the quantum counterparts are presented in
Sec. III, where we review existing formulas and introduce
new intermediate ones for the level spacing distribution be-
tween the Poisson and GUE statistics. Fits of histograms of
the quantum nns distribution p(s) obtained from the calcu-
lated spectra, as well as the computed cumulative spacing
function I (s) = ∫ s

0 p(s′) ds′, are shown to be in good quantita-
tive agreement with the appropriate formulas with parameters
extracted from the classical phase space. In Sec. IV a vari-
ety of localization phenomena in the hexagonal billiards is
presented. As a first step, we briefly discuss the formation
of classical periodic orbits (POs) and report the observation
of the scarring phenomenon in a number of energy eigen-
functions in the position representation, as well as in the
corresponding Poincaré-Husimi function in a reduced phase
space. Extended lattice modes are shown to be abundant when
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FIG. 2. Solid black lines: Calculated relative measure for bil-
liards in the hexagonal family. The parameter values are (�, θ ) =
(0.47, 1.570721) in (a), (0.33, 1.268721) in (b), (0.11, 1.943721) in
(c), (0.785, 1.86736) in (d), and (0.94, 2.499721) in (e). The solid
red (gray, in the printed version) line (f) is the graph of Eq. (1).

θ/π is close to a rational number. In addition, evidence for
focusing modes (high-frequency localization) in the polygons
has also been reported. We close the section with the calcula-
tion of the ergodic parameter α = tH/tC , the ratio between the
Heisenberg time and the classical transport time which, for a
given billiard, provides an estimate of the distance between
the ground-state level and the deep semiclassical regime and,
thus, a guide for choosing the appropriate formula of p(s) to
fit a given experimental nns distribution. Concluding remarks
are presented in the last section.

II. RELATIVE MEASURE, PHASE SPACE, AND DECAY OF
CORRELATIONS

In order to characterize the classical dynamics of a
given billiard, preliminary calculations were conducted in a
Poincaré section. As in previous work on irrational triangles
[15], we follow Casati and Prosen [16] by considering colli-
sions of the orbits with a single segment of the all-flat border.
In other words, the whole boundary ∂� enters in the dynam-
ics, but we compute the collisions of the particle in one of the
segments with unit length. The particle collides off this section
at position q and discrete time t , with angle of incidence γ .
Let p be the component of the linear momentum parallel to
the border. A reduced phase space is then defined by the inter-
vals 0 < q < 1 and −1 < p < 1. For numerical purposes, this
rectangle is divided into a large number Nc of cells. Let n(t ) be
the number of cells visited up to collision t for a given orbit,
and 〈n(t )〉 be its average in a number of randomly chosen
initial conditions. The relative measure r(t ) is defined as the
average fraction of visited cells, i.e., r(t ) = 〈n(t )〉/Nc. If all
cells have the same probability of being visited, the random
model (RM) [17] predicts that r(t ) = rRM(t ), where

rRM(t ) = 1 − exp (−t/Nc). (1)

Here we use Nc = 106 in all numerical experiments. In
this case, rRM(t = 5.0Nc) = 0.993 . . .. We take this value as a
quantifier for a fast trend towards a fully ergodic phase space
[r(t → ∞) = 1]. The solid red line in Fig. 2 shows the graph

FIG. 3. Calculated phase diagram of the relative measure r(t =
Nc ) of C3-symmetric hexagonal billiards, projected onto the θ × �

parameter plane.

of the function rRM(t ). The solid black lines are the calculated
r(t ) for several hexagons in the family defined in Fig. 1.
The closer r(t ) is to rRM(t ), the better the chance of finding
a billiard with the mixing property, according to numerical
evidence [15]. In order to look for one such billiard, we calcu-
lated r(t = Nc) for a large number (20 000) of members in the
family and the result is shown in the phase diagram of Fig. 3.
Notice that rRM(t = Nc) = 0.632 . . ., so that full ergodicity is
displayed earlier by billiards in the red regions in Fig. 3.

Our next step was to look at portraits of the reduced
phase space of selected billiards. Two representative results
are shown in Fig. 4. The top left panel shows the geometry
of ∂� of the billiard with (�, θ ) = (0.94, 2.4997 . . .), whose
relative measure is shown by curve (e) in Fig. 2, very close to
the RM red line (f). The bottom left panel in Fig. 4 shows a
portrait of the reduced phase space of this billiard, numerically
obtained from a single time series with 106 points. In contrast,
the billiard with (�, θ ) = (0.47, 1.5707 . . .) (top right panel in
Fig. 4) displays a reduced phase space (bottom right panel in
Fig. 4) comprising six horizontal strips for each sign of p from
two different time series (red symbols for one trajectory, black
symbols for the other one). These results reflect the fact that
for a generic polygonal billiard, the motion in phase space
does not occur in a torus, but in multiply handled spheres
[18]. Actually, the widths and positions of the strips depend
on the initial conditions and the length of the time series. In
the top panel of Fig. 5 we show the calculated reduced phase
space in the same billiard with (�, θ ) = (0.47, 1.5707 . . .),
for 103 different time series, all with the same length of
103 points. Clearly this billiard is ergodic, but, for a single
time series, the reduced phase space is swept at a much
slower pace. Henceforth, we refer to the billiard with (�, θ ) =
(0.94, 2.4997 . . .) as the fast hexagonal billiard (FHB) and to
the (�, θ ) = (0.47, 1.5707 . . .) domain as the slow hexagonal
billiard (SHB). Notice that the ratio θ/π is, to numerical pre-
cision, irrational in both hexagonal billiards. The calculated
genus is on the order 1017 in both cases. In particular, for the
domain with � = 0.47, θ/π = 0.4999 . . .. The proximity of θ

to the right angle in the SHB is a key ingredient for the rich set
of classical and quantum properties observed in this geometry,
as discussed in the next sections. For comparison, the bottom
panel in Fig. 5 shows the situation in the C3S-D billiard with
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FIG. 4. Bottom panels: Reduced phase space of the C3-
symmetric billiards in the hexagonal family shown in the top panels.
On the left, the phase space is built from a single time series. On
the right, two different sets of initial conditions were used, corre-
sponding to the black and red (gray, in the printed version) symbols.
The hexagon with (�, θ ) = (0.94, 2.4997 . . .) quickly displays full
ergodicity, as well as a fast decay of correlations (see Fig. 6). It is here
referred to as the fast hexagonal billiard (FHB). Convergence and
decay of correlations in the hexagon with (�, θ ) = (0.47, 1.5707 . . .)
are rather sluggish, and we refer to this billiard as the slow hexagonal
billiard (SHB).

(a1, b1) = (0.288609, 0.281522) (see insets in Fig. 10 below),
where periodic orbits surrounding elliptical centers as well as
chaotic regions are clearly visible.

For a better characterization of the classical dynamics,
we also calculated the time averaged position autocorrelation
function

Cq(t ) = lim
T →∞

1

T

T −1∑
τ=0

q(τ )q(τ + t ) (2)

in the hexagonal billiards. As is well established [5], when
chaos is strong, the correlations decay exponentially in time.
These concepts have been applied to both dispersing and
focusing billiards but, to our knowledge, little has been said
in regard to polygonal billiards. While billiards in polygons
may be ergodic, all their Lyapunov exponents are zero. Thus,
rigorously, their possible random behavior cannot be deemed
as a signature of chaos (Kolmogorov mixing). However, pre-
vious numerical experiments on irrational triangles [15,16]
have shown evidence that they might be mixing, a category
hierarchically below the chaotic one (all chaotic systems are
mixing, but not the other way around). This evidence is based
on the observation that in certain geometries the correlation
functions decay polynomially, sometimes as fast as those in
strongly mixing systems, i.e., |Cq(t )| ∼ t−σ , with σ ∼ 1. The
solid black lines in Fig. 6 show results for the position autocor-
relation function in the two representative hexagons discussed
above. Clearly the FHB exhibits a strong mixing character, as
indicated by the solid red line, a fit with σ = 1, in the left

FIG. 5. Top panel: Fully ergodic reduced phase space of the
SHB, calculated from a set of 1000 different time series with ran-
domly chosen initial conditions, each one with length �t = 1000.
Bottom panel: Divided reduced phase space of a C3-symmetric do-
main (C3S-D) with a smooth border, as described in the text.

panel in Fig. 6. In contrast, the right panel shows a much
slower decay of the position autocorrelation function in the
SHB, with σ = 0.35. Guided by these classical features, our
next step was to investigate the quantum properties of selected
hexagons.

FIG. 6. Left panel: Solid black line: Decadic log-log plot of the
calculated position correlation function in the FHB. Solid red (gray,
in the printed version) line: Linear fit with a slope of −1.0. This fast
decay of the autocorrelation function is an evidence that this billiard
enjoys a near strong mixing property. Right panel: The same for the
SHB. The linear fit [red (gray, in the printed version) line] has a slope
of −0.35.
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FIG. 7. Top panels: Density plots of squared eigenfunctions cor-
responding to singlet states in the FHB, exhibiting the underlying
C3 symmetry. Bottom panels: The same for a numerically calculated
doublet state (ϕ1, ϕ2) in the same billiard (left and middle panels).
The C3 symmetry shows up in the sum ϕ2

1 + ϕ2
2 (right panel), as

discussed in the text.

III. QUANTUM PROPERTIES

Quantum billiards are two-dimensional infinite potential
wells. The particle is free within domain � and can-
not be found at the boundary ∂�. The time-independent
Schrödinger equation leads to the eigenvalue problem of
the two-dimensional Laplacian, described by the Helmholtz
equation. In other words, in the position representation, the
particle’s wave function is a solution of

∇2ϕ(	r) = −k2ϕ(	r) (3)

in �, with Dirichlet boundary condition ϕ(	r) = 0 in ∂�. Here
k2 = 2μE/h̄2, where μ is the mass of the confined particle,
h̄ = h/2π , h is Planck’s constant, and E is the energy eigen-
value. Exact solutions to this problem are known only in a
handful of geometries, and one has to rely most often on
numerical techniques. As we will describe below, the finite
element method (FEM) [19] and the boundary method due to
Vergini and Saraceno (VS) [20] are the techniques used here.

A. Low-lying spectra

The FEM is a standard numerical technique in which an
arbitrary domain � is discretized into very small triangular
tiles which form a mesh. In the process, ∂� is actually re-
placed by a polygonal border with a very large number of
small straight segments. The unknown solution is then lin-
earized in each triangular element and the continuity of the
wave function at the interfaces of neighboring elements and
the boundary condition at ∂� replace the partial differential
equation by a computational task of matrix diagonalization
for the numerous coefficients. Thus, the method is admittedly
memory hungry and has a relatively limited precision. Never-
theless, it is particularly useful in comparison with physical
experiments [19] and provides a convenient way to obtain
low-lying energy eigenvalues and eigenfunctions through a
commercial software such as Matlab. The top panels in Fig. 7
show density plots of three different singlet states in the FHB,

all standing wave patterns exhibiting the C3 symmetry, as
expected. The bottom panels in Fig. 7 show a doublet formed
by an orthogonal pair, say, (ϕ1, ϕ2), in the same billiard. As
these modes are orthogonal, the sum ϕ2

1 + ϕ2
2 exhibits the C3

symmetry (rightmost bottom panel in Fig. 7). The FEM also
provides a way to crosscheck the results of the more efficient
boundary method.

B. High-lying spectra

For a large sequence of consecutive energy eigenvalues,
boundary methods are the numerical techniques of choice.
Briefly putting it, in a boundary method one usually expands
the unknown solution in terms of basis functions in an outer
domain from which ∂� is a subset. The solutions in � are
unique and, thus, they must correspond to the superpositions
which vanish in ∂�. Precision is determined by the number
NB of basis functions used in the expansion. The ingenious
method of VS [20] is based on the idea of seeking a minimum
of the so called boundary norm, defined as the path integral
over ∂� of ϕ2[(k/k0)	r]/rn, where 	r is the position vector of
a point in ∂�, rn = n̂ · 	r, n̂ is the outgoing unit vector normal
to ∂� at point 	r and ϕ(	r) is an eigenfunction of the Lapla-
cian with eigenvalue −k2

0 . ϕ[(k/k0)	r] is assumed to be the
Laplacian eigenfunction with eigenvalue −k2. The minimum
condition for the boundary norm leads to a generalized eigen-
value problem whose numerical solution provides quantized
values k j , if any, within a small interval [k0 − �k, k0 + �k],
as well as the NB coefficients for the truncated expansion of
the scaling function ϕ[(k/k0)	r] in terms of a proper set of basis
functions. That number is estimated to depend on k0 as N 

0.9k0 + 20 [20]. The interval width 2�k is determined by the
desired accuracy, since the errors grow as |k j − k0|3 [21]. Here
we chose a set of C3-symmetric basis functions for the singlets
and a nonsymmetric one for the doublets. Convergence to the
semiclassical regime was tested systematically until a small
difference was found in the statistics of the first 20 000 levels
above the first N0 ones. In practice, we observe that the rate of
convergence depends on ∂�, so that our common choice was
N0 = 100 000, which seemed satisfactory in the FHB. On the
other hand, we anticipate that this choice was not far enough
to reach the deep semiclassical regime in the SHB. We will
return to this point in the context of quantum localization in
Sec. IV.

C. Level statistics: GOE and GUE

Let us briefly restate the problem that motivated this work.
Is there a billiard in our nonchaotic family which might follow
the LSS results predicted for chaotic domains [6]? If so, the
nns distribution for singlets must be close to

pGOE(s) = π

2
s exp

(
−π

4
s2

)
, (4)

which predicts a linear level repulsion [p(s → 0) ∼ s] and
is often associated with the energy spectrum of a time-
reversal-invariant classically chaotic system. In this case, the
cumulative spacing function I (s) = ∫ s

0 p(s′) ds′ is given by

IGOE(s) = 1 − exp
(
−π

4
s2

)
. (5)
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FIG. 8. Symbols: Calculated nns distributions p(s) in the FHB.
The graphs on the left show a good agreement of the calculated
probability density with the GOE result [solid red (light gray, in
the printed version) line] for singlets (top panel) and with the GUE
prediction [solid blue (dark gray, in the printed version) line] for
doublets (bottom panel). The same agreement is observed through
the corresponding cumulative spacing functions I (s) in the right
panels [red (light gray, in the printed version) lines for GOE, blue
(dark gray, in the printed version) lines for GUE, and black lines for
the calculated data in the FHB].

On the other hand, when the time-reversal symmetry is broken
in the classically chaotic system, the spacing must be dis-
tributed according to the GUE of random matrices, for which

pGUE(s) = 32

π2
s2 exp

(
− 4

π
s2

)
, (6)

which predicts, instead, a quadratic level repulsion, and for
which

IGUE(s) = erf

(
2s√
π

)
− 4

π
s exp

(
− 4

π
s2

)
. (7)

The anomalous result predicted by LSS for a C3-symmetric
TR-invariant classically chaotic billiard is right here: the
Kramers doublets must follow the prediction of the GUE, not
GOE, despite the presence of the TR symmetry.

From the classical properties of the hexagons, a good
candidate to follow the LSS conjecture is the FHB, which
seems to enjoy the strong mixing property. Indeed, as shown
by the symbols in the left panels in Fig. 8, the high-lying
energy eigenvalues in this hexagonal billiard display a spacing
distribution p(s) which is very close to the GOE result (solid
red line) for singlets and to the GUE result (solid blue line)
for doublets. The right panels in Fig. 8 confirm this trend
through the cumulative spacing function I (s). For comparison,
we repeated the numerical experiments in a smooth billiard.
We show in Fig. 9 results for the C3S-E billiard with a1 =
b1 = √

3/12, which corresponds to the billiard investigated by
LSS [6]. Clearly, we confirm the LSS results for both singlets
and doublets. The insets in Fig. 9 show density plots of |ϕ|2
corresponding to singlet states of the LSS billiard, an ex-

FIG. 9. The same as Fig. 8 for the C3S-E billiard. Insets: Density
plot of |ϕ|2 corresponding to extended (left) and whispering gallery
mode (right) singlet states in the C3S-E billiard.

tended mode on the left and a whispering gallery mode on the
right.

D. Level statistics: Poisson-GOE and Poisson-GUE transitions

Now, what if the billiard exhibits a slow decay of classical
correlations, such as the SHB, or if the reduced phase space
is divided, such as in the C3S-D? The problem of whether a
symmetry transition or a transition between integrability and
chaos in a given physical system could be described by a
transition between Gaussian ensembles or between a Gaussian
ensemble and a Poissonian one is not new. In fact, several
interpolation formulas have been proposed in the literature in
the past few decades [22–25]. Here we follow two approaches.
In the first one, we consider the phenomenological formula
proposed by Brody [22] for the transition between the Poisson
and GOE distributions,

pB,1(s) = (ν + 1)aνsν exp(−aνsν+1), (8)

where

aν =
[
�

(
ν + 2

ν + 1

)]ν+1

, (9)

�(x) is Euler’s gamma function, and 0 � ν � 1. As demon-
strated by Batistić, Lozej, and Robnik [26], the Brody
parameter ν can be regarded as a measure of the degree
of localization of chaotic eigenstates in the phase space
(Poincaré-Husimi representations). By following the same
steps which led to the Eq. (8), we derived a Brody-like formula
for the transition between the Poisson and GUE distributions,

pB,2(s) = (η + 1)b2
ηs2η exp(−bηsη+1), (10)

where

bη =
[
�

(
2η + 1

η + 1

)]−(η+1)

, (11)

and 0 � η � 1. For η = 0, pB,2(s) reduces to the Poisson
distribution, whereas for η = 1 the Wigner distribution for the
GUE is obtained.
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We also follow the elegant approach of Berry and Robnik
(BR) [23] and later developed by Prosen, Batistić, Lozej, and
Robnik [26–30]. In this framework, a generic mixed classical
dynamics is considered and the corresponding quantum level
spacing distribution is derived for different regimes of cou-
pling between the underlying regular and chaotic regions of
the phase space. The spectrum is assumed to be a superpo-
sition of M statistically independent sequences of levels with
level densities ρi (i = 1, . . . , M ). In particular, if there is only
one regular (Poissonian) with level density ρ1 and one chaotic
(GOE) component with ρ2 = 1 − ρ1, the BR formula reads

pBR,1(s) =
[(

2ρ1ρ2 + πρ3
2 s

2

)
e− πρ2

2 s2

4 + ρ2
1 erfc

(√
πρ2s

2

)]

× e−ρ1s, (12)

where erfc(x) is the complementary error function. For ρ1 = 0
(ρ1 = 1), pBR,1(s) reduces to the GOE (Poisson) distribution.
By following the steps described in [23], we derived the for-
mula which interpolates the Poisson and GUE distributions,
which can be written as

pBR,2(s) =
{[

ρ2
1 + 8

π
ρ2

2 s

(
ρ1 + 4

π
ρ2

2 s

)]
e− 4

π
ρ2

2 s2

+ ρ1ρ2(2 − ρ1s)erfc

(
2ρ2s√

π

)}
e−ρ1s, (13)

so that for ρ1 = 0 (ρ1 = 1), pBR,2(s) reduces to the GUE
(Poisson) distribution. It is worth noting that the BR formu-
las are expected to provide a good description of the deep
semiclassical regime. For instance, excellent agreement has

been found with numerical experiments in a billiard for which
the first 587 654 eigenvalues above the first 1 000 000 ones
have been used in the analysis [29]. These are quite impres-
sive numbers. In fact, most of the attempts to fit our data
with the BR formulas resulted in poor agreement. This could
be an indication that our sets of 20 000 eigenvalues above
the first 100 000 ones might still not correspond to a truly
semiclassical regime. On the other hand, much better results
could be found here with the semiempirical model of Batistić
and Robnik [28–30], which takes into account the dynamical
localization of chaotic eigenstates and their coupling with the
regular ones through tunneling effects. A key result of the the-
ory is the so-called Berry-Robnik-Brody (BRB) distribution,
which can be written as

pBRB,1(s) =
{

ρ2
1

(β + 1)�
(

β+2
β+1

)Q

[
1

β + 1
; aβ (ρ2s)β+1

]

+ [
2ρ1ρ2 + (β +1)aβρ

β+2
2 sβ

]
e−aβ (ρ2s)β+1

}
e−ρ1s,

(14)

for the crossover between the Poisson and GOE distributions.
Here aβ is defined in Eq. (9) and Q(κ; x) is the incomplete
Gamma function. Notice that pBRB,1(s) reduces to the Pois-
son distribution if ρ1 = 1 or if β = 0. On the other hand,
pBRB,1(s) = pB,1(s) for ρ1 = 0, and pBRB,1(s) = pBR,1(s) if
β = 1. Now, following Batistić and Robnik [28] we derived
a formula that corresponds to the Poisson ↔ GUE crossover,

pBRB,2(s) =
{
ρ1ρ2b

1
γ+1
γ (2 − ρ1s)Q

[
1 + 2γ

1 + γ
; bγ (ρ2s)γ+1

]
+ [

ρ2
1

(
1 + bγ ρ

γ+1
2 sγ+1) + (1 + γ )

(
ρ

γ+1
2 bγ sγ

)2]
e−bγ (ρ2s)γ+1

}
e−ρ1s,

(15)

where bγ is defined in Eq. (11). Here pBRB,2(s) = e−s if ρ1 =
1 or if γ = 0. In addition, pBRB,2(s) = pB,2(s) if ρ1 = 0, and
pBRB,2(s) = pBR,2(s) if γ = 1.

We tested some of the above formulas in two distinct
geometries, namely, the SHB and the C3S-D. As discussed
above, the SHB combines a fully ergodic phase space with a
slow decay of classical correlations. This recipe in irrational
triangles yields intermediary quantum spectral statistics, as
evidenced by numerical experiments [15]. Since ρ2 = 1 in this
domain, the only possibility here is to fit our data with the
pB(s) formulas. The symbols in the left panels in Fig. 10 are
results of numerical experiments in the SHB, which clearly
depart from the GOE and GUE distributions represented by
the red and blue lines, as before. The solid black line is a fit
of the data with pB,1(s) with parameter ν = 0.7899 in the top
left panel and with pB,2(s) with parameter η = 0.73668, in
the bottom left panel. On the other hand, the C3S-D billiard
studied here holds a divided phase space (see Fig. 5) with a
fraction ρ2 = 0.8 directly obtained from the calculated rela-
tive measure. In this case, the BR and BRB formulas might
be used. Since this is still an ongoing work (no attempt has
been made thus far to characterize the deep semiclassical

regime in the C3S family), here we deliberately focused in
lower energy levels of the C3S-D only, in order to test the
BRB relations. Specifically, we consider a sequence of 10 000
eigenvalues above the first 10 000 ones. The circles in the right
panels in Fig. 10 are the resulting nns distributions from the
calculated singlets and doublets spectra. The solid black lines
are fits with pBRB,1(s) (top right panel) and pBRB,2(s) (bottom
right panel) with the parameter ρ2 fixed at the experimental
value 0.8 and with β = 0.106, in pBRB,1(s) and γ = 0.527, in
pBRB,2(s). Notice that the singlets spacings are already almost
distributed according to the Poisson function, represented in
the right panels in Fig. 10 by the solid green lines. The good
agreement between the calculated nns distributions of both
singlets and doublets and the BRB formulas with the ρ2 value
extracted from the numerically calculated relative measure
confirms our expectation that the deep semiclassical regime
of the C3S-D billiard is beyond the investigated window of
the energy spectrum. The inset in Fig. 10 shows a density plot
of |ϕ|2 in the C3S-D billiard corresponding to a focusing mode
or, in other words, a high-frequency localization. In the next
section, we discuss this and other aspects of localization in the
FHB and the SHB.
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FIG. 10. Open symbols: Calculated nns distributions in the SHB
(C3S-D billiard) for singlets in the top left (top right) panel and
doublets in the bottom left (bottom right) panel. Solid black lines
are fits with pB,1(s) (top left), pB,2(s) (bottom left), pBRB,1(s) (top
right) and pBRB,2(s) (bottom right). Parameters are given in the text.
Solid red (top panels) and blue (bottom panels) lines are the GOE
and GUE distributions, respectively. The solid green line in the right
panels is the Poisson distribution, exp(-s). The inset shows a density
plot of |ϕ|2 corresponding to a focusing mode in the C3S-D billiard
with a pronounced peak at the billiard center.

IV. QUANTUM LOCALIZATION

In the quantum description of a particle, if, for a given po-
tential, there is a pronounced enhancement in the probability
density |ϕ(	r)|2 in some region of the space swept by 	r, or
if the momentum distribution f (p) has a peak at p = 0 with
walls that decay exponentially, one says there is localization
[31–34]. For a classically ergodic system in the deep semiclas-
sical regime, localizations might not disappear, although their
support (effective area) would have zero measure (for a recent
discussion on the subject, see Ref. [35]). In the context of
quantum billiards, sticking effects near classical phase space
structures and the dynamical suppression of diffusive-like mo-
tion by quantum interference (dynamical localization) are of
particular interest. Noteworthy is the enhancement of quan-
tum probability densities around classical unstable periodic
orbits, a phenomenon known as scarring in energy eigenfunc-
tions [36], not to be confused with the dynamical localization
[29,30,37]. The latter allows one to estimate adequate spectral
conditions for a reliable comparison between experiments
and predictions by random matrix theory. Billiards in poly-
gons may also exhibit the so-called super-scarring property,
i.e., persistent structures in high-lying energy eigenfunctions
which are not associated with a single unstable periodic or-
bit, but with families of classical periodic orbits. Originally
studied in pseudointegrable billiard models and in the barrier
billiard [38,39], superscars are believed to exist in general
plane polygonal billiards since (1) the geometry might sup-
port the formation of classical channels of parallel periodic
orbits and (2) strong diffraction might occur at the corners.
These are essentially the two mechanisms for the formation

of superscars, an interesting subject which was not explored
here. In this section, we report results which portray a variety
of patterns of energy eigenfunctions in the position repre-
sentation, ϕ(	r), in the hexagonal billiards, as well as their
corresponding Poincaré-Husimi representations hk (q, p) in a
phase space with Birkhoff variables (q, p). Besides scarred
eigenfunctions, our findings include extended lattice modes
and standing wave patterns localized at the geometric center
of the hexagon, bearing resemblance to focusing modes in
billiards with a smooth border, a phenomenon known as high-
frequency localization. In addition, through the ratio between
the Heisenberg and the classical transport times, we estimate
the spectral distance between the ground-state and the deep
semiclassical regime in the FHB and SHB. First, we discuss
possible classical periodic orbits in the hexagonal geometry.

A. Periodic orbits and scarring in the rational hexagon with
(�, θ) = (0.47, π/2)

In 1775, Giovanni Fagnano stated a well-known problem
in geometry: For a given acute triangle, what is the inscribed
triangle with the smallest perimeter? By using a method based
on calculus, Fagnano proved that the answer is the triangle
whose vertices are at the base points of the altitudes of the
given triangle, the so-called altitude triangle or orthic tri-
angle. By construction, one can state the lemma [40]: The
orthic triangle is a 3-periodic (P3) billiard trajectory. Now,
within a given hexagon in the (�, θ ) family, one can trace two
equilateral triangles by joining three nonconsecutive vertices
with straight lines. It is easy to see that these two inscribed
equilateral triangles have a common center, which is also
the center of the C3 symmetry of the hexagon. It follows
that a P3 Fagnano orbit occurs when, from this center, one
can reach three nonconsecutive sides of the hexagon with
straight segments perpendicular to the sides, such as segments
CO, CP, and CQ in Fig. 11(a). The solid red line [triangle
OPQ in Fig. 11(a)] represents one such orbit in the (“right”)
hexagonal billiard with θ = π/2 and � = 0.47. A continuous
set of period-6 (P6) orbits parallel to the Fagnano orbit is also
predicted. Two of them are shown in Fig. 11(b), one in red, the
other in blue. The red solid line is a typical P6 orbit, where the
two collision points on the sides are closer to the O, P, and Q
points which define the center C in Fig. 11(a). The vertices of
the hexagon impose a limit for the existence of such P6 orbits,
as indicated by the solid blue line in Fig. 11(b). Segmented
“bouncing ball” orbits are also allowed in the hexagons, such
as the two-segment orbit represented by the solid red line
in Fig. 11(c). Easy to see that the angle of incidence at the
collision point P in Fig. 11(c) is π/3. Again, the vertices of the
hexagon limit the subset of � where these orbits may occur.
Finally, three-segment bouncing ball orbits are also known
to exist in right triangles [40]. It may happen as well in the
hexagons. The solid red lines in Fig. 11(d) show one such
orbit. Here the angle of incidence is π/3 at point P and π/6 at
point Q. Again, the blue line indicates the limit for these three-
segment orbits. Notice that a single orbit is shown by the red
lines in each case of Fig. 11. Within the region limited by the
blue lines and the hexagon border, there are infinitely many
such orbits. Also, rotations of 2π/3 and 4π/3 about the axis
through the symmetry center in Figs. 11(c) and 11(d) generate
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(a) (b)

(c) (d)

O P

Q

C

P

Q
P

FIG. 11. Red (light gray, in the printed version) lines: Possi-
ble periodic orbits in the hexagon with � = 0.47 and θ = π/2.
(a) Period-3 Fagnano orbit, defined by the orthic triangle OPQ, cen-
tered at point C. (b) Period-6 orbit parallel to the Fagnano orbit in (a).
(c) A two-segment bouncing ball orbit. (d) A three-segment bouncing
ball orbit. The blue (dark gray, in the printed version) lines in (b), (c),
and (d) indicate limits for the existence of the corresponding periodic
orbits.

distinct triangular patterns, which are expected to show up in
scarred quantum energy eigenfunctions. This expectation is
confirmed by the density plots of the numerically calculated
eigenfunctions shown in Fig. 12, in the right hexagon with
� = 0.47. The solid yellow lines in Fig. 12 are exactly the
periodic orbits described in Fig. 11, namely, Fagnano P3 in

(a) (b)

(c) (d)

FIG. 12. Density plots of numerically calculated |ϕ|2 in the right
hexagonal billiard with � = 0.47, corresponding to eigenfunctions
scarred by the classical periodic orbits described in Fig. 11, shown
here by the yellow (white, in the printed version) lines. The calcu-
lated eigenvalues are k2 = 3.26305 . . . × 104 in (a), 3.90088 . . . ×
106 in (b), 3.90237 . . . × 106 in (c) and 3.90545 . . . × 106 in (d).

(a), parallel P6 in (b), two-segment bouncing ball in (c), and
three-segment bouncing ball in (d). The scars are rather wide
due to the many possible orbits parallel to the one shown in the
figure. Calculated eigenvalues are given in the figure caption.

B. Scarred energy eigenfunctions and Poincaré-Husimi
representations in the FHB and SHB

Henceforth we focus our attention on the two representa-
tive hexagons studied in the previous sections, the FHB and
the SHB. Notice that θ/(π/2) = 0.999952 . . . in the SHB, so
that scarring around the periodic orbits just described in the
neighboring right hexagon could be anticipated. We illustrate
the persistence of the patterns of localized eigenstates with
different energies through both eigenfunctions ϕk (	r) and their
Poincaré-Husimi representation in a reduced phase space,
briefly reviewed here. For a two-dimensional quantum system
in the eigenstate |ϕk〉 with eigenfunction ϕk (	r) = 〈	r|ϕk〉, the
Wigner function [41] is given by

Wk (	r, 	p) = 1

(2π h̄)2

∫
ϕk (	r + 	s/2)ϕ∗

k (	r − 	s/2)ei 	p·	s/h̄ d	s.

(16)

Integration of Wk (	r, 	p) over 	p gives the marginal distribution
|〈	r|ϕk〉|2 and through a similar projection over 	r one obtains
|〈 	p|ϕk〉|2, the probability density in the momentum represen-
tation. Thus, the Wigner function might represent the quantum
state of the system in the classical phase space swept by 	r and
	p. However, as is well known, although Wk (	r, 	p) is real, it
can take negative values in some regions of the phase space
and, consequently, cannot be interpreted as a phase-space
probability distribution. To circumvent this problem, Husimi
[42] introduced a positive alternative, the Gaussian smoothing
of the Wigner function

Hk (	r, 	p) =
∫

Wk ( 	R, 	P) f (	r, 	p; 	R, 	P) d 	R d 	P, (17)

where

f (	r, 	p; 	R, 	P) = 1

(π h̄)2
e

(− (	r− 	R)2

δ2 − ( 	p− 	P)2

(h̄/δ)2
) (18)

and δ is a control parameter of the relative resolution of the
distribution.

For the billiard system, it is convenient to use a Husimi
representation on a Poincaré section, i.e., in a reduced phase
space with Birkhoff coordinates (q, p). Let L be the length
of the billiard perimeter. The classical dynamics is com-
pletely described by the bounce map defined in domain D =
{(q, p) | q ∈ [0,L], p ∈ [−1, 1]} with invariant measure dμ =
dqd p. Now, for a given solution ϕk (	r) of the Helmholtz
equation in �, with Dirichlet boundary conditions in ∂�, the
Poincaré-Husimi representation can be defined as [29,30,43]

hk (q, p) =
∣∣∣∣
∫

∂�

ck (q, p; s)uk (s) ds

∣∣∣∣
2

, (19)

clearly positive definite, where

uk (s) = n̂ · 	∇ϕk (20)
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is the normal derivative of ϕk on the boundary at position s,
with n̂ being the outward unit vector and

ck (q, p; s) = Ck

∑
m∈Z

eik[ap(s−q+mL)+ b
2 (s−q+mL)2] (21)

is a one-dimensional coherent state obeying periodic bound-
ary conditions on the billiard border. In units h̄ = 1 = 2m,
Ek = k2, the normalization constant Ck = (k/π )1/4, a = 1 and
b = i. We computed hk (q, p) for a number of localized states
found in the hexagons, following the recipe in [29]. Given the
C3 symmetry in our polygons, we restrict the position to the
relevant interval 0 � q � 1 + �, where the origin (q = 0) is
taken at the left corner of the horizontal segment with unit
length (see Fig. 1) and circulate the billiard counterclockwise,
as usual. On the other hand, for the p-dependence of hk (q, p)
we consider the full interval −1 � p � 1, so that the even
parity hk (q,−p) = hk (q, p), a signature of the time-reversal
symmetry, could be observed. As usual, the Poincaré-Husimi
functions are displayed in density plots with a gray scale,
darker regions corresponding to higher function values. A host
of distinct eigenfunctions ϕk (	r) and their Poincaré-Husimi
representations hk (q, p) in the FHB and SHB are presented
in the following. Notice that k2 ∼ 104 may correspond to a
relatively low energy, as discussed later.

The plots in Fig. 13 are functions computed in the FHB
(|ϕ(	r)|2 on the left, corresponding hk (q, p) on the right).
The top left panel shows a scarred eigenfunction at k2 =
1.55454 . . . × 103, blurred by a set of a Fagnano P3 orbit
(cyan solid line) at the center and parallel P6 orbits (such as
the one shown by the yellow solid line), with collisions off the
section in the interval 0.5 < q < 1 with p distributed in the
vicinity of ±0.5. This localization phenomenon is represented
by the broad two maxima in the Poincaré-Husimi function
shown in the top right panel in Fig. 13. As mentioned above,
the mirror symmetry with respect to p = 0 in hk (q, p) is due to
the fact that the system is time-reversal-invariant. The middle
panels in Fig. 13 show the situation for the singlet calculated at
k2 = 2.09212 . . . × 104, in which scarring is due to P6 orbits
only, such as the one represented by the yellow solid lines on
the left panel. The bottom panels in Fig. 13 display the func-
tions corresponding to the extended irregular state calculated
at k2 = 2.01102 . . . × 104, which exhibits no characteristic
feature of localization. Our Fig. 13 must be compared with
Fig. 1 in [43], which reported similar calculations in non-
polygonal billiards.

Fagnano P3 and parallel P6 orbits also scar the eigenfunc-
tion with k2 = 1.50545 . . . × 103 in the FHB shown in the left
top panel in Fig. 14. Differently from the functions shown
in Fig. 13, where collisions of the orbits off the boundary
occur on the sides with unit length, here the specular reflec-
tions take place off the sides with length �. The two broad
maxima around (q, p) = (1.25,±0.5) in the Poincaré-Husimi
representation on the top right panel in Fig. 14 connect the
classical and quantum phenomena. The situation displayed in
the bottom panels in Fig. 14 corresponds to the eigenmode
with k2 = 3.19381 . . . × 104 in the SHB. Here collisions oc-
cur off the border on the segments with unit length with
the 3-periodic and the 6-periodic orbits better resolved, as
corroborated by the three maxima in the Poincaré-Husimi

FIG. 13. Density plot of the numerically calculated |ϕ|2 in the
FHB (left panels) and corresponding decadic logarithm of the Husimi
function h(q, p) (right panels). The top panels correspond to a
scarred state near Fagnano and P6 orbits, as indicated by the cyan and
yellow lines, respectively, in the left panel. A higher-lying scarred
eigenfunction near a P6 orbit is characterized in the middle panels.
The bottom left panel shows the situation of an extended eigenfunc-
tion. From top to bottom, the calculated eigenvalues are, respectively,
k2 = 1.55454 . . . × 103, 2.09212 . . . × 104, and 2.01102 . . . × 104.

FIG. 14. Top left panel: Fagnano (yellow line) and P6 (cyan line)
orbits and scarred |ϕ|2 in the FHB, with k2 = 1.50545 . . . × 103, ro-
tated with respect to the one shown in the top panel in Fig. 13. Bottom
left panel: The same pattern in the SHB with k2 = 3.19381 . . . × 104.
The right panels are the corresponding decadic logarithm of the
Husimi functions.
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FIG. 15. Density plot of the numerically calculated |ϕ|2 in the
SHB (left panels), with eigenvalue k2 = 3.95919 . . . × 103 (top) and
k2 = 3.05686 . . . × 104 (bottom), and corresponding decadic loga-
rithm of the Poincaré-Husimi function hk (q, p) (right panels). Here
both eigenstates exhibit the same pattern of an eigenfunction scarred
solely by P6 orbits, without the central Fagnano one.

representation shown in the right bottom panel in Fig. 14,
around (q, p) = (0.1,±0.5), (0.37,±0.5) and (0.65,±0.5).
A repeated pattern of scarring by isolated P6 orbits in the
SHB, without the presence of the central Fagnano P3 trajec-
tory, is shown in Fig. 15, corresponding to k2 = 3.95919 . . . ×
103 (top panels) and k2 = 3.05686 . . . × 104 (bottom panels).

Scarring by three-segment bouncing ball orbits with dif-
ferent patterns are shown in the SHB in Fig. 16, where k2 =
1.05369 . . . × 104 in the top plots and k2 = 3.10145 . . . × 104

in the bottom ones. The yellow and red solid lines are the or-
bits with collisions in the interval 0 < q < 1 + �. In 0 < q < 1
(horizontal segment of the border) in the top left panel, many
three-segment orbits parallel to the one represented by the
yellow line collide perpendicularly (p = 0) off the boundary

FIG. 16. The same as Fig. 15. Here the eigenfunctions are
scarred around three-segment bouncing ball orbits (top, with k2 =
1.05369 . . . × 104; bottom, with k2 = 3.10145 . . . × 104). Three of
such orbits are shown by the yellow, green, and red (gray, in the
printed version) lines in each billiard.

FIG. 17. The same as Fig. 15. Here the eigenfunctions are locked
in the same lattice pattern with three complete hexagonal cells (dark
regions) in � (Nin = 3). Other six incomplete cells (Nout = 6) ap-
pear near the vertices of the hexagon. The eigenvalues are k2 =
4.71001 . . . × 103 (top) and k2 = 8.49904 . . . × 103 (bottom).

around q = 0.5, whereas the red collisions occur in the vicin-
ity of q = 0.8 with p = sin π/3 ≈ 0.87. In the interval 1 <

q < 1 + �, the collisions represented by the red line take place
with the momenta distributed around p = 0.5. All these col-
lisions are clearly represented by the maxima (dark regions)
in the Poincaré-Husimi representation shown in the right top
panel in Fig. 16. A similar situation is found in the bottom
panels in Fig. 16, where a triangular pattern is observed in
the eigenfunction (left bottom panel). Now, there is a single
collision in 0 < q < 1 around q = 0.9, and three in 1 < q <

1 + �, two with p = 0, one around q = 1.15 the other around
q = 1.39, and the third one with p ≈ 0.87 around q = 1.19.
Again, the calculated Poincaré-Husimi function shown in the
bottom right panel in Fig. 16 clearly represents the scarring
behavior just described.

C. Lattice states in the SHB

The proximity of the SHB to the right hexagon seems
to favor the formation of standing waves patterns whose
nodal regions are localized near lines that define hexagonal
lattices within �, with a piecewise linear nodal line along
∂�. The color code we use in the density plots is such that
the central region of each lattice cell appears in dark blue,
where |ϕ(	r)|2 ≈ 0. Let Nin be the number of such regions
which are fully displayed within � and Nout the number
of dark cells which occur partially on the boundary ∂�. In
Fig. 17 we illustrate the case of the eigenmodes with k2 =
4.71001 . . . × 103 (top panels) and k2 = 8.49904 × 103 (bot-
tom panels), for which Nin = 3 and Nout = 6. The squared
eigenfunctions (left panels) clearly exhibit the same lattice
pattern, a fact corroborated by the corresponding Poincaré-
Husimi representations (right panels). The singlets in Fig. 18,
for which k2 = 3.99736 . . . × 103 in the top panels and
k2 = 8.33861 . . . × 103 in the bottom ones, show a similar
situation. In this case, Nin = 7 and Nout = 9. The lattice states
observed with k2 = 1.12581 × 104 and k2 = 3.08926 × 104
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FIG. 18. The same as Fig. 17, with Nin = 7 and Nout = 9.
The eigenvalues are k2 = 3.99736 . . . × 103 (top) and k2 =
8.33861 . . . × 103 (bottom).

shown, respectively, at the top and bottom panels in Fig. 19,
have Nin = 33 and Nout = 21.

D. Focusing modes

The geometric properties of the Laplace operator in
bounded Euclidean domains is, in fact, a long-standing sub-
ject. Recently, they have been reviewed by Grebenkov and
Nguyen [44]. Here we draw our attention to the existence
of the so called focusing modes, previously investigated in
integrable domains with a curved border ∂�. For Dirichlet
boundary conditions, these are high-lying eigenstates local-
ized at certain hot spots in �. A prototype geometry exhibiting
such high-frequency localization is the billiard in a circle
of radius R. In this case, separation of variables in polar
coordinates (ρ, φ) leads to the exact solution

ϕm,n(ρ, φ) ∝ Jm(xnρ/R)

[
cos(mφ)
sin(mφ)

]
, (22)

FIG. 19. The same as Figs. 17 and 18, with Nin = 33 and Nout =
21. The eigenvalues are k2 = 1.12581 . . . × 104 (top) and k2 =
3.08926 . . . × 104 (bottom).

FIG. 20. Eigenfunctions of the circular billiard with quantum
numbers (m, n), for m = 0 and n = 1, 5, 20 and 50. The panels were
built with Zeleny’s “Particle in an Infinite Circular Well” interface
[45].

where m is a nonnegative integer and xn is the zero of order
n (n = 1, 2, 3, . . .) of the Bessel function Jm(x). Thus, the
ground state has quantum numbers (m, n) = (0, 1) and ex-
hibits a maximum at the center of the billiard with no nodal
line in �. The ground-state eigenfunction of the circular bil-
liard is shown in the top left panel in Fig. 20. By keeping m =
0, there are (n − 1) concentric circular nodal lines between the
center and the border of the billiard. The other three panels in
Fig. 20 show the cases for n = 5, 20, and 50. Clearly, the
larger the n, the larger is the degree of localization of the
central peak. It is then pertinent to ask as to whether focusing
modes might exist in polygonal billiards. They certainly do
not occur in rectangles [44], but could they exist in more com-
plex polygons, such as the hexagons investigated here? The
symmetry center of the billiard is a candidate for such a hot
spot. We sought numerical solutions with such a property in
the hexagons and preliminary results, obtained with the finite
element method, are reported in this subsection. The lower in-
set in Fig. 21 shows a perspective of the squared eigenfunction
corresponding to the singlet with k2 = 2.87587 . . . × 103 in
the SHB near the center, where it clearly displays a prominent
peak. We conjecture that this eigenstate could play a role
similar to the intermediate modes (0,5) or (0, 20) of the circle,
towards an eventual high-frequency localized mode. Notice
that in our calculation the center of the billiard is at the
origin, i.e., (xc, yc) = (0, 0). By fixing y = yc and varying x in
the interval −0.046 < x < 0.046 we calculated the profile of
the absolute value of the eigenfunction |ϕy(x)| and the result
is shown by the symbols in Fig. 21. The swept interval is
indicated by the double-headed dashed white arrow in the
lower inset. The solid red and blue lines are linear fits to
the 10 leftmost and rightmost data points, respectively. In
other words, the absolute value of the eigenfunction vanishes
linearly as it reaches the first nodal line away from the billiard
center. This behavior is shared with the high-frequency focus-
ing mode shown in Fig. 20, as demonstrated in the upper inset
of Fig. 21, where the solid black line is the radial profile of
the central peak in the absolute value of the Bessel function
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FIG. 21. Symbols: Calculated |ϕy(x)| for the eigenstate with

k2 = 2.87587 × 103 in the SHB, in the interval −0.046 < x <

0.046, for fixed y = yc = 0.0 (origin at the billiard center). This
interval is indicated by the horizontal double-headed dashed arrow
in the lower inset, which shows a zoom of the central peak. Solid red
and blue lines indicate that |ϕy(x)| vanishes linearly with distance to
the center. Upper inset: The same linear behavior is exhibited by the
focusing mode (0,50) of the unit circle, shown in Fig. 20.

J0(x50r). The red solid line is a linear fit to the asymptotic
decay of |J0(x50r)|, just before it reaches the first nodal line at
r ≈ 0.0152. It is worth mentioning that this linear behavior in
billiards is in contrast to the exponential decay of the localized
eigenstates found in the Anderson model for a particle in a
one-dimensional disordered potential [34].

E. Towards the deep semiclassical regime

The characterization of the semiclassical regime has al-
ways attracted a great deal of interest in the field of quantum
chaos, as it is a major requirement for the application of
random matrix theory (RMT). Purely quantum effects that
might occur even at considerably high-lying eigenstates, such
as dynamical localization and tunneling, may render the com-
parison with RMT inadequate [28–30,37]. In this subsection
we report primary results of an ongoing investigation aimed
at the observation persistent occurrence of localized modes
in the SHB, as the presence of those modes without a clas-
sical counterpart might contribute for the poor agreement
between the spectral data and the BR formulas for the nns
discussed previously. For that purpose, the energy eigen-
states are calculated with the VS method. Scarred states by
three-segment and two-segment periodic orbits are displayed,
respectively, in the top (k2 = 3.21213 . . . × 105) and bottom
(k2 = 3.09734 . . . × 106) panels in Fig. 22. Representative
trajectories are shown by the solid yellow, cyan, and red lines
in the left panels. Notice that the situation in the top panels
of Fig. 22 might be regarded as similar to the ones shown
in Fig. 17, corresponding to lattice states with Nin = 3 and
Nout = 6. The calculated Poincaré-Husimi function beauti-
fully exhibits maxima corresponding to the three collisions in

FIG. 22. High-lying eigenstates (left) and corresponding decadic
logarithm of the Poincaré-Husimi representations (right) in the SHB,
exhibiting a scar near three-segment bouncing ball orbits (top, with
k2 = 3.21213 . . . × 105) and a scar near two-segment bouncing ball
orbits (bottom, with k2 = 3.09734 . . . × 106).

0 < q < 1 (two with p = 0, one with |p| ≈ 0.87) and the sin-
gle collision in 1 < q < 1 + � (with |p| = 0.5). On the other
hand, the situation depicted in the bottom panels in Fig. 22 is
quite similar to the one shown in Fig. 12(c), found in the right
hexagon. Again, the Poincaré-Husimi function connects the
scarring phenomenon with the three collisions in 0 < q < 1
(two with p = 0 near the corners, one with |p| ≈ 0.87 near
the leftmost corner) and no collisions in the 1 < q < 1 + �

interval.
The top left panel in Fig. 23 shows the squared en-

ergy eigenfunction corresponding to energy eigenvalue k2 =
3.09679 . . . × 106. Scarring by P6 trajectories (cyan, red, and
yellow solid lines) as well as by a set of three-segment bounc-

FIG. 23. High-lying eigenstates (left) and corresponding decadic
logarithm of the Poincaré-Husimi representations (right) in the
SHB, exhibiting a scar near three P6 orbits (top, with k2 =
3.09679 . . . × 106) and a higher-order lattice mode (bottom, with
k2 = 3.09484 . . . × 106).
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FIG. 24. Density plot of the numerically calculated |ϕ|2 in the
right hexagon exhibiting a lattice pattern which is associated with
scars in the vicinity of six independent three-segment bouncing ball
orbits, shown by yellow, cyan, and red solid lines. The calculated
eigenvalue is k2 = 6.31914 . . . × 105.

ing ball orbits (not shown, for clarity) are present in this case.
The six maxima in the corresponding Poincaré-Husimi repre-
sentation in the interval 0 < q < 1 around p = 0.5 reflect the
collisions associated with the overwhelming signature of the
three P6 orbits. The bottom panels in Fig. 23 display the func-
tions corresponding to k2 = 3.09484 . . . × 106, a superlattice
state with Nin = 498 and Nout = 76 whose Poincaré-Husimi
representation exhibits a set of neighboring maxima around
|p| ≈ 0.3 and |p| ≈ 0.7 in 0 < q < 1 and around |p| ≈ 0.2
and |p| ≈ 0.7 in 1 < q < 1 + �. The maxima are clearly not
resolved from one another and appear as continuous dark
horizontal stripes in the Poincaré-Husimi projection. As an
addition to the rich gallery of localized eigenfunctions of
the SHB system, Fig. 24 shows the state corresponding to
k2 = 6.31914 . . . × 105 in the neighboring right billiard, an
eigenfunction scarred by three-segment orbits such as the ones
shown by the yellow, cyan, and red lines, bearing resemblance
to a lattice state with Nin = 15.

Upon completion of this work, we have not yet found a
convincing focusing mode among the sorted high-lying eigen-
states in the SHB. On the other hand, we have shown that at
least some lattice modes might be related to scarred eigen-
states, which are connected to periodic orbits in the classical
limit. Thus, although we suspect that the numerous and per-
sistent localized eigenstates found here do play a significative
role in the determination of the deep semiclassical regime, the
overall scenario thus far is not crystal clear. We still need to
better characterize our spectra in that regard. An attempt based
on the calculation of the ergodic parameter is presented in the
next subsection.

F. Heisenberg and transport times

Quantum dynamical localization is a phenomenon that
bears no relation to the eigenstates discussed in the previous
subsections. Putting it briefly, it corresponds to a peculiar
quantum distribution of the linear or angular momentum

peaked at zero, with walls that decay exponentially, differently
from the classical results, which predicts, for a chaotic or
disordered system, a diffusive transport [37]. A review of the
phenomenon can be found in Ref. [46]. An interesting feature
of the quantum dynamical localization is that it allows us
to estimate the conditions under which the comparison with
the standard random matrix theory is adequate or, in other
words, whether a given data set indeed belongs to the deep
semiclassical regime. We follow closely Batistić and Robnik
[30] in the short description below.

The key idea is to express the ergodic parameter α =
tH/tT , where tH is the (quantum) Heisenberg time and tT is the
(classical) transport time, in terms of accessible magnitudes,
such as the (quantum) energy E and the (classical) number
of collisions off the billiard border, NT . The Heisenberg time
is tH = 2π h̄ρ(E ), where ρ(E ) = dN (E )/dE is the density of
states. Here N (E ) is the number of levels below and up to
energy E . For a particle of mass m in a billiard with area A,
the leading order of the Weyl formula gives

N (E ) = mA
2π h̄2 E . (23)

Thus, the Heisenberg time is

tH = mA
h̄

. (24)

Now let v = √
2E/m be the speed of the particle at energy E

and �̄ the mean-free path. Then the transport time is given by

tT = �̄NT

v
= �̄NT√

2E/m
. (25)

If P is the length of the perimeter ∂�, the Santaló’s formula
[47] �̄ ≈ πA/P leads to

α = tH
tT

= Ak

NT �̄
= Pk

πNT
. (26)

For our hexagons, P = 3(1 + �). The condition for the pres-
ence of quantum dynamical localization in a given energy
spectrum, α � 1, can then be written as

k � kc = πNT

3(1 + �)
. (27)

The next step is to consider an ensemble of orbits initially
directed perpendicularly to ∂� in the interval 0 < q < 1 + �

and follow its random spreading as a function of the dis-
crete time t . The symbols in Fig. 25 illustrate the results
for the mean square momentum 〈p2〉 as a function of log10 t
(averaged in sets of 103 randomly chosen initial conditions)
for the FHB and SHB systems. Saturation of 〈p2〉 occurs
at t = NT = 103, for the FHB (black symbols) and at NT =
104 for the SHB (red symbols). These numbers correspond
to the critical values kc ≈ 5.4 × 102 for the FHB, and kc ≈
7.1 × 103, for the SHB. On the other hand, our calculations
of the nns distribution of singlets, for instance, correspond to
spectra starting at kmin and ending at kmax, with (kmin, kmax) =
(1.3 × 103, 1.4 × 103) in the FHB and (1.7 × 103, 1.9 × 103)
in the SHB. Our estimate gives kc < kmin in the FHB, thus in-
dicating that the investigated spectrum is fully within the deep
semiclassical regime in that billiard. For the SHB, we have
kc > kmax, clearly indicating the semiclassical regime has not
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FIG. 25. Calculated mean square of the momentum as a function
of the logarithm of the discrete time t (number of collisions of the
particle off the billiard boundary). Black [red (gray, in the printed
version)] solid circles are data for the FHB (SHB). Lines are guides
for the eyes.

been reached. The overall results are consistent with the spec-
tral statistics discussed in the previous section, namely, the
agreement with the GOE and GUE results for the singlets and
doublets in the fast billiards, and with adequate intermediate
formulas for the slow ones.

V. CONCLUSIONS

In summary, a family of biparametric time-reversal-
invariant billiards with the additional C3 point symmetry has
been introduced and thoroughly investigated in numerical ex-
periments. Calculations of the relative measure in a reduced
phase space, as well as the decay of the position autocorrela-
tion function, allowed us to identify hexagons with a strong
mixing character, as a numerical conjecture. Prior to this
work, to our knowledge, irrational triangles [15,16] were the
only billiards in polygons, which are never chaotic, to exhibit
numerical evidence for this ergodic property. On the other
hand, there are rigorous mathematical theorems supporting
the weakly mixing property in polygonal billiards for the ra-
tional case only, i.e., when all angles are rational with π [48].
The difficult class of irrational billiards still lacks rigorous
results. Pertinent discussions may be found in Refs. [49–52].
As far as the quantum properties are concerned, the results
reported here are the following: (1) Evidence was found
that the C3-symmetric irregular hexagons with the classical
strong mixing property (fast decay of correlations) exhibit the
anomalous nearest neighbor spacing distribution predicted by
Leyvraz, Schmit, and Seligman for chaotic domains, namely,
singlets or doublets follow the GOE or GUE, respectively,
result of random matrix theory. (2) For the intermediate cases,
we successfully used fitting formulas previously introduced
by Brody [pB(s)], Berry and Robnik [pBR(s)], and Batistić
and Robnik [pBRB(s)], for both singlets and doublets, for
the first time in the case of doublets. (3) Energy eigen-
functions have been investigated in the general context of
localization in the hexagons. Numerous eigenmodes and cor-

FIG. 26. Left panel: Density plot of |ϕ|2 in the SHB correspond-
ing to eigenvalue k2 = 1.2952 . . . × 104. Besides the broad scar due
to parallel P6 orbits, this mode exhibits three pronounced peaks near
the billiard center, bearing resemblance to the higher-order focusing
mode of the C3S-D shown in the right panel and the (1,15) mode
of the circle in the inset, built with Zeleny’s “Particle in an Infinite
Circular Well” interface [45].

responding Poincaré-Husimi representations in a phase space
with Birkhoff coordinates (q, p) have been reported, including
scarred eigenfunctions and lattice modes, as well as evidence
for focusing modes (high-frequency localization). (4) Finally,
estimates of the ergodic parameter, the ratio between the
Heisenberg time and the classical, diffusive-like, transport
time, support the formulas we used to fit the nns distributions
in a given spectrum, both in the hexagonal family and in C3-
symmetric billiards with a smooth boundary. The hexagonal
billiards offer further opportunities for theoretical and numer-
ical studies. For instance, the presence of focusing modes in
high-lying states was not observed yet. Additional evidence of
such a trend toward a high-frequency localization in the SHB
is shown here in the left panel of Fig. 26, where a density plot
of |ϕ|2 corresponding to eigenvalue k2 = 1.2952 . . . × 104 is
presented. Besides the ghost of P6 orbits, this mode exhibits
three pronounced peaks in the vicinity of the billiard center.
This might be associated with a higher-order focusing mode,
such as the eigenmode of the circle with quantum numbers
(1,15) shown in the inset in Fig. 26, which has two pro-
nounced peaks near the center, or the eigenmode of the C3S-D
billiard shown in the right panel in Fig. 26, also with three
pronounced peaks near the center. In addition, the interesting
and challenging phenomenon of superscars [39] in irrational
polygons must also be investigated in the foreseeing future. It
is most likely, periodic orbit channels, such as those shown
in the top left panel in Fig. 23, and strong diffraction are
present in the hexagons. It is also worth mentioning that the
vast subject of nodal portraits [53] was not investigated here.
Finally, there is certainly room for experimental research in
open C3-symmetric hexagons, and we would like to stress
that microwave scattering experiments [54] in flat hexagonal
resonators are under way.
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