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Energy diffusion and prethermalization in chaotic billiards under rapid periodic driving
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We study the energy dynamics of a particle in a billiard subject to a rapid periodic drive. In the regime of large
driving frequencies ω, we find that the particle’s energy evolves diffusively, which suggests that the particle’s
energy distribution η(E , t ) satisfies a Fokker-Planck equation. We calculate the rates of energy absorption and
diffusion associated with this equation, finding that these rates are proportional to ω−2 for large ω. Our analysis
suggests three phases of energy evolution: Prethermalization on short timescales, then slow energy absorption in
accordance with the Fokker-Planck equation, and finally a breakdown of the rapid driving assumption for large
energies and high particle speeds. We also present numerical simulations of the evolution of a rapidly driven
billiard particle, which corroborate our theoretical results.
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I. INTRODUCTION

Dynamical billiards are an indispensable model system
in the field of Hamiltonian mechanics. The amenability of
billiard systems to analytical and numerical study has allowed
for detailed analyses of chaotic dynamics [1,2], diffusion and
particle transport [3–6], the semiclassical limit [7–9], and
energy absorption and dissipation [10–18]. This last topic, the
problem of energy absorption in driven billiards, was first ex-
plored by Enrico Fermi to explain the acceleration of cosmic
rays [19]. Since then, this “Fermi acceleration” and related
mechanisms have been studied in contexts such as nuclear
dissipation [20], plasma physics and astrophysics [21–23],
and atomic optics [24].

In this paper, we investigate energy absorption in chaotic,
ergodic billiard systems, subject to a rapidly varying, time-
periodic force. The system of interest is defined in Sec. II.
In Sec. III, we argue that the evolution of the billiard par-
ticle’s energy will be a diffusive process in energy space. It
follows that the probability distribution for the particle energy
obeys a Fokker-Planck equation in energy space, with drift
and diffusion coefficients that characterize the rate at which
this distribution shifts and spreads. In Sec. IV, we obtain
expressions for these rates, which are found to scale like
ω−2 for large ω. In Sec. V, we present exact (up to machine
precision) numerical results that demonstrate the validity of
the Fokker-Planck equation in the rapid driving regime for
the special case in which the driving force is independent of
position. Finally, we offer concluding remarks in Sec. VI.
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Our results constitute a detailed case study of the pro-
cess of Floquet prethermalization, in which a periodically
driven system relaxes to a thermal state with respect to an
effective Hamiltonian at short to intermediate times, before
ultimately gaining energy on long timescales [25–37]. Floquet
prethermalization has been widely studied as a mechanism for
engineering stable, long-lived steady states of both classical
and quantum systems. Within the energy diffusion frame-
work, we obtain a comprehensive, quantitative picture of how
prethermalization and its breakdown emerge from the Hamil-
tonian dynamics of a chaotic billiard particle. With these
results, billiard systems emerge as a valuable model system in
the study of energy absorption, prethermalization, and related
phenomena in periodically driven systems.

II. SETUP

We now define our system of interest. We consider a point
particle of mass m, with position x ≡ xt and velocity v ≡ vt ,
confined to the inside of a cavity or “billiard.” Precisely, the
billiard is a bounded, connected subset of d-dimensional Eu-
clidean space (d � 2), with a boundary or “wall” consisting
of one or more (d − 1)-dimensional surfaces. When strictly
inside the billiard, the particle evolves smoothly according
to Newton’s laws. Whenever the particle reaches the billiard
boundary, it undergoes an instantaneous elastic collision with
the wall.

Specifically, we assume that between collisions, the par-
ticle is subject to two forces. First, the particle experiences
a conservative force −∇U (x), generated by a static poten-
tial U (x). Second, we apply a time-periodic driving force
F(x) cos(ωt ) = −∇V (x) cos(ωt ), with period T = 2π/ω,
where V (x) is some potential. Therefore, the equations of
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motion for x and v are given by

dx
dt

= v, m
dv
dt

= −∇U (x) + F(x) cos(ωt ). (1)

When the particle reaches the billiard boundary, an in-
stantaneous elastic collision occurs. This collision leaves the
position of the particle unchanged, but the component of the
velocity perpendicular to the wall is instantly reversed. That is,
the velocity of the particle is updated from v to v′ according
to the reflection law

v′ = v − 2[v · n̂(x)]n̂(x), (2)

where n̂(x) is the outward-facing unit vector normal to the
billiard boundary at x, the point of collision.

Equations (1) and (2) fully define the dynamics of the
driven particle. We note here that our use of the term “billiard”
is more general than the typical usage: The word “billiard”
often simply refers to a free particle in a cavity, corresponding
to the case of vanishing U (x) and F(x). In light of this, we
will use the term “standard billiard” to refer to the special
case of U (x) = 0. For a driven standard billiard, the associated
undriven billiard [obtained by additionally setting F(x) = 0]
corresponds to a billiard in the more common sense of the
word.

In our analysis, we are most interested in the evolution
of the particle’s energy, defined as E ≡ E (x, v) ≡ 1

2 m|v|2 +
U (x). In the absence of driving, E is a constant of motion: E is
conserved under the equations of motion (1) for F(x) = 0, and
is also unchanged under the reflection law (2). For nonzero
F(x), the collisions are still energy-conserving, but (1) implies
that the particle’s energy between collisions changes accord-
ing to

dE
dt

= F(x) · v cos(ωt ). (3)

In particular, we will consider the energy dynamics for large
ω in the rapid driving regime.

So far, we have considered a single trajectory of the particle
in the billiard. However, in our analysis, it will also be useful
to consider a statistical ensemble of particles, and averages
over that ensemble. Each particle trajectory in such an en-
semble is determined by an initial condition (x0, v0) at t = 0,
which is sampled according to some probability distribution
ρ0(x0, v0) on phase space (that is, the 2d-dimensional space
of particle positions and velocities). The ensemble is then
evolved in time by evolving each initial condition according
to (1) and (2), yielding xt and vt .

Any statistical property of this ensemble may be computed
as an appropriate average over initial conditions, with respect
to the distribution ρ0(x0, v0). In particular, since we are inter-
ested in the evolution of the system’s energy E , our analysis
will focus on η ≡ η(E , t ), the time-dependent probability dis-
tribution for the energy. For small dE , η(E , t )dE gives the
fraction of particles in the ensemble at time t with energy
between E and E + dE . We may express η as

η(E , t ) =
∫

dd x0dd v0 ρ0(x0, v0) δ
(
E (xt , vt ) − E

)
. (4)

Here, dd x0dd v0 is a 2d-dimensional infinitesimal “hypervol-
ume” element in phase space, and (xt , vt ) is the phase-space

location, at time t , of the trajectory with initial conditions
(x0, v0). For this integral, and for similar integrals in this paper
unless otherwise stated, the integration over x0 is performed
over the interior of the billiard, and the integration over v0

runs over all v0 ∈ Rd .
The last essential assumption in our analysis is that the

undriven system exhibits chaotic and ergodic motion at each
energy E . For certain classes of undriven billiards, it has
been rigorously proven that the particle motion is chaotic
and ergodic [1,2,38,39]. Although these results were derived
for undriven standard billiards, in some cases they may be
extended, at least approximately, to the U (x) �= 0 case, e.g.,
by considering weak forces [40], or by invoking the corre-
spondence between motion in a potential and free motion in
non-Euclidean space [41].

Finally, we note that if the driving force is generated
by a more general time-periodic potential V (x, t ), then it is
straightforward to extend our analysis by decomposing this
potential as a Fourier series with fundamental frequency ω.
However, in order to keep the calculations relatively simple,
we restrict our attention to the monochromatic driving force
F(x) cos(ωt ).

III. ENERGY DIFFUSION

We now describe the evolution of the particle’s energy
E in the limit of large ω. We argue that the energy of the
particle evolves diffusively in this limit. A more general and
detailed version of this argument may be found in our previous
paper [37], wherein it is shown that a generic chaotic, er-
godic Hamiltonian system will exhibit energy diffusion when
subject to rapid periodic driving. Energy diffusion in chaotic
billiards under rapid periodic driving is a special case of this
result.

We first note that, for sufficiently large ω, the effect of
the driving force on the particle between collisions nearly
averages to zero over a single period. This averaging effect
may be rigorously demonstrated using tools such as multiscale
perturbation theory [42,43]. However, it is also intuitively rea-
sonable: For a very short driving period, the particle’s position
and velocity will remain nearly constant over the period (as
long as a collision with the wall does not occur), because of
the particle’s inertia and finite speed. Under this approxima-
tion, integrating (1) over a period reveals that the resulting
changes in position and velocity are the same as if the system
were not being driven, since the term F(x) cos(ωt ) integrates
to zero. This approximation will become better and better for
shorter and shorter periods, so as ω goes to infinity, the driven
evolution of the system will become closer and closer to the
undriven dynamics. Notably, this conclusion holds regardless
of the magnitude of F(x).

So for sufficiently large ω, the drive acts as a small per-
turbation on the undriven dynamics. Let us choose ω large
enough such that driven and undriven trajectories closely
resemble one another on timescales of order τC , the charac-
teristic correlation time set by the undriven particle’s chaotic
dynamics. To show that the driven particle’s energy evolves
diffusively, we now consider the evolution of the particle at
discrete times t = 0, δt, 2δt, . . . for some δt � τC . Over each
time step, the particle’s energy changes by a small amount
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δEi, i = 1, 2, 3, . . . . Since δt � τC , these individual energy
increments will be approximately uncorrelated. That is, the
particle performs a random walk along the energy axis, where
each energy increment δEi is statistically independent of the
others. On timescales much longer than τC , after many “steps”
in this process have occurred, such a random walk will be
well-described as a process of diffusion in energy space.

If the energy of the driven particle evolves diffusively, then
the particle’s energy probability distribution η [defined in (4)]
will evolve according to a Fokker-Planck equation in energy
space [44]:

∂η

∂t
= − ∂

∂E
(g1η) + 1

2

∂2

∂E2
(g2η). (5)

Here, the drift coefficient g1 ≡ g1(E , ω) and the diffusion
coefficient g2 ≡ g2(E , ω) characterize the diffusive process:
g1 gives the rate at which η shifts along the energy axis, and
g2 gives the rate of diffusive spreading in energy space. In the
next section, we obtain explicit expressions for g1 and g2 in
the high-frequency driving limit. As we will see, these drift
and diffusion rates are suppressed by a factor of ω−2 for large
ω. Moreover, we show that g1 is always non-negative, which
then implies that the system undergoes Fermi acceleration
[10,12–15,17,19] on average: The driven dynamics exhibit a
statistical bias towards gaining energy, and the mean energy
of the ensemble never decreases.

How large must ω be for the energy diffusion picture,
and the associated Fokker-Planck equation, to be approxi-
mately valid? Recall that the driving force must act as a small
perturbation on the undriven dynamics. This suggests two
conditions. First, we assume that over the course of a single
period, the forces −∇U (x) and F(x) cos(ωt ) produce a very
small change in the particle’s velocity. If the typical magnitude
of these forces is denoted by F , then from (1) we can estimate
that the velocity will change by an amount of order F/(mω)
during a period (provided a collision does not occur). We
assume that this change is much smaller than v, the typical
speed of the particle:

F

mω
� v. (6)

This is our first condition. Importantly, this ensures that when
a collision occurs, the outgoing trajectory of the particle will
only be slightly altered relative to the undriven motion. If (6) is
not satisfied, then the particle’s direction of motion will oscil-
late wildly back and forth due to the force F(x) cos(ωt ). As a
result, the drive may cause the particle to collide with the wall
at a substantially different angle relative to a corresponding
undriven particle. The associated driven and undriven trajec-
tories would then rapidly diverge, contrary to our requirement
that the drive act as a small perturbation.

Second, we assume that the distance traveled by the parti-
cle over a typical period is very small, much smaller than any
other relevant lengthscale associated with the system. Since
(6) ensures that the particle’s velocity changes little during a
period, this distance traveled will be of order vT ∼ v/ω. So
we may write our second condition as

v

ω
� l, (7)

where l is the shortest lengthscale in the system. l may be the
mean free path for the particle, or a lengthscale characterizing
the roughness of the billiard wall, or the typical distance over
which the forces −∇U (x) and F(x) vary by a significant
amount.

With the condition (7) satisfied, a large number of peri-
ods will occur between successive collisions with the billiard
wall. Moreover, over a single period, the quantity F(x) will
be nearly constant, since the particle will hardly move dur-
ing this short time interval. As a result, during any period
without a collision (the great majority of periods), integrat-
ing (1) reveals that the driving force perturbs the particle’s
velocity by an amount ≈ F(x) sin(ωt )/(mω), and its position
by ≈ −F(x)[cos(ωt ) − 1]/(mω2). Thus, the cumulative effect
of the force essentially integrates to zero as ω → ∞. Taken
together, we see that if the conditions (6) and (7) are satisfied,
the drive acts as a weak perturbation during periods both
with and without collisions. When subject to such a drive, the
particle will typically experience several collisions with the
wall before its trajectory is significantly altered relative to the
undriven motion.

For any given energy E , which determines the typical parti-
cle speed v, the conditions (6) and (7) may always be satisfied
for sufficiently large ω. Thus, in this rapid driving regime,
we expect that the energy diffusion description will be valid
over a certain range of particle energies [Emin, Emax] for which
these conditions hold. For a given ω, the energy distribution η

for a statistical ensemble with particle energies in [Emin, Emax]
will evolve according to the Fokker-Planck equation (5). Of
course, under the Fokker-Planck dynamics, this distribution
will shift and spread in energy space, ultimately spreading
outside of the interval [Emin, Emax]. At this point, the con-
ditions (6) and (7) are not satisfied for all particles in the
ensemble. In particular, we expect condition (7) to gener-
ally break down for sufficiently high-energy particles, which
are fast enough to travel a significant distance over a single
period.

What happens in this high-energy regime when particle
speeds have increased so that v/ω ∼ l? As before, condition
(6) (which remains valid at high energies) tells us that the
forces −∇U (x) and F(x) cos(ωt ) only weakly perturb the
particle’s velocity over a given period. However, the increased
speed of the particle now means that the particle travels a
distance of order v/ω ∼ l during this period. Assuming for
simplicity that l is comparable to the particle’s mean free path,
we see that the velocity is only slightly altered between suc-
cessive collisions: Many collisions with the wall must occur
before the drive significantly perturbs the particle’s velocity
relative to the undriven motion. Similarly, the drive will only
weakly affect the particle’s position: We can estimate from (1)
that the drive will perturb the particle’s position by an amount
of order F/(mω2) during a period, which by (6) and v/ω ∼ l
is much smaller than l . Therefore, the energy diffusion de-
scription may still be valid at energies greater than Emax, since
we can potentially treat the drive as a small perturbation on
the undriven dynamics. With that said, our main focus in this
paper is rapidly driven particles, for which the conditions (6)
and (7) are both satisfied. In particular, the expressions for
g1 and g2 obtained in the next section are only valid in this
regime.
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This process of energy diffusion may be understood
in terms of the phenomenon of Floquet prethermalization
[25–37]. Consider an ensemble of driven particles with initial
energy E0, for which the conditions (6) and (7) are satisfied.
The energy evolution of this ensemble may be divided into
three stages. First, since the system is only weakly perturbed
by the drive, the particles in the ensemble will exhibit chaotic,
ergodic motion at nearly constant energy E0. These dynamics
lead to a process of chaotic mixing in which the ensemble
is distributed microcanonically [see (8)] over a surface of
constant energy in phase space [45]. That is, the system ther-
malizes at energy E0: this is the prethermal stage. Second, the
particle’s energy distribution η will slowly shift and broaden,
as energy diffusion occurs according to the Fokker-Planck
equation (5). As a result of this energy spreading, condi-
tions (6) and (7) will eventually not hold for a significant
fraction of particles in the ensemble, as η spreads outside
the interval [Emin, Emax]. At this point, although the energy
evolution may still be diffusive, the energy drift and diffusion
rates will no longer be given by the expressions (21) and
(19) in the next section. In this third and final stage, general
plausibility arguments for the existence of Fermi acceleration
in driven billiards (see, e.g., Fermi’s original work [19]) lead
us to speculate that on-average energy growth will continue,
at least for certain choices of billiards and driving forces. In
particular, since the particle’s displacement during a period
can be comparable to the typical distance traveled between
collisions, resonances between the particle motion and the
drive may result in especially rapid energy growth. Because
the phase space of a billiard particle is unbounded, this energy
absorption may potentially continue without limit.

IV. DRIFT AND DIFFUSION COEFFICIENTS

We now derive expressions for the drift and diffusion co-
efficients g1 and g2, in the limit of large ω. We calculate
these quantities in terms of powers of the small parameter
ω−1, and ultimately only retain terms of order O(ω−2), the
lowest nonzero order. We compute g2 in terms of the variance
in energy acquired by an ensemble of particles, initialized in
a microcanonical ensemble at t = 0 and then subject to the
rapid drive. Then, we use the fluctuation-dissipation relation
(20), established in [37], which allows us to calculate g1 from
our knowledge of g2.

To compute g2, suppose that the initial conditions of the
particle at t = 0 are sampled according to a microcanonical
distribution at energy E = E0. In the microcanonical ensem-
ble, particles are confined to a single energy shell in phase
space (a surface of constant energy), and the distribution of
particles on this shell is uniform with respect to the Liouville
measure. The initial distribution ρ0(x0, v0) = ρE0 (x0, v0) cor-
responding to this ensemble is given by

ρE0 (x0, v0) ≡ 1

	(E0)
δ(E (x0, v0) − E0), (8)

	(E ) ≡
∫

dd xdd v δ(E (x, v) − E ), (9)

where 	(E ) is the density of states for the undriven system.
Since all particles in this ensemble have energy E0 at t = 0,

this initial distribution corresponds to an initial condition
η(E , 0) = δ(E − E0) for the Fokker-Planck equation (5).

We now allow the driven system to evolve for a time 
t ,
where 
t is long enough that the energy evolution is diffu-
sive (i.e., 
t � τC), but short enough that the change in the
particle’s energy is still small. By the end of this time inter-
val, the ensemble of particles will have acquired a variance
in energy var(E ) ≡ 〈E2〉 − 〈E〉2 = 〈(
E )2〉 − 〈
E〉2, where
〈· · · 〉 denotes an average over the ensemble at t = 
t , and

E ≡ E − E0 is the energy change of the particle from t = 0
to t = 
t . From the Fokker-Planck equation (5), given the
initial condition η(E , 0) = δ(E − E0), it follows that [44]

var(E ) ≈ g2(E0, ω)
t . (10)

Therefore, to determine g2(E0, ω) for any particular E0,
it is sufficient to calculate var(E ), with trajectories sam-
pled according to the appropriate microcanonical distribution
ρE0 (x0, v0).

This calculation may be summarized as follows, with de-
tails given below and in Appendix A. First, for a given
trajectory in the ensemble over the time 
t , we evaluate the
associated energy change 
E . From the fact that the drive acts
as a small perturbation for large ω, it follows that the dominant
contribution to 
E is associated with driving periods during
which a collision occurs. These O(ω−1) contributions are
given by (13). We then average over the ensemble to obtain
var(E ). Since the energy changes associated with different
collisions become uncorrelated in the rapid driving limit, this
average simplifies to (15), as shown in Appendix A. Finally,
we express this result in terms of an integral over the billiard
boundary, leading to the expression (19) for g2.

To begin, let us consider 
E for a particular particle in
the ensemble. We may view this energy change as a sum of
the M = 
t/T small energy changes that occur over each
period of the drive (assuming, for simplicity, that 
t is an
integer multiple of the period T ). For sufficiently small T , at
most one collision will occur over each driving period. This
property is guaranteed for a typical trajectory by condition (7).
Therefore, in this regime, 
E is a sum of two contributions:
energy changes from periods with no collisions, and energy
changes from periods with a single collision. We will examine
these two possibilities in turn.

First, suppose that no collision occurs during the ith period,
from t = (i − 1)T to t = iT , with associated energy change

Ei. If we integrate (3) over this period and perform an
integration by parts, we find that the boundary terms vanish,
and the resulting expression for 
Ei is


Ei = −ω−1
∫ iT

(i−1)T
dt

d

dt
[F(xt ) · vt ] sin(ωt )

= −ω−1
∫ iT

(i−1)T
dt

[
vt · DF(xt )vt

− ∇U (xt ) · F(xt )

m
+ |F(xt )|2

m
cos(ωt )

]
sin(ωt ). (11)

In moving from the first line to the second line, we have used
the equations of motion (1) to evaluate the derivative d[F(xt ) ·
vt ]/dt . The symbol DF(x) denotes the Jacobian matrix for
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the function F(x), with matrix elements [DF(x)]i j ≡ ∂Fi/∂x j ,
where xi and Fi are the ith components of x and F(x).

So far, this is exact. Let us estimate the size of this quantity,
in terms of orders of the small parameter ω−1. Since there is a
factor of ω−1 outside the second integral in (11), and since we
are integrating over a single period of duration T = O(ω−1),

Ei is at most an O(ω−2) quantity. To approximate 
Ei, we
may replace xt and vt in the integrand by their values at the
beginning of the period. Since xt and vt change over a period
by an amount of order O(ω−1), the resulting expression for

Ei is valid up to corrections of order O(ω−3). After this
replacement, we are simply integrating the functions sin(ωt )
and cos(ωt ) sin(ωt ) over a single period, which both vanish.
Thus, 
Ei is a O(ω−3) quantity. Of course, the number of
periods in which no collision occurs will scale like ω; thus,
the total energy change associated with collisionless periods
is of order O(ω−2).

The periods during which a collision takes place are more
interesting. Suppose that the particle experiences N collisions
between t = 0 and t = 
t , at times t1, t2, . . . , tN . If the kth
collision occurs during the ith period, then integrating (3) over
this period yields the associated energy change 
Ei:


Ei =
∫ tk

(i−1)T
dt F(xt ) · vt cos(ωt )

+
∫ iT

tk

dt F(xt ) · vt cos(ωt ).

(12)

Each integral above is over a fraction of the period, and is
therefore of order O(ω−1). By the same logic that we used for
the collisionless case, we may approximate F(xt ) and vt in the
first integral by Fk and vk , their values instantaneously prior to
the kth collision. Similarly, F(xt ) and vt in the second integral
can be approximated by Fk and v+

k , where v+
k is the particle’s

velocity immediately after the collision. The reflection law (2)
tells us that v+

k = vk − 2(vk · n̂k )n̂k , where n̂k is the normal to
the wall at the point of collision.

Upon making these substitutions, the resulting approxima-
tion for 
Ei is valid up to corrections of order O(ω−2). The
integrals over cos(ωt ) are easily evaluated, and we obtain


Ei = 2ω−1(Fk · n̂k )(vk · n̂k ) sin(ωtk ) + O(ω−2). (13)

Therefore, each collision that occurs is accompanied by
a corresponding energy change of order O(ω−1) over the
associated period, given by the above expression. Moreover,
since the total energy change associated with collisionless pe-
riods is of order O(ω−2), the energy changes corresponding
to collisions are the dominant contribution to 
E for large ω.
After summing over all N collisions to obtain 
E , we can
substitute this result into var(E ) = 〈(
E )2〉 − 〈
E〉2:

var(E ) = 4ω−2

〈[
N∑

k=1

(Fk · n̂k )(vk · n̂k ) sin(ωtk )

]2〉

−4ω−2

〈
N∑

k=1

(Fk · n̂k )(vk · n̂k ) sin(ωtk )

〉2

+O(ω−3).

(14)

This expression is computed in Appendix A. In this
calculation, we find that the oscillating factors sin(ωtk )
are uncorrelated with one another, and with the quantities
(Fk · n̂k )(vk · n̂k ), for large ω. The phases ωtk mod 2π may
be thought of as effectively independent random variables,
uniformly distributed on [0, 2π ). Intuitively, this lack of cor-
relation arises because otherwise similar trajectories in the
ensemble may have totally different values of sin(ωtk ): Two
nearby trajectories with even a small difference between the
associated collision times tk will have a huge O(ω) difference
in the value of ωtk , for large ω.

As a result, averages over the oscillating factors sin(ωtk )
are found to vanish. The only nonvanishing terms in (14) are
the “diagonal” terms in 〈(
E )2〉, which include a factor of
sin2(ωtk ) that averages to 1/2. We are left with

var(E ) = 2ω−2

〈
N∑

k=1

(Fk · n̂k )2(vk · n̂k )2

〉
0

+ O(ω−3). (15)

Here, the subscript 0 denotes that the average is now
taken over an ensemble of undriven trajectories, evolved with
F(x) = 0. The error accrued by replacing the true driven tra-
jectories with their undriven counterparts is of order O(ω−3),
so we neglect it.

Then, using standard techniques for evaluating ensemble
averages in billiard systems, we may express this average
as an integral over the billiard boundary. We simply present
the results here; the details of this calculation are also found
in Appendix A. Let dS denote an infinitesimal (d − 1)-
dimensional patch of “surface” or “hyperarea” of the billiard
wall, surrounding a location x on the wall. Such a patch has an
associated outward-facing normal vector n̂ ≡ n̂(x), defined as
in (2), and an associated value of F ≡ F(x). We may express
var(E ) as an integral over all such patches:

var(E ) = 4ω−2
t

d + 1

∫
dS γE0v

2
E0

(F · n̂)2 + O(ω−3). (16)

Here, we define vE ≡ vE (x) as

vE (x) ≡
{{2[E − U (x)]/m}1/2 if U (x) � E ,

0 otherwise,
(17)

which for U (x) � E is the speed of an undriven particle at
position x with energy E . γE ≡ γE (x) is the average collision
rate per unit hyperarea of the billiard boundary for particles
at position x, averaged over undriven particles in the micro-
canonical ensemble at energy E . As explained in Appendix
A, an explicit expression for γE (x) is given by

γE (x) = Bd−1

m

vE (x)d−1

	(E )
, (18)

where Bn = πn/2/�( n
2 + 1) is the hypervolume of the unit

ball in n-dimensional space, and where 	(E ) is the density
of states defined in (9). �(s) is the gamma function, which
coincides with the factorial (s − 1)! for positive integers s.

Upon comparing (16) with (10), and relabeling E0 as E , we
obtain our final expression for g2:

g2(E , ω) = 4ω−2

d + 1

∫
dS γEv2

E (F · n̂)2. (19)
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In this equation and in the remainder of this section, we
suppress the O(ω−3) corrections. Notably, the above expres-
sion can be computed without any knowledge of the particle
trajectories, and it depends on F(x) only via the value of this
force at the boundary of the billiard. This special dependence
on F(x) is sensible, since we know that the dominant changes
in the particle’s energy are associated with collisions with the
wall. Also, we emphasize that while the potential U (x) does
not appear explicitly in (19), g2 does depend on U (x) via the
quantities vE (x) and γE (x).

To calculate the drift coefficient g1, we use the follow-
ing fluctuation-dissipation relation derived in [37] for general
chaotic Hamiltonian systems:

g1(E , ω) = 1

2	(E )

∂

∂E
[g2(E , ω)	(E )]. (20)

This relation emerges as a consequence of Liouville’s theo-
rem. Substituting (17)–(19) into (20), we arrive at our final
expression for the drift coefficient:

g1(E , ω) = 2ω−2

m

∫
dS γE (F · n̂)2. (21)

This result implies that g1 is always non-negative [up to the
O(ω−3) corrections], since γE (x) � 0 for all x on the billiard
boundary. From the Fokker-Planck equation (5), it follows
that d〈E〉/dt = 〈g1(E, ω)〉, where the ensemble average 〈· · · 〉
is given by 〈 f (E )〉 = ∫

dE η(E , t ) f (E ) for any function f (E ).
Therefore, (21) implies that the average energy of particles
in the ensemble never decreases; that is, the system exhibits
Fermi acceleration on average.

Combined with the expressions (21) and (19) for g1 and
g2, the Fokker-Planck equation (5) now fully characterizes
the diffusive dynamics of the particle’s energy under high-
frequency driving. Note that these expressions are only valid
for energies in the range [Emin, Emax], for which conditions
(6) and (7) both hold. For energies above Emax, the condition
(7) breaks down, and the O(ω−3) corrections can no longer be
ignored. Also, as mentioned previously, all of the above argu-
ments and calculations may also be generalized to a broader
class of periodic driving forces.

In the remainder of this section, we set U (x) = 0 in order
to evaluate g1 and g2 for a standard billiard. In this case, the
undriven particle maintains a constant speed vE = √

2E/m,
independent of position. This greatly simplifies the calcu-
lation of both the density of states 	(E ) and the collision
rate γE (x)—note that (8) factorizes into two d-dimensional
integrals, over position and velocity. We obtain

	(E ) = dBd
V vd−2

E

m
, γE = 1

d

Bd−1

Bd

vE

V
, (22)

where V is the d-dimensional hypervolume of space enclosed
by the billiard. Our expressions for the drift and diffusion
coefficients now become

g1(E , ω) = 2ω−2vE

mλ

1

S

∫
dS (F · n̂)2 (U = 0), (23)

g2(E , ω) = 4ω−2v3
E

(d + 1)λ

1

S

∫
dS (F · n̂)2 (U = 0), (24)

where S denotes the (d − 1)-dimensional hyperarea of the
billiard boundary, and λ ≡ d Bd

Bd−1

V
S is the mean free path (the

average distance between collisions) of the undriven billiard
particle [46].

In (23) and (24), the dependence of g1 and g2 on the parti-
cle energy E enters only through the quantity vE = √

2E/m.
Focusing specifically on energy absorption, we obtain, using
the relation d〈E〉/dt = 〈g1(E, ω)〉,

d〈E〉
dt

= 2v̄(t )

mλω2

1

S

∫
dS (F · n̂)2 (U = 0), (25)

where v̄(t ) ≡ ∫
dE η(E , t ) vE (E ) is the mean particle speed at

time t . Thus the average rate of energy absorption is propor-
tional to the mean particle speed and inversely proportional
to the square of the driving frequency, with a constant of
proportionality determined by the particle mass, the shape and
dimensionality of the billiard, and the driving field F(x). For
a three-dimensional billiard, this result becomes

d〈E〉
dt

= v̄(t )

2mω2V

∫
dS (F · n̂)2 (U = 0, d = 3). (26)

This expression resembles the wall formula, a semiclassi-
cal estimate of dissipation in low-energy nuclear processes,
which gives a dissipation rate proportional to mean parti-
cle speed, with a constant of proportionality that includes a
surface integral over the boundary of the nucleus; see Eq.
(1.2) of Ref. [20]. This resemblance is not surprising, since in
both cases the system’s energy evolves via an accumulation
of small changes, sometimes positive, sometimes negative,
occurring at collisions between the particle and the billiard
boundary. In fact, the wall formula can be derived within an
energy diffusion approach analogous to the one developed
above [11].

V. NUMERICAL RESULTS

We now present numerical simulation results that corrobo-
rate our calculations. We consider the special case of a particle
in a two-dimensional “clover” billiard (see Fig. 1), subject
only to a time-periodic, spatially uniform force. Since a free
particle in the clover billiard is known [11] to exhibit chaotic
and ergodic motion, this system satisfies all the assumptions
of our paper, as long as the drive is sufficiently rapid. Specif-
ically, in the equations of motion (1) we set U (x) = 0, and
we take F(x) = F to be independent of position. This special
case is particularly amenable to simulation, since the motion
of the particle between collisions may be computed exactly.
Moreover, as described in Appendix B, the Fokker-Planck
equation admits an explicit analytical solution for this choice
of U (x) and F(x).

For this system, we calculate the evolution of the energy
distribution η(E , t ) in two ways: by directly evolving an en-
semble of particle trajectories according to (1) and (2), and by
solving the Fokker-Planck equation (5). If the energy diffusion
description is accurate, then the energy distributions obtained
in both cases will coincide. We present the results of these
computations here, and leave the details of our calculations to
Appendix B.

To test our model, we evolve an ensemble of driven par-
ticles with mass m = 1 in the clover billiard, with R1 = 1
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FIG. 1. Diagram of the clover billiard, constructed from six mu-
tually tangent circles. The billiard boundary is given by the solid line.
The inner circles have radius R1 = 1, and the outer circles have radius
R2 = 2.

and R2 = 2 (see Fig. 1). The mean free path for particles
in this billiard is λ ≈ 2.610, as shown in Appendix B. The
particles are initialized at t = 0 with speed v0 = 1, in a mi-
crocanonical ensemble at energy E0 = mv2

0/2 = 1/2. We set
F = F (x̂ + ŷ)/

√
2, where x̂ and ŷ are the unit vectors for the

coordinate system in Fig. 1, and we choose F = |F| = 10. We
run simulations for a range of driving frequencies ω, with a
focus on the high-frequency driving regime.

First, we verify the validity of the Fokker-Planck equation.
For various values of ω, we evolve an ensemble of N = 105

driven particles, and then we compare the energy distribu-
tion of this ensemble with the energy distribution obtained
by solving the Fokker-Planck equation. The plots in Figs. 2
and 3 illustrate this comparison at times t = 10, 100, and
1000 for driving frequencies ω = 40π and 320π [note that
the conditions (6) and (7) are satisfied for these parameter
choices]. We find close agreement between the true energy
distribution (represented by the histograms) and the Fokker-

Planck energy distribution (the solid lines). Second, we
look specifically at the ensemble mean 〈
E〉 and variance
var(
E ) of the energy change 
E . If a microcanonical en-
semble of initial conditions at energy E0 is evolved for a
short time 
t , then the Fokker-Planck equation predicts that
〈
E〉 ≈ g1(E0, ω)
t and var(
E ) ≈ g2(E0, ω)
t [44]. Here,

t must be longer than the correlation timescale associated
with the particle’s undriven motion, but short enough that the
relative change in the energy of any particle in the ensemble
is still very small. To test this theoretical result, we evolve an
ensemble of N = 106 driven particles for a time 
t = 20, and
then we compute the resulting values of 〈
E〉 and var(
E ).
We repeat this for a range of driving frequencies from ω =
10π to 2560π , and then we plot 〈
E〉 and var(
E ) versus
ω in Fig. 4. For sufficiently large ω, the true values of 〈
E〉
and var(
E ) are in good agreement with the theoretical pre-
dictions 〈
E〉 ≈ g1(E0, ω)
t and var(
E ) ≈ g2(E0, ω)
t ,
where g1 and g2 are given by the formulas (23) and (24). Note
that for large ω, the error bars in Fig. 4 associated with 〈
E〉
become very large. This is because the fluctuations in 
E
about its average are on the order of

√
var(
E ) = O(ω−1),

while 〈
E〉 = O(ω−2) itself is much smaller.
We note that the value of F = 10 corresponds to a “strong”

driving force, in the following sense. Suppose that we set
ω = 0, so that the driving force is time-independent, and then
estimate the change in a particle’s energy as it moves across
the billiard. In the ω = 0 case, the particle simply experiences
free-fall within the billiard, with a uniform gravitational field
pointing in the direction of F = F (x̂ + ŷ)/

√
2. If we initialize

the particle on one side of the billiard and let it “fall” to the
other side, then the (kinetic) energy gained by the particle
during its descent will be given by 
E = F
x, where 
x
is the distance that the particle moves in the direction of F.

x will be on the order of the mean free path λ ≈ 2.610,
and so we find 
E ∼ 26. This energy change is an order of
magnitude larger than the particle’s initial energy E0 = 1/2.
Clearly, when ω = 0 (or generally, if ω is small), the driving
force has a very large effect on the particle trajectories, and
therefore we should not expect an energy diffusion description
to apply. For F = 10, we should only expect energy diffusion
for sufficiently large values of ω. Testing our model with
this value of F thus insures that energy diffusion is really a

FIG. 2. Evolution of an ensemble starting with energy E0 = 1/2, with F = 10 and ω = 40π . The three snapshots are captured at t = 10,
100, and 1000. The histograms are populated from the numerical simulations, and the solid lines are the solution to the Fokker-Planck equation.
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FIG. 3. Same as Fig. 2, but with ω = 320π , and with a different scaling of the axes.

consequence of rapid driving, and not simply the result of a
weak driving force.

VI. DISCUSSION

We have fully characterized the diffusive evolution of en-
ergy in chaotic, ergodic billiard systems subject to a rapid
periodic driving force. We obtained the associated energy drift
and diffusion rates up to second order in the small parameter
ω−1, and corroborated our theoretical predictions with numer-
ical simulations of a driven particle in a clover-shaped billiard.
We now conclude with a discussion of connections between
this paper and other work, and of possible future directions
for research.

First, as described in Sec. III, our model is a detailed case
study of Floquet prethermalization, and its ultimate break-
down due to energy absorption. Floquet prethermalization, a
phenomenon that has been documented in a range of classi-
cal and quantum systems, occurs when a periodically driven
system relaxes to a long-lived thermal state with respect to
an effective Hamiltonian [25–37]. As described in Sec. III,
the evolution of the driven billiard particle proceeds in three

stages: Prethermalization at the initial energy E0, then slow
energy absorption and diffusion, and finally the potential
breakdown of the rapid driving assumption and the possibility
of rapid, unbounded energy absorption.

However, one characteristic sets the rapidly driven bil-
liard apart from many other Floquet prethermal systems: The
O(ω−2) scaling of the energy absorption rate g1. In contrast
to this behavior, for a variety of systems subject to rapid pe-
riodic driving, previous studies have revealed that prethermal
energy absorption rates are exponentially small in the driving
frequency ω [25,26,28,31,32,35–37,47–50]. We can under-
stand this discrepancy by reviewing the general account of
energy diffusion for Hamiltonian systems under rapid periodic
driving, established in [37]. In this paper, the energy drift
and diffusion rates are related to the Fourier transform of an
autocorrelation function for the undriven system, evaluated at
the drive frequency ω. In smooth Hamiltonian systems, this
Fourier transform decays faster than any power of ω−1 for
large ω [51], consistent with an energy absorption rate that is
exponentially small in ω. However, for a billiard, the discon-
tinuous nature of the collisions with the wall produces a cusp
in the relevant autocorrelation function at t = 0, causing the

FIG. 4. 〈
E〉 and var(
E ) vs ω for an initial ensemble with energy E0 = 1/2, with F = 10 and 
t = 20. The points denote results of the
numerical simulations, and the solid line corresponds to the theoretical predictions given by (23) and (24).
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associated Fourier transform to decay like ω−2. We therefore
expect the drift and diffusion coefficients for a billiard to scale
like ω−2 for large ω, as verified by the formulas (21) and (19).

Our results are also situated in an extensive literature
on forced billiards, which have been proposed as models
for phenomena ranging from electrical conduction [5,6], to
relativistic charged particle dynamics [22], to nuclear dis-
sipation [20]. Billiard systems may either be driven via an
external force applied between collisions, as in the present
paper, or via time dependence of the billiard walls. In the
latter scenario, the billiard boundary is deformed and shifted
as a function of time according to a prespecified schedule,
and changes in the particle’s energy are induced by colli-
sions with the moving wall. For a variety of models, it has
been demonstrated that such systems are susceptible to Fermi
acceleration: The particle exhibits a statistical bias toward
energy-increasing collisions, leading to a systematic growth
of the (average) energy [10,12–15,17,19]. In particular, diffu-
sive energy spreading via this mechanism has been observed
for certain models [11,16,18].

There is a natural correspondence between billiard systems
with time-dependent boundaries and our present model. In
Sec. III, we noted that over a single period, the driving force
perturbs the velocity of a billiard particle by an amount ≈
F(x) sin(ωt )/(mω), and its position by ≈ −F(x)[cos(ωt ) −
1]/(mω2). Evidently, the particle’s motion over a period is
well-approximated as small, sinusoidal oscillations about a
corresponding undriven trajectory of the particle. Therefore,
we can imagine moving to an oscillating reference frame,
wherein the particle exhibits approximately undriven motion,
and the walls perform small, rapid oscillations. Accordingly,
we hypothesize that for any rapidly driven billiard satisfying
the assumptions of this paper, there is a particular billiard with
oscillating boundaries which exhibits energy diffusion with
the same drift and diffusion coefficients. For the special case
of a standard billiard, U (x) = 0, we can confirm this corre-
spondence by comparing our results to those of [18], where
energy diffusion is established for billiards in the “quivering
limit,” wherein the walls of a billiard undergo small, rapid pe-
riodic oscillations. Under this framework, it is straightforward
to verify that if each point on the boundary of a quivering
chaotic billiard oscillates about its mean position x with time
dependence x + F(x) cos(ωt )/mω2, then the associated drift
and diffusion coefficients are exactly those predicted in our
model for a standard billiard subject to the force F(x) cos(ωt ).
It would be interesting to see whether a similar correspon-
dence is valid in the general case, for U (x) �= 0.

The results in this paper are also relevant to many-particle
systems. To see this, consider a gas of N particles of mass m in
a d-dimensional billiard cavity, with positions x1, . . . , xN and
velocities v1, . . . , vN . Suppose that these particles interact
via some potential Uint ({xi}), and are subject to a driving
force Fint ({xi}) cos(ωt ). If we collect the particle positions
and velocities into two (d × N )-dimensional vectors X ≡
(x1, . . . , xN ) and V ≡ (v1, . . . , vN ), we find that these vec-
tors evolve according to a (d × N )-dimensional version of
Newton’s law (1). Moreover, when a particle collides with the
wall, V is updated according to a reflection law analogous to
(2), which only reverses the components of V associated with

the colliding particle. Therefore, we see that a many-particle
billiard in d-dimensional space is mathematically equivalent
to a single-particle billiard in (d × N )-dimensional space,
where the boundary of the (d × N )-dimensional billiard is
given by all points in X-space which correspond to having one
or more particles on the d-dimensional billiard boundary. This
equivalence broadly implies that our results can be extended
to many-particle interacting billiards, although the detailed
consequences of this equivalence remain to be explored.

Finally, much work has been devoted to understanding
energy absorption in periodically driven quantum systems
[26,32,47–50,52–56]. It is worth asking how energy diffusion
in the classical billiards studied in the present paper might pro-
vide insight into the energy dynamics of analogous quantum
systems. In accordance with the correspondence principle,
we might anticipate that in the semiclassical limit (Planck’s
constant h → 0), the energy of a rapidly periodically driven,
quantized chaotic billiard should evolve diffusively. Indeed,
this quantum-classical correspondence may be established
[37,57,58] if one assumes Fermi’s golden rule, and invokes
semiclassical estimates [59,60] for the matrix elements of
classically chaotic systems. However, it is unclear how to
definitively demonstrate such a correspondence starting from
unitary quantum dynamics, although much research has been
devoted to this problem, particularly with the aid of random
matrix theory models [57,58,61–63]. It may also be fruitful
to analyze the quantum analog of our chaotic billiard with
the help of the Floquet-Magnus expansion, which allows the
evolution of a system under rapid periodic driving to be ex-
pressed perturbatively in powers of ω−1 [29,64]. It would be
interesting to see whether there is a correspondence between
our analysis and a Floquet-Magnus approach.
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APPENDIX A

Here, we calculate the variance (16) from the expression
(14). We begin by computing the second term in (14), cor-
responding to the square of 〈
E〉. Defining the shorthand
ak ≡ (Fk · n̂k )(vk · n̂k ), we have

〈
E〉 = 2ω−1

〈
N∑

k=1

ak sin(ωtk )

〉
+ O(ω−2). (A1)

The kth term in this sum depends on ak and tk , which are ul-
timately determined by the initial conditions (x0, v0) for each
particle in the ensemble. Since (x0, v0) is randomly sampled
according to the microcanonical distribution (8), ak , tk , and N
are all random variables. Therefore, we may express the av-
erage of each term as an average with respect to Pk (ak, tk, N ),
the joint probability distribution for ak , tk , and N . By the rules
of conditional probability, Pk (ak, tk, N ) may be decomposed
as

Pk (ak, tk, N ) = Pk (ak, N )Pk (tk|ak, N ), (A2)
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where Pk (ak, N ) is the joint probability distribution for ak

and N , and Pk (tk|ak, N ) is the probability distribution for tk ,
conditioned on particular values of ak and N . For the kth term
in (A1), we then compute the average by summing over all
possible values of N , and integrating over all values of ak and
tk:

〈
E〉 = 2ω−1
∞∑

N=0

N∑
k=1

∫
dak Pk (ak, N ) ak

×
∫

dtk Pk (tk|ak, N ) sin(ωtk ) + O(ω−2). (A3)

Recall that the quantities being averaged over are asso-
ciated with trajectories in an ensemble of driven particles.
However, for large values of ω, each driven trajectory is
only weakly perturbed from its undriven counterpart: The
trajectory evolved from the same initial condition (x0, v0), but
with F(x) = 0. So, to leading order in ω−1, we may replace
Pk (ak, N ) with P0

k (ak, N ), the joint distribution for ak and N in
the absence of driving. Similarly, we replace Pk (tk|ak, N ) with
P0

k (tk|ak, N ), the conditional distribution for tk in the absence
of driving. Importantly, these new undriven distributions are
entirely independent of ω, since they are completely deter-
mined by the dynamics of the undriven trajectories. Assuming
that these undriven distributions differ from their driven coun-
terparts by an amount of order O(ω−1), we obtain

〈
E〉 = 2ω−1
∞∑

N=0

N∑
k=1

∫
dak P0

k (ak, N ) ak

×
∫

dtk P0
k (tk|ak, N ) sin(ωtk ) + O(ω−2). (A4)

Finally, consider the inner integral over tk . The integrand
is the product of P0

k (tk|ak, N ), which is independent of ω, and
sin(ωtk ), an oscillatory function with zero time average. It is
straightforward to show that integrals of this form approach
zero like ω−1 or faster for large ω. Therefore, this integral is
of order O(ω−1) for each k, and we are left with

〈
E〉 = O(ω−2). (A5)

This implies that var(E ) = 〈(
E )2〉 + O(ω−4). We may
now express (14) as

var(E ) = 4ω−2

〈
N∑

k=1

N∑
l=1

akal sin(ωtk ) sin(ωtl )

〉
+ O(ω−3).

(A6)

We evaluate this average similarly to how we computed
〈
E〉. The logic is the same: To leading order, the average
may be calculated with respect to the ensemble of undriven
trajectories. Then, for l �= k, the integrals over tk and tl in the
average are of order O(ω−1), because of the oscillating factor
sin(ωtk ) sin(ωtl ) in the integrand. The contribution of the l �=
k terms to var(E ) is therefore of order O(ω−3), because of the
factor ω−2 outside the sum. For the l = k terms, we note that
sin(ωtk ) sin(ωtl ) = sin2(ωtk ) = 1

2 − 1
2 cos(2ωtk ), the sum of a

constant term and an oscillatory term. The contributions to
var(E ) corresponding to the oscillatory term − 1

2 cos(2ωtk ) are
also of order O(ω−3). Thus, the only remaining contribution

to var(E ) is given by

var(E ) = 2ω−2

〈
N∑

k=1

a2
k

〉
0

+ O(ω−3), (A7)

where we have added the subscript 0 to emphasize that the
average is over the ensemble of undriven particles. Recalling
that ak = (Fk · n̂k )(vk · n̂k ), we see that this is (15) in the main
text.

We briefly pause to interpret this result. In evaluating
〈(
E )2〉 and 〈
E〉, we have seen that for large ω, the oscil-
latory factors sin(ωtk ) average to zero. These factors become
effectively uncorrelated with one another, and with the quan-
tities ak . Intuitively, this lack of correlation arises because
otherwise similar trajectories in the ensemble may have totally
different values of sin(ωtk ): Two nearby trajectories with even
a small difference between their associated collision times
tk will have a huge O(ω) difference in the corresponding
values of ωtk . As a result, the phases ωtk mod 2π effectively
become independent random variables, uniformly distributed
on [0, 2π ).

To reiterate, the average (A7) is taken over a microcanoni-
cal ensemble of initial conditions with energy E0, evolved for
a time 
t according to the undriven equations of motion. The
sum

∑N
k=1 a2

k is over all collisions which occur from t = 0 to
t = 
t . Our strategy will be to decompose this sum into many
small contributions, evaluate the average of each contribution,
and then add up all these results.

Specifically, let us divide up the boundary of the billiard
into infinitesimal patches, indexed by a variable l: Each patch
is centered on a point x(l ) on the boundary, and it has a
(d − 1)-dimensional hyperarea dS. Moreover, we partition
velocity space into infinitesimal hypercubes of hypervolume
dd v labeled by m, each centered on a velocity point v(m). Fi-
nally, we divide up the time interval from t = 0 to t = 
t into
infinitesimal segments of duration dt , beginning at successive
times t (n) = n dt = 0, dt, 2 dt, . . . . Let us now sum a2

k , only
counting collisions associated with a particular choice of the
indices l , m, and n: those collisions that occurred on the patch
containing x(l ), with incoming velocity in the velocity cell cor-
responding to v(m), between the times t (n) and t (n) + dt . If we
denote an average over such a restricted sum with 〈· · · 〉0,l,m,n,
then var(E ) is just a sum over such averages:

var(E ) = 2ω−2
∑
l,m,n

〈
N∑

k=1

a2
k

〉
0,l,m,n

+ O(ω−3). (A8)

For a given choice of l , m, and n, what is this average?
Well, for all collisions associated with a particular l and
m, we have that a2

k ≈ [F(x(l ) ) · n̂(x(l ) )]2[v(m) · n̂(x(l ) )]2 ≡ (F ·
n̂)2(v · n̂)2, so this factor can be brought outside the average.
Then, we are simply averaging over the number of collisions
corresponding to l , m, and n. This is only nonzero for a
small fraction of the ensemble with associated phase-space
volume v(m) · n̂(x(l ) ) dt dS dd v ≡ v · n̂ dt dS dd v (see Fig. 5);
the corresponding average is therefore ρE0 (x(l ), v(m) ) ≡ ρE0

times this volume element. Thus, we can convert the sum of
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FIG. 5. Diagram of collisions associated with a given choice of l ,
m, and n for the case of d = 2 dimensions. The curved line represents
the billiard boundary, and n̂(x(l ) ) ≡ n̂ is the outward-facing normal
near such collisions. Over the infinitesimal time interval from t (n)

to t (n) + dt , any particle in the shaded parallelogram with velocity
v(m) ≡ v will collide with the boundary sometime during this inter-
val. The area of this parallelogram is v · n̂ dt dS, and so collisions
associated with l , m, and n correspond to a phase-space volume of
v · n̂ dt dS dd v. Analogous arguments apply to higher-dimensional
billiards.

over l , m, and n into an integral over x, v, and t , obtaining

var(E ) = 2ω−2
t
∫

dS
∫

v·n̂〉0
dd v ρE0 (F · n̂)2(v · n̂)3+O(ω−3).

(A9)

Note the restriction to v · n̂(x) > 0, since a collision can
only occur if the incoming velocity v is directed toward the
wall. We can interpret the quantity ρE0 (x, v) v · n̂(x) as the
differential average collision rate in the microcanonical en-
semble for collisions at the point x on the boundary with
incoming velocity v. var(E ) is then obtained by integrating
[F(x) · n̂(x)]2[v · n̂(x)]2 over all possible collisions, weighted
by the rate at which each type of collision occurs.

With the definition of ρE0 (x, v) [see (8)], we may perform
the integral over v using d-dimensional spherical coordinates.
The result is

var(E ) = 4Bd−1ω
−2
t

(d + 1)m	(E0)

∫
dS vd+1

E0
(F · n̂)2 + O(ω−3).

(A10)

Here, Bd−1 is the hypervolume of the unit ball in (d − 1)-
dimensional space, and vE0 (x) ≡ vE0 is defined as in (17).

We can rewrite this expression in terms of γE0 (x), the
differential average collision rate for collisions at the location
x. γE0 (x) is obtained by integrating ρE0 (x, v) v · n̂(x) over all
v such that v · n̂(x) > 0. This is another spherical integral; the
result is given by (18). Comparing (18) and (A10), we obtain
(16).

APPENDIX B

Here, we describe the details of the numerical simulations
presented in Sec. V. For a particle in the clover billiard subject

to a force F cos(ωt ), we discuss how to evolve the particle
according to the equations of motion, and how to solve the
corresponding Fokker-Planck equation.

First, let us describe the evolution of the trajectory ensem-
ble. We consider an ensemble of particles with initial energy
E0 at t = 0, with a microcanonical distribution of initial condi-
tions. For a standard billiard [U (x) = 0], the microcanonical
distribution (8) corresponds to sampling the initial positions
x0 from a uniform distribution over the billiard’s area, and
the initial velocities v0 from an isotropic distribution with
fixed speed v0 ≡ √

2E0/m. We generate N � 1 independent
samples in this way, and then we evolve each sample in
time by alternately integrating the equations of motion (1)
and updating the velocity according to the reflection law (2)
whenever the particle collides with the wall. In between the
kth and (k + 1)th collisions, we may integrate (1) explicitly
to obtain xt and vt . Using the same notation as in Sec. IV, we
find

xt = xk +
[

v+
k − F

mω
sin(ωtk )

]
(t − tk )

− F
mω2

[cos(ωt ) − cos(ωtk )], (B1)

vt = v+
k + F

mω
[sin(ωt ) − sin(ωtk )]. (B2)

We see that the particle rapidly oscillates within a small
envelope about a straight-line average trajectory. Given the
above expressions, finding the next position and velocity at the
(k + 1)th collision is simply a matter of solving numerically
for where and when this trajectory next intersects with the
billiard wall.

In this way, we determine the trajectory of each particle
in the ensemble between t = 0 and some t = 
t . Then, for
any time t ∈ [0,
t], we compute the energy E = 1

2 m|vt |2 of
each particle, and we collect all of these energy values into
a histogram. This histogram gives an excellent approximation
of the energy distribution η(E , t ); it only deviates from η(E , t )
due to the finite number of samples and the small machine
error accrued when computing each trajectory.

To compare these results with the energy diffusion descrip-
tion, we then solve the Fokker-Planck equation (5). For a
standard billiard, the Fokker-Planck equation admits an an-
alytical solution that has been studied previously. To show
this, we note that by (23) and (24), we have g1 = CE1/2 and
g2 = 4CE3/2/(d + 1), where C is a constant independent of
energy. If we substitute these expressions into (5), and define
the rescaled time variable s ≡ Ct , then after some manipula-
tions we obtain

∂η

∂s
= 2

d + 1

∂

∂E

[
E (1+d )/2 ∂

∂E

(
E (2−d )/2η

)]
. (B3)

This equation is identical to Eq. (60) in [18]. This refer-
ence also provides the solution to this equation for the initial
condition η(E , 0) = δ(E − E0), which we reproduce here:

η(E , t ) = η(E , s/C) = d + 1

sE1/2
0

( E

E0

)(d−3)/4

Id−1

[
4(d + 1)

s
E1/4

0 E1/4

]
exp

[
−2(d + 1)

s

(
E1/2

0 + E1/2
)]

. (B4)
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Here, Id−1(x) is the modified Bessel function of the first kind,
of order d − 1.

It only remains to compute the constant C for the special
case of the clover billiard:

C =
(

2

m

)3/2
ω−2

λ

1

S

∫
dS (F · n̂)2. (B5)

In d = 2 dimensions, S is the perimeter of the billiard, and the
integral over dS is a line integral over the billiard boundary.
For a constant F(x) = F, upon performing the appropriate line
integrals we find that S−1

∫
dS [F(x) · n̂(x)]2 = F 2/2, where

F ≡ |F|. Then, we can use the relation λ ≡ d Bd
Bd−1

V
S with

d = 2 to obtain λ = πV/S. In two dimensions, V is the area
of the billiard. V and S are geometric quantities that may be
computed in terms of the radii R1 and R2. For the specific
case of R1 = 1 and R2 = 2, we find that λ ≈ 2.610. Upon
combining these results, and setting m = 1, we obtain

C ≈ 0.5419 ω−2F 2. (B6)

With this result, we may now determine the distribution
η(E , t ) at any time t , given the parameter choices m = 1, R1 =
1, R2 = 2, and F = F (x̂ + ŷ)/

√
2. We simply select values for

F and ω, and then substitute the resulting value of C into (B4)
(recalling that s = Ct , and that d = 2).
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