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Emergent noise-aided logic through synchronization
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In this article, we present a dynamical scheme to obtain a reconfigurable noise-aided logic gate that yields
all six fundamental two-input logic operations, including the XOR operation. The setup consists of two coupled
bistable subsystems that are each driven by one subthreshold logic input signal, in the presence of a noise floor.
The synchronization state of their outputs robustly maps to two-input logic operations of the driving signals,
in an optimal window of noise and coupling strengths. Thus the interplay of noise, nonlinearity, and coupling
leads to the emergence of logic operations embedded within the collective state of the coupled system. This
idea is manifested using both numerical simulations and proof-of-principle circuit experiments. The regions in
parameter space that yield reliable logic operations were characterized through a stringent measure of reliability,
using both numerical and experimental data.
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I. INTRODUCTION

Exploiting the richness in the behavior of nonlinear dynam-
ical systems for computational tasks has attracted extensive
research interest. Various theoretical schemes have been pro-
posed to realize reconfigurable devices using the rich patterns
in chaotic systems and varied experimental implementations
of these schemes have been been realized [1–3].

An interesting recent line of enquiry is the effect of noise
in such schemes. This approach is crucial as this leads to
the possibility of noise-aided computational devices that can
utilize noise to facilitate computing. Logical stochastic reso-
nance (LSR) [4–15] is one such scheme in which a bistable
system driven by a subthreshold stream of inputs can gen-
erate responses consistent with a desired logical operation
for an optimal window of noise. This again has been imple-
mented in a wide variety of experimental systems [5,16–19]
that range from synthetic gene networks [20–25] and opti-
cal systems [26,27] to Coulomb coupled quantum dots [28].
More recent efforts have focused on using chaotic attrac-
tor hopping [29,30] and strange nonchaos [31,32] to yield
logic gates.

The effect of coupling on such noisy bistable systems has
garnered new interest [33,34]. Coupling induced LSR [35]
demonstrated that logic operations may be obtained from the
state variable of coupled bistable systems in an optimal win-
dow of noise.

In this work, we show a possibility that the logical output
can be embedded in a collective state of the coupled system,
rather than in the state variable of one of the subsystems. This
change leads to a rich construct, which can yield all two-input
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logic operations for an optimal window of noise strength and
coupling strength.

II. SCHEME

Consider coupled bistable systems with two kinds of cou-
pling schemes defined as follows (refer Fig. 1):

ẋ1 = F (x1) + c(x2 − x1) + I1(t ) + b + D η1(t ),

ẋ2 = F (x2) + c(x1 − x2) − I2(t ) − b + D η2(t ) (1)

and

ẋ1 = F (x1) + c(−x2 − x1) + I1(t ) + b + D η1(t ),

ẋ2 = F (x2) + c(−x1 − x2) + I2(t ) + b + D η2(t ). (2)

Here, F can be any nonlinear function that yields a bistable
potential. The terms η1 and η2 are two uncorrelated, zero
mean, univariate Gaussian noises of noise strength D. The
drive signals I1 and I2 are two low amplitude (subthreshold)
input streams that encode the two binary inputs to the sys-
tem. A constant asymmetrizing bias b acts as the tether that
morphs the bistable potential, leading to reconfigurability in
our scheme. In the above equations, two kinds of coupling
terms have been used. In Eq. (1), the coupling between the
two subsystems is bidirectional and attractive in nature with
coupling strength c. This typical diffusive kind of coupling
interaction [36] tends to synchronize the subsystems; i.e., in
the context of bistable systems, the two subsystems are pulled
to the same potential well. In Eq. (2), the coupling interaction
is bidirectional and repulsive in nature. This form of coupling
repels the states of the subsystems, thus tending to antisyn-
chronize the subsystems [34,37,38]; i.e., for bistable systems,
the subsystems are pushed to different potential wells. Thus
Eq. (1) describes attractive coupling and Eq. (2) describes
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FIG. 1. Schematic representation of the concept.

repulsive coupling. In conjunction with the bias b, we demon-
strate that changing between these two coupling forms offers
another degree of control that allows us to obtain all six
fundamental logic operations (cf. Table II).

The signals I1 and I2 encode the stream of binary inputs
to be processed by the logic gate, where without loss of
generality I1(or I2) <0 corresponds to a 0 (OFF state) and
I1(or I2) >0 corresponds to a 1 (ON state). It is important to
note that these input signals are subthreshold, i.e., they cannot
cause a transition between the potential wells on their own
and the transitions are actively facilitated by the noise floor,
reminiscent of logical stochastic resonance (LSR). The crucial
differentiating factor of this scheme from all previous attempts
to achieve noise-aided logic operations is that the output from
the system is embedded in the collective state of the coupled
system. Specifically, the synchronization state of the two sub-
systems embeds outputs corresponding to logical operations
on the input streams. As a convention, the synchronized state
(both systems in the same potential well) is taken to encode
0 and the antisynchronized state (both systems in different
potential wells) is taken to encode 1. The binary input output
relations represented by the six fundamental two-input logic
gates are detailed in Table I. With these conventions in place,

we now show that this scheme is capable of producing all the
six fundamental logic operations in a robust, reliable manner
over a large region of parameter space.

III. IMPLEMENTATION

The scheme is first implemented in silico, by numeri-
cally simulating Eqs. (1) and (2) using the Euler-Maruyama
method. For the bistable potential, we use the simple cubic
function F (xi ) = 4(xi − 5x3

i ). The input signals I1 and I2 are
taken to assume the values −0.5 for the binary input 0 and
+0.5 for binary input 1. The time trials of the system variables
x1 and x2 thus obtained are depicted in Fig. 2 for various
values of noise strength D, coupling strength c, and bias b.
In this figure, the top two panels show the input streams I1

(blue) and I2 (orange) being fed into the two subsystems and
the expected logical output (green) of these inputs for each
of the six logic operations are overlaid on the time trails as
a visual aid to perceive the correct logical operation. For the
six cases depicted, the time trails of x1 and x2 constantly al-
ternate between the synchronized and antisynchronized states
modulated by the input streams. As defined earlier, the logical
output is considered 0 when the two state variables are in the
same potential wells (synchronized) and 1 when the state vari-
ables are in the opposite potential wells (antisynchronized).
From Fig. 2 it is apparent that robust logic operations are
obtained at specific parameter values and coupling forms, for
all six types of logic gates.

Next we construct a proof-of-principle electronic im-
plementation of the scheme. Two piecewise-linear bistable
circuits were built, using simple passive components and two
operational amplifiers (op-amps) as depicted in Fig. 3. The
detailed description and characterization of the bistable circuit
used can be found in Ref. [39]. The two bistable units were
coupled attractively via a resistor as shown in Fig. 3(a) or
repulsively via inverting amplifiers as shown in Fig. 3(b). The
inputs and bias to the bistable system are fed through the
inverting input of the op-amps; hence the signals and biases
were inverted to stay consistent with the scheme description
and the numerical exploration. The nondimensionalized form
of the coupled equation governing the circuits in Fig. 3(a)
(attractively coupled circuit) and Fig. 3(b) (repulsively cou-
pled circuit) assumes the form described in Eq. (1) and Eq. (2),
respectively, where F of the bistable unit is given by the
piecewise linear function

F (xi ) =
⎧⎨
⎩

−(xi + 1), xi < −0.5,

xi, −0.5 � xi � 0.5,

−(xi − 1), xi > 0.5
(3)

TABLE I. Relationship between the two inputs and the output of the fundamental OR, AND, NOR, NAND, XOR, and XNOR operations, for the
four distinct possible input sets (0,0), (0,1), (1,0), and (1,1).

Input set (I1, I2) OR AND NOR NAND XOR XNOR

(0,0) 0 0 1 1 0 1
(0,1)/(1,0) 1 0 0 1 1 0
(1,1) 1 1 0 0 0 1
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(b)(a)

FIG. 2. Top two panels show the input streams I1 and I2 that take the value −0.5 when the logic input is 0 and +0.5 when the logic input
is 1. The bottom three panels depict the time series of the state variables x1 (blue) and x2 (orange) obtained from the numerical simulation
of (a) the attractive coupling scheme [cf. Eq. (1)] and (b) the repulsive coupling scheme [cf. Eq. (2)]. The expected logic output (green)
corresponding to each logic operation is plotted over the time series as a visual aid. When x1 and x2 are synchronized, the output is interpreted
as 0; when x1 and x2 are antisynchronized the outputs are interpreted as 1. Panel 3 shows AND logic operation in the attractive scheme and
NAND logic operation in the repulsive scheme for noise strength D = 0.2, coupling strength c = 1.2, and bias b = 0.5. Panel 4 shows NOR

logic in the attractive scheme and OR logic in the repulsive scheme for D = 0.2, c = 1.2, and b = −0.5. Panel 5 shows XNOR operation in the
attractive scheme and XOR operation in the repulsive scheme for D = 0.25, c = 0, and b = 0.

FIG. 3. Schematic circuit diagram of (a) the attractively coupled system represented by Eqs. (1) and (3). (b) The repulsively coupled system
represented by Eqs. (2) and (3). All component values are indicated in the diagram. The diodes used in the circuit are 1N4148 diodes. Both
systems are studied for two values of coupling resistances RC = 300 � and R = 10 K �. The system variables x1 and x2 in Eqs. (1) and (2) are
proportional to the voltages V1 and V2 across the capacitors C1 and C2.
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FIG. 4. Top panels on both sides are the oscilloscope trace of the logic input signals used to drive the circuits. Left: oscilloscope traces of
the voltages V1 (yellow) and V2 (blue) across capacitors C1 and C2 of the attractive circuit [cf. Fig. 3(a)]. The expected logical output for each
logic gate is presented (in red) as a visual aid. Panel 2 shows AND logic operation obtained for bias b = 400 mV, noise strength D = 0.55 V,
and coupling resistance RC = 300 �. Panel 3 shows NOR logic for b = −400 mV, D = 0.55 V, and RC = 300 �. In panel 4, XNOR logic
is obtained for b = 0 mV, D = 0.45 V, and RC = 10 K �. Right: oscilloscope traces of V1 (yellow) and V2 (blue) from the repulsive circuit
[cf. Fig. 3(b)]. Panel 2 shows NAND logic operation is obtained for bias b = 400 mV, noise strength D = 0.55 V, and coupling resistance
RC = 300 �. Panel 3 shows OR logic is obtained for b = −400 mV, D = 0.55 V, and RC = 300 �. In panel 4, XOR logic is obtained for
b = 0 mV, D = 0.45 V, and RC = 10 K �.

and where the state variables x1 and x2 are proportional
to the voltages V1 and V2 across the capacitors C1 and C2.
The time trails of the experimental systems were obtained
using a Tektronics 2104B Digital Storage Oscilloscope. A
high speed data acquisition device (Measurement Computing
USB-1616HS) was used to both generate signals (I1, I2, η1, η2)
and collect high throughput voltage data (V1, V2) for further
analysis. All signal generation and data collection were done
at a rate of 2×104 samples per second. All specific component
values used in the construction of the circuit are indicated in
the circuit schematic (cf. Fig. 3).

In Fig. 4 oscilloscope trails of V1 (yellow) and V2 (blue)
obtained from the attractive circuit (left) and repulsive circuit
(right) are presented. The top panel shows the input streams

TABLE II. Logic operations obtained for the various coupling
schemes and bias b values.

Positive bias Negative bias Zero bias

Attractive coupling AND NOR XNOR

Repulsive coupling NAND OR XOR

(I1 and I2) driving the coupled system, while the remaining
six panels clearly show robust logic response akin to the
behavior observed in Fig. 2. The expected logic output of the
input streams are again overlaid (in red) as a visual aid. The
synchronized segments faithfully map to the output 0, while
the antisynchronized segments map to 1 for all six logical
operations.

The attractive and repulsive coupling schemes yield three
logic gates each. The attractive scheme yields AND, NOR, and
XNOR gates, while the repulsive scheme yields NAND, OR, and
XOR gates. Notice that the two schemes yield complemen-
tary logic operations for the same set of parameter values,
suggesting that these two coupling schemes are symmetric
counterparts of one another. Within a specific coupling form,
the value of the constant bias b (positive, negative, or zero)
determines the logical operation obtained from the system.
The bias ranges and the coupling forms where each of the six
logic operations occur are detailed in Table II.

IV. MEASURE OF RELIABILITY

Robust operation of the scheme has been demonstrated
using both simulation and experiment for a stream of inputs,
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FIG. 5. Probability of obtaining reliable logic operations P(logic) for all six fundamental logic operations [P(AND), P(NOR), etc.] is plotted
as a function of noise strength D and coupling strength c. The plots are made for both attractive and repulsive coupling schemes at three specific
values of bias b, depicting broad regions in parameter space where all six logic operations are consistently obtained.

with specific values of system parameters. The performance
of this system is now quantified with a large number of input
sets over a significant section of the parameter space. To do
this, the system is subject to a large number of (I1 − I2) sets,
divided into runs where each run consists of a permutation
of the four input sets (0,0), (0,1), (1,0), and (1,1) and the
response of the systems to these inputs are recorded. A run is
considered successful only if the system produced the correct
logical output (corresponding to each truth table; cf. Table I)
throughout the run time of each signal pulse for all four input
sets. The probability of obtaining a specific logic operation
P(logic) is then defined as the ratio of successful runs to the
total number of runs sampled. A small transient time amount-
ing to one-tenth the duration of each input pulse is allowed for
the system to respond to each new input set. The P(logic) cor-
responding to specific logic operations are denoted as P(AND),
P(XOR), etc. This measure is then obtained for a large range of
parameter values to ascertain the prevalence of reliable logic
operations.

In Fig. 5, numerically obtained probabilities of obtaining
different logic gates are plotted for a range of noise strengths
D and coupling strengths c. In these simulations the P(logic)
was determined by subjecting the system to 100 runs as
described earlier, for each combination of parameter values.
Reliable logic operations were seen to occur in large sections
of parameter space where the P(logic) value tends to 1 (bright
yellow regions in Fig. 5). The probability plots were made for
each of the six logic operations at the corresponding coupling

scheme and bias b values mentioned in Table II. Thus we see
that, for a window of optimal noise strengths and coupling
strengths, all logic operations can be obtained. The coupling
form and bias b act as the control to morph the coupled system
from one logic operation to the other. Note that, contrary to
coupling induced LSR [35], where robust logic occurs for all
values above a critical coupling strength, we find an optimal
range of coupling strengths yield reliable logic operations.

To further strengthen this assertion, we also obtain the
same stringent measure of reliable operations P(logic) from
the experimental implementation of the scheme. This was
made possible by interfacing and voltage data analysis
through the high speed DAQ. The experimental circuits were
driven by an input stream containing 100 runs with a permuta-
tion of the four input sets (0,0), (0,1), (1,0), and (1,1) in every
run. Again, P(logic) is obtained from the ratio of successful
runs to total number of runs sampled. The inputs were fed into
the system at 10 Hz (10 binary inputs per second) and again
one-tenth of that pulse width was allowed as transient and was
not included in the computation of P(logic). Experimentally,
two values of coupling resistances were studied: R = 300�

and R = 10 K �. The distribution of P(logic) thus obtained
for all the six logic gates is shown in Fig. 6. A clear maximiza-
tion of reliable logic operations occurs for a broad window
of noise strength D for all the logic operations. Surprisingly,
contrary to the numerical exploration, experimentally we find
a more robust and broad region of XOR and XNOR opera-
tions. Note that the XOR/XNOR operations were the hardest to
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FIG. 6. Probability of logic P(logic) calculated from experimen-
tally obtained voltage data, plotted as a function of noise strength
D. Top: for coupling resistance RC = 300 �, P(AND) and P(NAND)
logic plotted for bias b = 400 mV. P(NOR) and P(OR) are plotted
for b = −400 mV. Bottom: for coupling resistance RC = 10 K �,
P(XNOR) and P(XOR) logic plotted for bias b = 0 mV.

implement in the past, and their realization necessitated the
use of more complicated triple well potentials [40], where spe-
cific output definitions were assigned for each logic operation.
Here, the multiple gates emerge from the collective dynamics
of the coupled system and the binary outputs are inferred from
their synchronization state.

V. CONCLUSION

A scheme to make reconfigurable noise aided logic gates,
based on synchronization of coupled nonlinear systems, was
introduced. This scheme was implemented both through
numerical simulations and electronic experiments. The ro-
bustness of the logical operations and the reconfigurability of
the scheme was elucidated for both attractive and repulsive
coupling. A quantitative measure of performance was used
to characterize the region in parameter space of coupling
strength and noise strength where reliable logic operations
can be obtained. This was done both in simulations and in
circuit experiments through live collection and processing of
high throughput voltage data. Importantly, all six fundamental
logic operations were reliably obtained, using a bias and the
coupling form to morph between the logic functionalities. So
our results suggest the potential of exploiting synchronization,
arising from the interplay of noise and the nature of cou-
pling, to implement flexible logic gates in the presence of a
noise floor.
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