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Role of phase-dependent influence function in the Winfree model of coupled oscillators
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We consider a globally coupled Winfree model comprised of a phase-dependent influence function and
sensitive function, and unravel the impact of offset and integer parameters, characterizing the shape of the
influence function, on the phase diagram of the Winfree model. The decreasing value of the offset parameter
decreases the degree of positive phase shift among the oscillators by promoting the negative phase shift, which
indeed favors the onset of multistability among the synchronous oscillatory state and asynchronous stable steady
states in a large region of the phase diagram. Further, large integer parameters lead to brief pulses of the
influence function, which again enhances the effect of the offset parameter. There is an explosive transition to a
synchronous oscillatory state from an asynchronous steady state via a Hopf bifurcation. Dynamical transitions
and multistability emerge through saddle-node, pitchfork, and homoclinic bifurcations in the phase diagram. We
deduce two ordinary differential equations corresponding to the two macroscopic variables from the population
of globally coupled Winfree oscillators using the Ott-Antonsen ansatz. We also deduce various bifurcation
curves analytically from the reduced low-dimensional macroscopic variables for the exactly solvable case. The
analytical curves exactly match the simulation boundaries in the phase diagram.
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I. INTRODUCTION

In 1967, Winfree proposed a theoretical model to inves-
tigate the spontaneous synchronization of a large population
of biological oscillators despite their heterogeneity [1–3]. In
its simplest form, the model is comprised of phase oscillators
with intrinsic natural frequency and the interaction among the
oscillators modeled by a phase-dependent influence function
and a sensitive function, determining the response of individ-
ual oscillators to the mean field. The influence function is
usually in the form of a pulse, while the mathematical form
of the sensitive function can be chosen such that it is con-
sistent with the qualitative shape of the phase-response curve
of certain biological oscillators. Hence, the phase-dependent
sensitive function is also referred to as a phase-response curve
(PRC) [4–8]. With these settings, the Winfree model is a
unique model representing a class of pulse-coupled biological
oscillators [9–11]. Familiar examples for pulselike interac-
tions include flashing of fireflies [12], applauding audiences
[13], and action potentials of neurons [14].

A detailed phase diagram of the original Winfree model
is yet to be explored as it is very difficult to analyze math-
ematically in its most general form. Nevertheless, a detailed
bifurcation analysis of the model for a special tractable case
of pulse-coupled oscillators has been provided by Ariaratnam
and Strogatz [5] in terms of phase diagrams. Incoherence,
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frequency locking, and death states along with the multista-
bility among these states were classified in the phase space
of coupling strength and frequency distribution. Since then,
a phase diagram of the Winfree model has been the object of
investigation, but with limited success [4,6,7,15,16]. Renewed
interest in the theoretical analysis of populations of phase
oscillators arose due to Ott and Antonsen’s report on an
exact dimensionality reduction of the infinite-dimensional
Kuramoto oscillator, leading to the Ott-Antonsen ansatz
[17,18].

Surprisingly, the Ott-Antonsen ansatz is shown to be appli-
cable to the pulse-coupled oscillators [4,7]. This development
has opened up the possibility of investigating macroscopic
dynamical states peculiar to the Winfree model and its vari-
ants, which are far from reachable using the Kuramoto or
Kuramoto-like oscillators. In particular, the Winfree model
has the advantage of describing different sets of pulse-coupled
biological oscillators [2,19] and disseminating the influence
of various pulse shapes and phase-response curves on the
macroscopic synchronization. Specifically, understanding the
underlying dynamical aspects of the Winfree model will shed
more light on the observed biological phenomena using math-
ematical models.

The dynamics of the Winfree model with a sinusoidal PRC
is shown to evolve into the so-called Ott-Antonsen manifold
by reducing the high-dimensional system into two ordinary
differential equations corresponding to two macroscopic vari-
ables [7]. In particular, Pazó et al. exhaustively explored the
effect of the shape of the phase-response curves and their
pulse width on the collective dynamics. Brief pulses are found
to facilitate the synchronization of heterogeneous oscillators,
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a phenomenon that cannot be observed with broad pulses. Fur-
ther, the effect of brief pulses is found to be largely enhanced
as the PRC is made more off-centered. A variety of chimera
states has also been established in a network of pulse-coupled
oscillators. Recently, a variety of pulse shapes and sinusoidal
PRCs have been employed to investigate their effects in the
phase diagram and synchronization [4]. It was revealed that
brief pulses favoring the synchronization of heterogeneous
oscillators do not hold for negative PRC offsets, which are
asymmetric. Instead, in this case, an intermediate pulse width
was shown to facilitate the macroscopic synchronization of
heterogeneous oscillators. Further, the synchronization sce-
nario is found to heavily depend on the particular pulse type.

In this work, we systematically analyze the impact of the
phase-dependent influence function on the synchronization
transition of the Winfree model. We deduce two ordinary
differential equations corresponding to the two macroscopic
variables from the population of globally coupled Win-
free oscillators using the Ott-Antonsen ansatz. In particular,
we investigate the influence of the offset parameter and the
width of the phase-dependent influence function on the phase
diagram of the globally coupled Winfree model. The phase-
dependent influence function either advances or delays the
phase shift of the oscillators based on the offset parameter.
Dynamical transitions among the asynchronous steady states
and synchronous oscillatory state onset via Hopf, pitchfork,
saddle-node, and homoclinic bifurcations in the phase di-
agram of the Winfree oscillators. Further, there emerges a
first-order (explosive) transition to the synchronized oscilla-
tory state in the multistable region. We find that brief pulses
and decreasing degree of phase advance, characterizing the
influence function, favor the onset of a multistable region and
explosive transition to a synchronous oscillatory state in a
large range of the phase diagrams. We obtain the distinct bifur-
cation curves using the software XPPAUT for nonzero values of
the offset parameter. Nevertheless, we deduce the bifurcation
curves analytically for the null value of the offset parameter
as the reduced low-dimensional macroscopic system of equa-
tions can be solved exactly. We also find that the analytical
curves match exactly with the simulation boundaries.

The plan of the paper is as follows. In Sec. II, we introduce
the Winfree model along with the intricacies of the phase-
dependent influence function and the sensitive function. We
deduce the low-dimensional dynamics of the globally coupled
Winfree model using the Ott-Antonsen ansatz in Sec. III. Fur-
ther, we also present the phase diagrams of the Winfree model
for distinct values of the offset parameter and the integer
parameter, characterizing the width of the influence function,
in Sec. IV. Finally, we provide a brief summary of our results
in Sec. V.

II. GENERALIZED WINFREE MODEL

The Winfree model is governed by the evolution equation
represented as [1,3]

θ̇i = ωi + Q(θi )
ε

N

N∑
j=1

P(θ j ), i = 1, 2, 3, . . . , N, (1)

where θi(t ) is the phase of the ith oscillator and ε > 0 is the
coupling strength. Q(θ ) and P(θ ) in the coupling measure
the sensitivity and influences of all oscillators, respectively.
The frequencies ωi, which are drawn from a symmetric and
unimodal density function g(ω), ensure the heterogeneous na-
ture of the oscillators. All the oscillators receive the common
input via the mean-field coupling 1

N

∑N
j=1 P(θ j ). The response

of the individual oscillators to the mean-field depends on the
state of each oscillator θi, which is determined by the sensitiv-
ity function Q(θi ). Usually, the specific choice of the latter
is Q(θ ) = −sinθ [5], which is chosen for its mathematical
tractability and is also consistent with the qualitative shape
of the response curves of a large class of biological oscillators
[1,2]. It is to be noted that the effect of heterogeneous PRCs
[8], noninfinitesimal PRCs [20], and various forms of pulses
including different degree of pulse width [4] on synchro-
nization have been reported recently. The phase-dependent
influence function P(θ ) characterizes the nature of the pulse,
which is usually considered as (1 + cos θ )n [5,7]. The Winfree
model with this kind of influence function represents a simple
model of a population of pulse-coupled biological oscillators
[7,21]. In our present study, we consider the phase-dependent
influence function P(θ ) of the form

P(θ ) = an(q + cos θ )n, (2)

where P(θ ) is a 2π -periodic pulselike function characterized
by the offset parameter q. The phase-dependent influence
function P(θ ) either advances or delays the phase shift of the
oscillators based on the offset parameter q. P(θ ) is completely
positive [see dashed curve in Fig. 1(a) for n = 1] for the unit
value of q characterizing phase advance. A decreasing value
of q decreases the degree of phase advance because of the
contribution from phase delay [see Figs. 1(b) and 1(c) for
q = 0.9 and 0.3, respectively] and becomes perfectly balanced
when the offset parameter takes the null value. Nevertheless,
the instantaneous value of P(θ j ) depends on the distribution
of θ j , which evolves in concurrence with the distribution of
the natural frequencies and the sensitive function (PRC). The
integer parameter n permits us to control the width of the
pulses. The normalization constant an is fixed, in accordance

with
∫ π

−π
P(θ )dθ = 2π , as a−1

n = ∑n
m=0 (n

m)
(q−1)m (2(n−m))!

2n−m ((n−m)!)2 [7].
The phase-dependent influence function is depicted in Fig. 1
for n = 1 (dashed line) and n = 10 (solid line) to elucidate
the influence of n on the width of the pulses, which becomes
increasingly narrow for large values of n.

The heterogeneity among the population is obtained
through a Lorentzian distribution of ωi with mean ω0 and
spread γ , represented as

g(ω) = γ

π [(ω − ω0)2 + γ 2]
; γ > 0. (3)

III. LOW-DIMENSIONAL DYNAMICS
OF THE WINFREE MODEL

In this section, we reduce a low-dimensional system repre-
senting the mean-field dynamics of the Winfree model (1) in
the thermodynamic limit. The Winfree model, for the chosen
form of the influence and response functions, can be written
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FIG. 1. Phase-dependent influence function for various values of the offset parameter. (a) q = 1, (b) q = 0.9, and (c) q = 0.3.

as

θ̇i = ωi + εIm[e−iθi ]H (t ), (4)

where H (t ) = ∑
P(θi ), and the order parameter z(t ) =

r(t )eiψ = 1
N

∑N
j=1 eiθ j . For a large but finite N , the above

system of equations admits solutions in the reduced invariant
Ott and Antonsen manifold [17], provided the frequencies
ωi are drawn from a probability distribution function such
as Lorentzian or Gaussian functions [7,18,22]. Now, we pro-
ceed to deduce the low-dimensional system that captures the
asymptotic dynamics of the Winfree model (1) using the Ott-
Antonsen (OA) ansatz.

We consider a density function f represented as
f (θ, ω, γ )dθ , which denotes a fraction of the oscillators with
phases between θ and θ + dθ and natural frequency ω at
a time t . The evolution of f is governed by the continuity
equation

∂ f

∂t
+ ∂

∂θ
( f v) = 0, (5)

where v(θ, ω, t ) is the angular velocity of the oscillators given
by Eq. (4). For further analysis, in the thermodynamic limit,
z(t ) can be written as

z(t ) =
∫ ∞

−∞
g(ω)

∫ 2π

0
f (θ, ω, t )eiθ dθdω. (6)

Expanding f (θ, ω, t ) in Fourier series (since it is 2π periodic)
in θ , we have

f (θ, ω, t ) = g(ω)

2π

[
1 +

∞∑
l=1

fl (ω, t )eilθ + c.c.

]
, (7)

where c.c. stands for the complex conjugate of the preceding
sum.

The OA ansatz assumes [17,18]

fl (ω, t ) = [α(ω, t )]l . (8)

Substituting (7) and (8) in the continuity equation, one obtains

α̇ + iωα − ε

2
H (1 − α2)an = 0. (9)

Hence, Eq. (6) can be written as

z(t ) =
∫ ∞

−∞
g(ω)α∗(ω, t )dω. (10)

The above equation can be integrated to obtain

z(t ) = α∗(ω0 − iγ , t ). (11)

From (9) and (11), the dynamics of the Kuramoto order pa-
rameter z(t ) = reiψ can be deduced as

ṙ = − γ r + k

2
(1 − r2) cos(ψ )[(r cos ψ + q)n], (12a)

ψ̇ = ω0 − k

2

(1 + r2)

r
sin(ψ )[(r cos ψ + q)n], (12b)

where k = εan. Remarkably, the above two equations describe
exactly the macroscopic dynamics of the Winfree model (1),
irrespective of the presence of the offset parameter in the
influence function.

IV. PHASE DIAGRAM OF THE WINFREE MODEL

In this section, we unravel the phase diagram of the Win-
free model (1) for different values of the offset parameter q
and the integer parameter n, which controls the symmetry
and the width of the phase-dependent influence function P(θ ),
respectively. First, we solve the original Winfree model (1)
to identify the synchronous and asynchronous states in the
(ω0/γ , k/γ ) parameter space using the order parameter ξ .
The reduced low-dimensional system (12), corresponding to
the macroscopic dynamics of the Winfree model (1), cannot
be solved exactly for nonzero values of the offset parameter.
However, using the XPPAUT software [23], we have obtained
the bifurcation curves in the two parameter space for nonzero
values of the offset parameter. Nevertheless, we have solved
the low-dimensional system for q = 0 to deduce various bi-
furcation curves.

A. Phase diagram of the Winfree model for q �= 0

The macroscopic synchronized state is characterized by the
periodic nature of |z| in the thermodynamic limit, while that of
the asynchronized state is characterized by |z| = const. Hence,
we use the Shinomoto-Kuramoto order parameter [4,24]

ξ = |z − z̄|, (13)

where z̄ denotes the long time average. The Shinomoto-
Kuramoto order parameter takes ξ = 0 for the asynchronized
state, whereas nonzero values of ξ characterize the degree of
synchronization. We have employed the standard fourth-order
Runge-Kutta algorithm with a time step h = 0.01, N = 105,
γ = 0.1 and the initial conditions of the phase variables are
chosen randomly between [0, 2π ). Based on the values of
the Shinomoto-Kuramoto order parameter, (ω0/γ , k/γ ) pa-
rameter space is demarcated as synchronous (light-gray and
black regions) and asynchronous (unshaded and dark-gray
regions) regions in Fig. 2 for n = 1. The phase diagram for
q = 1 is depicted in Fig. 2(a). There is a transition from
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FIG. 2. Phase diagram of the Winfree model (1) in the (ω0/γ , k/γ ) parameter space for different values of the offset parameter q. (a)
q = 1, (b) q = 0.9, and (c) q = 0.3.

an asynchronous stable steady state to a synchronous os-
cillatory state, and then again to an asynchronous state as
a function of k/γ for ω0/γ > 7.2. The line connected by
unfilled triangles corresponds to the Hopf bifurcation curve
(obtained using XPPAUT) across which a change in the stability
of the stable steady state of the reduced low-dimensional
system (12) occurs. Now, we decrease the value of the offset
parameter q to unravel its effect on the dynamical states of the
Winfree model. Note that decreasing q decreases the degree
of positive phase shift (phase advance) among the oscillators
as characterized by the phase-dependent influence function
P(θ ) (see Fig. 1). The phase diagram for q = 0.9 is shown
in Fig. 2(b). In addition to the Hopf bifurcation observed for
q = 1, decreasing q facilitates the onset of homoclinic and
saddle-node bifurcations enclosing the multistable regions in a
narrow range of parameters. It is also to be noted that decreas-
ing the offset parameter favors the onset of synchronization
in a large parameter space [Fig. 2(b)]. Further decrease in q
increases the synchronized and multistable regions as evident
from Figs. 2(c) and 3 depicted for q = 0.3. The multistable
region in Fig. 2(c) is enlarged in Fig. 3 for a clear visualization
and better understanding of the dynamical transitions in the
multistable region. For low values of ω0/γ (see Fig. 3), two
fixed points coexist in the dark-gray shaded region, while a

FIG. 3. Enlarged region of Fig. 2(c). Stable nontrivial steady
states are indicated by unfilled symbols, whereas the unstable trivial
steady state is indicated by a filled symbol in the inset. Phase-space
trajectories near the stable nontrivial steady states and the limit-cycle
attractor (unfilled circles) are depicted in the inset.

synchronized oscillatory state coexists with the steady state in
the dark (black) shaded region in the range ω0/γ ∈ (3.1, 3.6).
A second nontrivial steady state onsets via the saddle-node
bifurcation (line connected by unfilled squares) and remains
stable, as a function of k/γ in the entire parameter space, re-
sulting in the multistability among the two different nontrivial
steady states. However, the steady state that lies to the left of
the saddle-node bifurcation curve loses its stability at a sub-
sequent saddle-node bifurcation (line connected by unfilled
squares) for further larger k/γ . The synchronized oscillatory
state destabilizes via homoclinic bifurcation for ω0/γ > 3.1,
leading to the onset of a nontrivial steady state as a function
of k/γ .

Phase-space trajectories near the stable nontrivial steady
states and that of the limit-cycle attractor are illustrated in the
inset of Fig. 3. Stable (unstable) steady states are indicated
by unfilled (filled) symbols in Figs. 3 and 4. Phase-space
trajectories near the two stable nontrivial steady states that
coexist in the dark-gray region in Fig. 3 and phase-space
trajectories near the stable limit-cycle attractor and stable
nontrivial steady state that coexist in the dark (black) shaded
region in Fig. 3 are shown in Figs. 4(a) and 4(b), respectively.
The Shinomoto-Kuramoto order parameter ξ is depicted in
Fig. 5 for two different q and ω0 to illustrate the nature
of dynamical transitions observed in the phase diagrams of
Fig. 2. The Shinomoto-Kuramoto order parameter ξ is widely
used in identifying the synchronization transition in the Win-
free models [4,7]. The order parameter in Fig. 5(a), plotted
for q = 1 and ω0 = 0.85, elucidates the transition from an
asynchronous steady state to synchronous oscillatory state at
k/γ = 2.2 via the Hopf bifurcation and, subsequently, the
latter is quenched to an asynchronous stable steady state again

FIG. 4. Phase-space trajectories near (a) the nontrivial steady
states in the dark-gray shaded region in Fig. 3 and (b) the limit-cycle
attractor and the nontrivial steady states in the dark-shaded region in
Fig. 3, for q = 0.3. Stable states are shown using unfilled symbols
and unstable states using filled symbols.
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FIG. 5. Shinomoto-Kuramoto order parameter (ξ ) and Kuramoto
order parameter (R) illustrating the nature of dynamical transitions.
(a), (c) q = 1, ω0 = 0.85; (b), (d) q = 0.3, ω0 = 0.32.

via the Hopf bifurcation at k/γ = 3.4. The entire dynamical
transition, illustrated in Fig. 5(a), is a cross section of Fig. 2(a)
at ω0/γ = 8.5. Lines connected by filled and open circles
correspond to the forward and backward trace of k/γ . Inter-
estingly, we have observed a first-order (explosive) transition
to the synchronous oscillatory state in the multistable regions
of Figs. 2(b) and 2(c). For instance, the order parameter ξ for
q = 0.3 and ω0 = 0.32 [see Fig. 5(b)] in the forward transition
elucidates that there is a transition from an asynchronous
steady state to a synchronous oscillatory state at k/γ = 7.2
via the Hopf bifurcation, which loses its stability via a ho-
moclinic bifurcation at k/γ = 9.2 leading to the onset of an
asynchronous stable steady state. Nevertheless, one can ob-
serve a first-order transition, similar to an explosive transition,
from an asynchronous stable steady state to a synchronous
oscillatory state via a saddle-node bifurcation at k/γ = 8.9
in the backward transition, which then is quenched to a stable
steady state at k/γ = 7.2 via the Hopf bifurcation. Thus, it is
also evident that in the multistable regions, there is a first-
order (explosive) transition to the synchronized oscillatory
state in the backward transition.

We have also depicted the Kuramoto order parameter R =
|z| in Figs. 5(c) and 5(d) for the same values of the parameters
as in Figs. 5(a) and 5(b), respectively, to doubly confirm the
dynamical transitions observed in the Shinomoto-Kuramoto
order parameter ξ . The Kuramoto order parameter R clearly
reveals the transition among the asynchronous states (stable
nontrivial steady states) via a synchronized (oscillatory) state
[see Figs. 5(c) and 5(d)] through similar bifurcations as in
Figs. 5(a) and 5(b). Note that there exists a region of bista-
bility [see Fig. 5(d)] with the first-order transition in both the
forward and backward trace of k/γ . We have also increased
the integer parameter n, which basically narrows down the
phase-dependent influence function as illustrated in Fig. 1,
and depicted the corresponding phase diagrams in Figs. 6 and
7 to elucidate the effect of the brief influence function P(θ )
on the dynamical states. We have fixed n = 2 and depicted
the phase diagrams for q = 0.5 and q = 0.3 in Figs. 6(a)
and 6(b), respectively. The dynamical transitions via distinct

FIG. 6. Phase diagram of the Winfree model (1) and (2) for
different pulse width and offset parameters. (a) n = 2, q = 0.5; (b)
n = 2, q = 0.3; (c) n = 4, q = 0.5; and (d) n = 4, q = 0.3.

bifurcations are similar to those in Fig. 2(d). Similarly, we
have also depicted the phase diagrams for n = 4 in Figs. 6(c)
and 6(d) for q = 0.5 and q = 0.3, respectively. The phase di-
agrams for odd values of n for q = 0.5 and q = 0.3 are shown
in Figs. 7. It is evident from these figures that the spread of
the multistable states is increased for the decreasing values of
the offset parameter and increasing values of n. These figures
corroborate that brief pulses and decreasing degree of phase
advance characterized by the influence function P(θ ) favor
the onset of multistable regions and explosive transition to
a synchronous oscillatory state in a large range in the phase
diagrams.

B. Phase diagram of the Winfree model for q = 0

In this section, we investigate the dynamical states and
the nature of the phase-space dynamics of the Winfree model
for q = 0 and n = 1, the phase diagram of which is depicted

FIG. 7. Phase diagram of the Winfree model (1) and (2) for
different pulse width and offset parameter. (a) n = 3, q = 0.5; (b)
n = 3, q = 0.3; (c) n = 5, q = 0.5; and (d) n = 5, q = 0.3.
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FIG. 8. Phase diagram of the Winfree model for q = 0 and n = 1.

in Fig. 8. Note that for n = 1, the normalization constant
a1 = 1/q → ∞ for q → 0. For this reason, we have fixed
k = ε in this section instead of k = εa1. The asynchronous
steady state to the left of the Hopf bifurcation curve (line
connected by unfilled triangles) and that lie above the pitch-
fork bifurcation curve (line connected by unfilled circles)
correspond to the trivial stable steady state. The trajectories
near the trivial steady state elucidating its stable nature are
shown in the Fig. 8(a) inset. Note that stable states are shown
using unfilled symbols, while unstable states are shown using
filled symbols. The asynchronous steady state that lies to the
right of the saddle-node bifurcation curve (line connected
by unfilled squares) is a nontrivial stable steady state. The
trajectories near the stable nontrivial steady state (indicated
as an open square) are shown in the Fig. 8(c) inset. The
essential differences between the phase diagrams in the pres-
ence and absence of an offset parameter are the emergence
of a stable trivial steady state and loss of its stability via the
pitchfork bifurcation as a function of k/γ . The synchronous
oscillatory state is enclosed between the Hopf bifurcation
curve and the homoclinic bifurcation curve (line connected
by filled circles). Stable limit-cycle oscillation (indicated by
open circles) of the synchronous oscillatory state is shown
in the Fig. 8(b) inset. The trivial steady state and nontrivial
steady state coexist in the dark-gray shaded region enclosed
by the saddle-node bifurcation curve and the pitchfork bifur-
cation curve. Phase trajectories near both trivial and nontrivial
steady states are depicted in Fig. 9(a). Synchronous oscillatory
and asynchronous nontrivial steady states coexist in the dark
(black) shaded region enclosed by the saddle-node bifurcation
curve and the homoclinic bifurcation curve. Phase trajectories
near the stable limit-cycle oscillation and that of the nontrivial
steady states are shown in Fig. 9(b). Note that there is also an
explosive transition to a synchronous oscillatory state from an
asynchronous nontrivial steady state as in Fig. 2(c). It is also
to be noted that all the bifurcation curves in Fig. 8, except
the homoclinic bifurcation curve, are analytical bifurcation
curves deduced from the reduced low-dimensional system
(12), corresponding to the macroscopic dynamics of the Win-
free model (1). The reduced low-dimensional system can now
be exactly solvable for q = 0 and n = 1. In the following, we

FIG. 9. Phase-space trajectories near (a) trivial and nontrivial
steady states and (b) limit-cycle and nontrivial steady states. Stable
states are shown using unfilled symbols and unstable states using
filled symbols.

will deduce the critical curves corresponding to the distinct
bifurcations.

1. Stability of trivial steady state

The reduced low-dimensional system (12) is characterized
by a trivial steady state (r = 0) and a nontrivial steady state
(r �= 0). The stability determining the eigenvalues of the triv-
ial steady state is

λ1,2 = −4γ + k ±
√

�, (14)

where � = k2 − 16ω2
0. For ω0

γ
� 1, the critical curve (pitch-

fork bifurcation curve) across which the stability of the stable
trivial steady state switches can be deduced as

kPF = 2
(
γ 2 + ω2

0

)
γ

. (15)

For ω0
γ

> 1, the stable trivial steady state loses its stability via
the Hopf bifurcation curve,

kHB = 4. (16)

2. Stability of nontrivial steady state

The nontrivial steady state is obtained by substituting ṙ =
ψ̇ = 0 in Eqs. (12), which yields

cos ψ =
√

2γ

k(1 − r2)
(17)

and

sin ψ =
√

2
kγ

ω0

√
(1 − r2)

1 + r2
. (18)

The above two equations can be rewritten as

2γ

k(1 − r2)
+ 2(1 − r2)ω0

2

γ k(r2 + 1)2 = 1. (19)

The above equation can be reduced to

γ kR3 + R2
(
2γ 2 + γ k + 2ω2

0

) + R
(
4γ 2 − γ k − 4ω2

0

)
+ 2ω2

0 + 2γ 2 − γ k = 0, (20)

where R = r2. Now, from the discriminant of the above cubic
equation, the existence condition for the nontrivial steady
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FIG. 10. (a) Phase diagram of the Winfree model for N = 100,
and (b) Kuramoto order parameter R for N = 100 (lines connected
by squares), 1000 (lines connected by triangles), and 105 (lines
connected by circles) at ω0/γ = 0.5. Filled and unfilled symbols
correspond to the forward and backward traces of k/γ . The other
parameters are q = 0 and n = 1.

state, which genesis is via the saddle-node bifurcation, can
be deduced as

4γ k3
SN + k2

SN (ω2 − 12γ 2) + 4kSN (3γ 3 − 5γω2)

− 4(γ 2 + ω2)2 = 0. (21)

The existence condition of the nontrivial steady state turns
out to be its stability condition, which can be verified inde-
pendently. The saddle-node bifurcation curve bifurcates from
the pitchfork bifurcation curve at ω0

γ
= 1√

3
, leading to the

onset of multistability among the trivial and nontrivial steady
states.

V. FINITE-SIZE EFFECTS

We have also depicted the Kuramoto order parameter and
the phase diagram for small values of N to elucidate the
finite-size effects on the observed dynamical states and their
transitions. In particular, the phase diagram for N = 100 is
depicted in Fig. 10(a). The values of the other parameters in
Figs. 10(a) and 10(b) are the same as in Fig. 8. The dynamical
states and their bifurcation transitions are similar to those
in Fig. 8 for N = 105, except for the absence of bistability
among the observed dynamical states. The Kuramoto order
parameter is depicted in Fig. 10(b) for N = 100 (lines con-
nected by squares), 1000 (lines connected by triangles), and
105 (lines connected by circles) at ω0/γ = 0.5. Filled and
unfilled symbols correspond to the forward and backward
traces of k/γ , respectively. It is evident from the figure that
the first-order transition across the bistable region is observed
only for a very large N , which is otherwise absent for a
small N . Thus, bistability and the first-order (explosive) tran-
sition among the dynamical states onsets only for a large but
finite N .

VI. CONCLUSIONS

We considered a globally coupled Winfree model com-
prised of a phase-dependent influence function and sensitive
function, in which all the oscillators interact through the mean
field of the influence function while the degree of response
of the individual oscillators to the mean field is determined
by the sensitive function. We have investigated the influence
of the offset and integer parameters characterizing the shape
of the phase-dependent influence function. The increasing
phase delay facilitated the onset of multistable regions in the
phase diagram. Multistability between the synchronous oscil-
latory state and asynchronous stable steady states is enclosed
by the saddle-node bifurcation and homoclinic bifurcation.
Multistability is also found to emerge between two nontrivial
steady states bounded by two saddle-node bifurcations for
nonzero values of the offset parameter. Furthermore, a trivial
steady state and nontrivial steady states are found to coexist
in the region bounded by the saddle-node bifurcation and the
pitchfork bifurcation in the phase diagram in the absence of
the offset parameter.

Increasing the integer parameter results in a brief pulse of
the phase-dependent influence function, which is also found to
facilitate the emergence of a synchronous oscillatory state and
multistable states to a large range of the phase diagram. An
explosive transition to a synchronous oscillatory state from the
asynchronous steady state is found to emerge in the backward
transition. In particular, decreasing phase advance and brief
pulses of the influence function are found to promote synchro-
nization among the heterogeneous oscillators. We have also
deduced two ordinary differential equations corresponding to
the two macroscopic variables from the population of globally
coupled Winfree oscillators using the Ott-Antonsen ansatz.
Furthermore, we have deduced various bifurcation curves
analytically from the reduced low-dimensional macroscopic
variables for the exactly solvable case of the null value of
the offset parameter. The analytical curves are found to agree
well with the simulation boundaries of the phase diagram. We
have also illustrated the finite-size effects on the nature of the
dynamical states and bifurcation transitions.
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