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In this paper we bring out the existence of a kind of synchronization associated with the size of a complex
system. A dichotomic random jump process associated with the dynamics of an externally driven stochastic

system with N coupled units is constructed. We define an output frequency and phase diffusion coefficient.
System size synchronization occurs when the average output frequency is locked to the external one and the
average phase diffusion coefficient shows a very deep minimum for a range of system sizes. Analytical and
numerical procedures are introduced to study the phenomenon, and the results describe successfully the existence

of system size synchronization.
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I. INTRODUCTION

The topic of synchronization has been amply studied from
a variety of different perspectives because of its intrinsic the-
oretical interest, as well as its widespread applications [1-3].
Understanding the synchronization present in systems helps to
comprehend processes studied in fields linked to engineering,
biology, or medicine, in addition to physics. For instance,
synchronization plays a role in power-grid networks, as dis-
cussed in Ref. [4]. In biological models, noise and interaction
delays help to explain the spontaneous formation of clusters of
synchronized spikings in homogeneous neuronal ensembles
[5] and in biological mobile phase oscillators [6]. Hydro-
dynamic synchronization of spontaneously beating filaments
with different wave forms ranging from sperm to cilia and
Chlamydomonas is discussed in Ref. [7]. In addition, synchro-
nization seems to play a role in the description and control of
some medical problems [8].

The study of synchronization has been addressed for dif-
ferent regimes. For chaotic regimes, synchronization has been
analyzed in Lorenz systems [9], in a real set of synchronizing
chaotic circuits [10], in coupled oscillators [11] and lasers
[12], and more recently in sets of oscillators with imperfec-
tions [13]. The presence of noise may significantly interact
with the synchronization mechanism [14]. In particular, cer-
tain systems are able to synchronize with external forces when
the noise takes adequate values. This phenomenon, known as
noise-induced synchronization, has been analyzed in single-
particle systems [15-20], as well as in multiparticle systems
[21]. The study of synchronization has also been extended
to the quantum regime, being analyzed initially in driven
systems in Ref. [22]. More recently, studies of quantum syn-
chronization have been carried out in open quantum systems
[23] or via quantum machine learning [24]. Quantum phase
synchronization has also been experimentally observed [25].
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In this paper, we investigate another aspect of the synchro-
nization phenomenon in a stochastic complex system: system
size synchronization. With this term, we refer to a system-size-
dependent type of synchronization, between a multiparticle
system and an external force. Specifically, here we will show
that a set of classical coupled elements immersed in a highly
noisy environment might synchronize with a rather weak ex-
ternal driving if the number of elements lies within a range of
optimal system sizes.

II. A MODEL FOR SYSTEM SIZE SYNCHRONIZATION

We consider a model describing a finite set of N interacting
bistable subsystems, each of them characterized by a single
degree of freedom x;, with i = 1, ..., N, whose dynamics is
governed by the Langevin equations [26]

N
Si=x xS =)+ EO+FO. (D
j=1

Here, € is the parameter defining the strength of the interaction
between subsystems, the &;(¢)’s are Gaussian white noise with
zero average and (§;(t)&;(s)) = 2D4;;6(t —s), D being the
noise strength, and F(¢) = F(¢ + T) is an external driving
force of period T' with a constant amplitude A for the first half
of a period and —A for the second half. The model considered
in Ref. [26] is similar to this one but with a sinusoidal driving
force.

We focus our interest on the single global variable X (t) =
ZIJYZ 1 Xj()/N. The nonlinearity of the dynamics prevents us
from writing an exact closed equation for X (7). Nevertheless,
in the absence of external driving, the asymptotic behavior
of the equilibrium probability distribution for the global vari-
able X in the limit N — oo can be analyzed [27]. From that
analysis, it follows that there are two regions in the (D, €)
space: one in which the system is in a disordered phase, with
a steady-state value X = 0, and a second one in which the
system is in an ordered phase. In this last phase, there are
three possible steady-state values of X, namely, X = 0, which
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FIG. 1. Stochastic trajectories of the global variable X(¢) for
N =50 (a), N =250 (b),and N = 900 (c). The remaining parameter
values are € =2.7, D=0.7, A=0.03, and w =27 /T = 0.001.
(d) shows the external driving force conveniently amplified.

is unstable, and X = £Xj,, with X, being a parameter that
depends on D and €.

For finite system sizes, the above asymptotic results enable
us to form a qualitative picture of the random behavior of
X (). In the ordered phase (the one we are interested in), X (¢)
exhibits small fluctuations around the values Xy and —X,, and
rather large fluctuations, or jumps, between these two values.
The rate of jumps decreases as N increases and approaches
zero in the limit N — oo. As shown in Fig. 1, this qualitative
picture remains valid even in the presence of sufficiently weak
external drivings.

In Ref. [26], Pikovsky et al. proposed a quantitative expla-
nation of this last qualitative picture in terms of a standard
noise-driven double-well model in which the noise strength
is inversely proportional to the number of elements N. In
addition, they showed that the response of X (¢) to the periodic
external force exhibits a resonantlike behavior as N is varied.
So, they demonstrated the existence of a phenomenon similar
to stochastic resonance, but with the system size playing the
role of the noise strength.

In this paper, we are interested in the synchronization
mechanism associated with the stochastic jump process. As
discussed in Ref. [19] for a single variable in a rocked,
overdamped bistable potential, the stochastic synchronization
phenomenon is quantified in terms of an output frequency and
a phase diffusion coefficient. Specifically, the stochastic syn-
chronization phenomenon is characterized by the existence of
a range of noise strength values for which there is a matching
of the output frequency and the driving frequency (noise-
induced frequency locking), together with a sharp decrease of
the phase diffusion coefficient (noise-induced phase locking).
For many variables, the effective noise scaling with the inverse
of N prompts us to ask whether a phenomenon similar to
stochastic synchronization may also show up as a function of
the system size.

To explore this possibility, we must adapt the defini-
tions of output frequency and phase diffusion coefficient
used in Ref. [19] to many-variable systems. The first step
is to introduce a discrete phase associated with the contin-
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FIG. 2. Sketch of the filtering process for a system with size
N = 250 and the same parameter values as in Fig. 1. (a) depicts a
random trajectory and the corresponding threshold values Xy, and
—Xi. The filtered trajectory x(¢) is depicted in (b). (c) shows the
external driving force conveniently amplified.

uous stochastic process X (7). To this end, we proceed to
filter out the small fluctuations of X (¢) to obtain a two-state
stochastic process y (¢) taking the two values +1 or —1. The
filtering process involves the consideration of two thresh-
old values, Xy, and —Xy,, close to the levels of the small
fluctuations (see Fig. 2). All the N variables are initially
located at x;(0) = Xy, so that X(0) = Xy, and we assign
x(0) = +1. A switch of x(¢) occurs whenever X (t), hav-
ing started in one of the threshold values, reaches the other
threshold value for the first time. The instant of time at which
the nth switch takes place is a random variable which will
be denoted by 7,, with n=1,2,.... These random vari-
ables can be formally defined recursively as 7, = min[z | >
To—1 and X () = (—1)"Xy], with 7y = 0. Next, we define a
stochastic process A/ (f) by counting the number of switches
within the interval (0, ¢] as A (¢) = max(n |7, < 1). The fil-
tered process is then given by x (t) = cos[w N (¢)]. Associated
with this filtered process, we define the stochastic phase
@(t) = 7N (t), the averaged output frequency

Qo = lim O @

t——+00 t

and the averaged phase diffusion coefficient

2 2
Do = 1im J#OP) — 0@

t—+00 t

3)

where the angular brackets indicate averages over the random
realizations. The system size synchronization refers to two
features happening in a range of N values: the matching of
the output frequency €2,y to the driving one w = 27 /T and,
simultaneously, very small values of the phase diffusion coef-
ficient Dy.

III. ANALYTICAL RESULTS

Assuming that y (¢) is a Markovian dichotomic process, an-
alytical expressions for Q¢ and Doy, completely determined
by the rates of escape from both states, can be obtained [20].
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If we further assume that the rates of escape from the states
+1 and —1 are, respectively, y,; and y_ for the first half of a
period and y_ and y, for the second half, it can be shown that

[19]
Ty ) tanh o
Szoul:_l_A 1 - (4)
2 o
and
2n2A%tanh® o 2m2A2(1 — A?)
Dnut - nQout - -
T T
x [3tanh o — a(1 + 2 sech’)], 5)

wherey =y, +y-, A= (y- —y4)/y,anda = yT/4.

To obtain analytical expressions for the rates of escape
y+ and y_, the approximate analytical approach developed in
Ref. [26] will be used. In that reference, the authors derive
a Langevin closed equation for X (¢) by applying a Gaussian
approximation to the entire dynamics given by Eq. (1), as well
as the slaving principle [28,29]. The resulting equation is

X(t) = aX(t) —bX (t) + n(t) + F(t), (6)
where a = (e +1—¢)/2, b=[—1+3( — 1)/c]/2, with

¢ =+/(e —1)2+ 12D, and n(¢) is a Gaussian white noise
with zero mean and (n(¢)n(t')) = 2D5(t —t')/N. For the
derivation of Eq. (6), itis assumed that D > 2/3 and € > €, =
3D [26]. Under this assumption, it is easy to show that the
parameters a and b are strictly positive.

The Langevin equation defined by Eq. (6) is for-
mally identical to that of an overdamped Brownian par-
ticle moving in a time-periodic potential of period T,
with a noise term of strength D/N which depends on
the system size N. The potential periodically switches
between two values, U_(x)=bX*/4 —aX?/2 — AX and
Ui(x) = bX4/4 — aX2/2 + AX. The value U_(x) corre-
sponds to the first half of a period, whereas the value U, (x)
corresponds to the second half.

In the absence of external driving, i.e., for A = 0, Uy (x)
is bistable, as a and b are strictly positive. For A # 0, the po-
tentials U (x) are bistable as long as A < Ay, = 2/a3/(27b)
(subthreshold external drivings). In this case, the poten-
tial U_(x) [Us(x)] possesses two minima at g_; < 0 and
g+1 >0 (at —g4y; <0 and —g_; > 0) and a maximum
at go (at —qo). The locations g, can be calculated us-
ing the expression gy = 2+/a/(3b)cos{[v + 27 (£ + 2)]/3},
with v = arccos(A/An) and £ = —1, 0, and +1. Hence-
forth, we will only consider subthreshold external drivings.
Applying Kramers’ rate theory [30], the rates of es-
cape yi can be expressed as yi = wywie NP /(2m),
where wy = (a — 3bq(2))1/2, WL = (3bq§El —a)'?, and E; =
U_(q0) — U_(q+1) [31].

The effective Langevin equation in Eq. (6) can be used
to identify ranges of parameter values for which system size
synchronization might be expected. To this end, it is first
necessary to express Eq. (6) in a more convenient form by
introducing the rescaled variables X = /b/aX and f = at. It
can easily be seen that the rescaled stochastic process X (7)
satisfies a Langevin equation analogous to the one considered
in Ref. [19], but for the rescaled values of the amplitude
A = A\/b/a3, noise strength D = Db/(Na?), and frequency
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FIG. 3. Plot of the ratio of the averaged output frequency, Q,y,
and the driving one, w, vs the system size N for A = 0.03, D = 0.7,
o = 0.001, and € = 2.7. Filled circles indicate the results obtained
from the simulation of the N coupled Langevin equations in Eq. (1).
Stars correspond to the results obtained from the simulation of the
effective Langevin equation in Eq. (6). The solid line describes the
analytical result obtained from Eq. (4). For the above parameter
values, the rates of escape in Sec. III are given approximately by
v = 0.04¢70%Y and y_ = 0.03 700V,

@ = w/a. For given values of the parameters ¢ and N, these
expressions permit us to establish a mapping between the
parameters {A, D, @} considered in Ref. [19] and the pa-
rameters {A, D, w} used in this paper. With this mapping,
we can estimate values of {A, D, w} for which system size
synchronization might be expected from the knowledge of
values for {4, D, @} for which stochastic synchronization has
been observed, e.g., the set of values used in Ref. [19]. The
parameter values in Figs. 1-4 have been determined using this
procedure.
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FIG. 4. Plot of the logarithm of the averaged phase diffusion
coefficient, log,,(Dou ), Vs the system size N forA = 0.03, D = 0.7,
o = 0.001, and € = 2.7. Filled circles indicate the results obtained
from the simulation of the N coupled Langevin equations in Eq. (1).
Stars correspond to the results obtained from the simulation of the
effective Langevin equation in Eq. (6). The solid line describes the
analytical result obtained from Eq. (5). For the above parameter
values, the rates of escape in Sec. III are given approximately by
v, = 0.04¢7 %Y and y_ = 0.03 700V,
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IV. NUMERICAL RESULTS

We have carried out numerical simulations of the N cou-
pled Langevin equations given in Eq. (1), as well as of the
effective Langevin equation for the single collective variable
in Eq. (6). For the first case, we generate a large number M
of random realizations for the N variables, all of them start-
ing from the same initial condition x;(0) = X = 0.6, with
j=1,2,...,N. For each of those realizations, the global
variable X (¢) is evaluated. We have checked numerically that
X (t) shows a bistable random behavior. Figure 2(a) shows
this bistability. For each trajectory o = 1, ..., M the filtering
ideas described above allow us to construct the filtered process
X« (t) [see Fig. 2(b)], the number of jumps N, (¢) within the
interval (0, t], and the phase ¢, (t) = N, (t). Averaging over
the M realizations and using Eqs. (2) and (3), we can estimate
the output frequency and phase diffusion coefficient. For the
case of the Langevin equation for the collective variable in
Eq. (6), the numerical procedure is analogous to the one
just described except for the fact that the simulation directly
provides the collective variable information.

Figure 3 illustrates what we have called system size fre-
quency locking, i.e., the existence of a range of N values for
which the output frequency matches the input one. This is one
of the characteristics of system size synchronization. With the
filled circles, and for the parameter values indicated in the
figure caption, we depict the results obtained with the numer-
ical simulations of the whole set of equations in Eq. (1). The
stars correspond to the numerical simulation of the Langevin
equation for the global variable X () in Eq. (6). The solid line
represents the analytical result in Eq. (4).

It is interesting to observe that the effective Langevin equa-
tion for the global variable in Eq. (6) is able to describe,
at least qualitatively, the system size frequency locking. The
analytical and numerical simulation results based on the ef-
fective Langevin equation agree quite well. The quantitative
disagreement between the approximate Langevin equation re-
sults and those provided by the simulations of the whole set of
equations is to be expected for small values of N. This is so, as
the approximations leading to the effective Langevin equation
are assumed to be valid for large systems. As the system size
increases, the simulations and the analytical results agree very
well.

The logarithm of the averaged phase diffusion coefficient
is presented in Fig. 4. Again, the filled circles correspond
to the results obtained with the numerical simulations of the
whole system in Eq. (1), the stars correspond to the numerical
simulation of the effective Langevin equation in Eq. (6), and
the solid line depicts the analytical result in Eq. (5). Within the

range of N values where the output and driving frequency are
locked, we also observe a system-size-induced phase locking
characterized by the fact that the phase diffusion coefficient
reaches a rather deep minimum. This feature is another char-
acteristic of system size synchronization. The observation that
the dispersion of the jump process, gauged by the phase dif-
fusion coefficient, is so small is a good indication of a very
solid system size synchronization. The discrepancies for small
values of N between the many-particle simulations and the
results based on the effective Langevin equation in Eq. (6) are
larger than for the output frequency shown in Fig. 3. This can
be understood on the basis that the phase diffusion coefficient
involves a second-order moment of the jump process, whereas
the output frequency only requires the evaluation of the first
moment. In any case, both the numerical and analytical treat-
ments of the effective Langevin equation provide a rather good
qualitative description of the phenomenology.

V. CONCLUSIONS

In this paper, we have brought out the existence of a type
of synchronization, which we have termed system size syn-
chronization, for a set of coupled noisy elements driven by an
external time-periodic force. This phenomenon is quantified
in terms of an averaged output frequency and an averaged
phase diffusion coefficient. Within an adequate range of N
values, the output and the external driving frequencies are
locked, and, simultaneously, the phase diffusion coefficient
has a very deep minimum.

Our analytical approximation leads us to conjecture that,
in general, for complex stochastic systems other than the one
considered here, two main ingredients for the observation of
system size synchronization are needed. A first ingredient is
the possibility of defining a global variable showing a di-
chotomic behavior. A second ingredient is that the transitions
between its two values are governed by rates involving the
combined action of a size-scaled effective noise and the weak
applied force.

We think that this paper opens a perspective on the topic of
synchronization which might be of interest in different areas
of physical, biological, or medical sciences.
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