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Particle capture in a model chaotic flow

Mengying Wang ,1 Julio M. Ottino ,1,2,3 Richard M. Lueptow ,1,2,3 and Paul B. Umbanhowar 1,*

1Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
2Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
3Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, Illinois 60208, USA

(Received 4 June 2021; accepted 8 November 2021; published 6 December 2021)

To better understand and optimize the capture of passive scalars (particles, pollutants, greenhouse gases, etc.)
in complex geophysical flows, we study capture in the simpler, but still chaotic, time-dependent double-gyre
flow model. For a range of model parameters, the domain of the double-gyre flow consists of a chaotic region,
characterized by rapid mixing, interspersed with nonmixing islands in which particle trajectories are regular.
Capture units placed within the domain remove all particles that cross their perimeters without altering the
velocity field. To predict the capture capability of a unit at an arbitrary location, we characterize the trajectories
of a uniformly seeded ensemble of particles as chaotic or nonchaotic, and then use them to determine the spatially
resolved fraction of time that the flow is chaotic. With this information, we can predict where to best place units
for maximum capture. We also examine the time dependence of the capture process, and demonstrate that there
can be a trade-off between the amount of material captured and the capture rate.
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I. INTRODUCTION

Many processes are possible within the fabric of a chaotic
flow. Fluid droplets can break and disperse [1], particles
can agglomerate [2], clusters can fragment [3], autocatalytic
reactions can be enhanced [4], and floating matter can ac-
cumulate in specific regions of the flow [5]. And in chaotic
granular flows, in a surprising parallel, initially well-mixed
grains may demix, with certain particles, denser or smaller,
accumulating in regular regions of the flow [6,7]. Here we
consider the flow capture problem, which focuses on remov-
ing passive scalars from a fluid flow. Practical applications
include removing pollutants circulated by geophysical flows,
which is a topic of global importance with, arguably, the most
pressing application being the removal of greenhouse gases
from the atmosphere [8–10]. This is due to the fact that the
atmospheric concentration of CO2 due to human activity has
risen dramatically in the last few decades [11] with associated
consequences including increases in sea level and global mean
temperature. Some of the measures to reduce climate change
include chemically absorbing greenhouse gases actively re-
moved from the atmosphere, developing carbon-neutral fuels,
and growing more plants [12].

For the most efficient and rapid active removal of green-
house gases, a better and more principled understanding of
where to best site CO2 removal units is required. Similar un-
derstanding is also needed to most effectively remove plastic
debris from the ocean [13–15]. However, one of the challenges
of solving the flow capture problem is the complex spatio-
temporal variation of flows in the atmosphere and the ocean.
The work described here extends the work of Smith et al. [16],

*Corresponding author: umbanhowar@northwestern.edu

who studied the dependence of capture unit efficiency on posi-
tion in a chaotic flow field, to develop a deeper understanding
of how flow structure influences capture efficiency.

Several studies have considered transport in geophysical
flows. For example, Lekien et al. [17] modeled the spread of
passive drifters off the coast of Florida using measured ocean
velocity data. Tallapragada et al. [18] studied the advection
of microorganisms in the atmosphere to inform systems for
pest control and disease management. Nolan et al. [19,20]
measured the local atmospheric flow field to predict the spread
of airborne chemicals. Schmale and Ross [21] studied the
atmospheric transport of plant pathogens from the pathogen
scale to the continental scale. All these studies predict mate-
rial transport but lack a standard means of characterizing the
relevant properties of the chaotic flow field.

In order to avoid the complexity of real geophysical flows
while focusing on fundamental aspects of the flow capture
problem, we study a model chaotic flow, specifically the two-
dimensional double-gyre model [22], which exhibits similar
dynamical properties to real geophysical flows [23,24]. In
particular, geostrophic flows commonly have features that
limit transport in and out of isolated regions. These “barri-
ers to transport” can arise due to geographical features, e.g.,
mountains and valleys, or flow structures such as vortices.
For example, the Florida Current displays complex vortical
patterns [25], the Santa Barbara Channel has cyclonic and
anticyclonic vortices which propagate with an average period
of two weeks [26], and ocean current patterns in Monterey
Bay include coherent and nonlinear structures [27].

Analogous barriers to transport occur in model chaotic
flows, both autonomous and nonautonomous. In autonomous
(time-independent) flows, fixed points (zero velocity points)
of the governing ordinary differential equations (ODEs) are
critical for determining the barriers to transport [28,29]. The
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fixed points are either elliptic, hyperbolic, or parabolic de-
pending on the eigenvalues of the Jacobian at the fixed
points [30]. Barriers to transport always lie between hyper-
bolic points where both stretching and compression occur,
thereby separating various regions of the flow [31,32]. The
situation is more complicated in nonautonomous (time-
dependent) flows. Because zero velocity points in the flow
typically move, barriers to mixing also move and change
shape as well. For the problem of fixed capture units in a
time-dependent chaotic flow that we consider here, the move-
ment of barriers to mixing with respect to the capture unit can
significantly impact the effectiveness of the capture unit.

In this paper, we use the double-gyre flow to study how the
structure of a time-dependent chaotic flow determines optimal
capture unit placement. We follow the approach of Smith
et al. [16] by advecting tracer particles (passive scalars) in the
double-gyre flow for a range of flow parameters and then re-
moving tracers from the flow when their trajectories intersect
the perimeter of a capture unit. Here we show how the overall
flow structure and the fraction of chaotic trajectories passing
through a capture unit influence its effectiveness. Perhaps just
as importantly, we introduce a numerical technique connect-
ing the Lagrangian and Eulerian frameworks by combining
aspects of Poincaré maps and Lyapunov exponents.

This paper is organized as follows. After introducing the
double-gyre flow model in Sec. II, we describe tools to char-
acterize the nature of the flow and particle capture in Sec. III.
Then we present an algorithm to detect and characterize struc-
tures in nonautonomous flows in order to predict the potential
of flow capture units based on their location with respect to
transport barriers in Sec. IV. Next we discuss how capture
unit placement relative to flow structures affects the degree
of tracer particle capture in Sec. V. In Sec. VI we discuss
the particle capture rate and identify factors that influence
it. Section VII presents conclusions and directions for future
work.

II. A MODEL CHAOTIC GEOPHYSICAL FLOW

We use the double-gyre flow model to investigate the flow
capture problem. The double-gyre flow is two-dimensional
and time periodic and produces chaotic flows and barriers to
transport with appropriate parameter choices. Its velocity field
is given by

vx(x, y, t ) = −πA sin[π f (x, t )] cos(πy), (1a)

vy(x, y, t ) = πA cos[π f (x, t )] sin(πy)
∂ f

∂x
(x, t ), (1b)

f (x, t ) = ε sin(ωt )x2 + [1 − 2ε sin(ωt )]x, (1c)

where A is a velocity amplitude, and ε and ω/2π control the
amplitude and frequency of the temporal flow variation, re-
spectively. We consider the flow in a 2×1 rectangular region,
and fix A = 0.5 and ω = 2π , while studying the dependence
of flow capture on ε. The velocity field over a flow period is
illustrated in Fig. 1 for ε = 0.25. At t = 0 the flow consists
of two symmetric vortices (gyres) separated by vertical line
along which vx = 0. For t > 0, the vx = 0 line oscillates
in the x-direction with right and left extremes occurring at
t = 0.25 and t = 0.75, respectively. At t = 0, 0.5, 1, the sep-
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FIG. 1. Periodic time dependence of the velocity field of the
double-gyre flow [Eq. (1)] with ω = 2π, A = 0.5, ε = 0.25.

aration line is located at x = 1. The parameter ε in Eq. (1c)
determines the maximum x-displacement of the vx = 0 line.
At all times, the vortex on the left rotates clockwise and vice
versa.

The double-gyre flow shares similarities with real geophys-
ical flows in that it exhibits periodic patterns and vortices that
change position [22]. As such, the double-gyre flow is a useful
model of real geophysical flow that is easier to study given
its analytic form. Consequently, we focus on its dynamical
properties to understand the fundamentals of the flow capture
problem.

III. FLOW AND POLLUTANT CAPTURE
CHARACTERIZATION

The Poincaré map is a useful tool to visualize transport
in the double-gyre model. It is generated by calculating the
trajectories of tracer particles (points) in the flow and plotting
their positions after equal interval integer flow periods n [29].
In the Poincaré map, tracer particles initially located in non-
chaotic flow regions form KAM islands [33–35] that become
evident after many iterations of the map. Each island con-
tains at least one elliptic point [31]. Tracer particles initially
located in chaotic regions explore the entire “chaotic sea.”
Figures 2(a) and 2(b) show examples of Poincaré maps for two
different ε. For ε = 0.01, the two gyres move only slightly
from side to side and most of the domain is nonchaotic, evi-
dent by the approximately circular structures in the Poincaré
map. For larger ε (ε = 0.05), the lateral displacement of the
two gyres grows, resulting in a relatively large chaotic sea
(regions of the Poincaré map with no evident structure) and
smaller nonchaotic islands.

A crucial factor here is that because the double-gyre flow
is time-dependent, the nonchaotic regions move and change
shape within one flow period. With ω = 2π , the flow period
is 1, and a typical Poincaré map is generated based on the lo-
cation of tracer particles at integer numbers of flow periods, n.
However, the Poincaré map changes at other times during the
cycle. To illustrate this dependence we consider the Poincaré
map at different phases θ , i.e. at t = n + θ , where 0 � θ � 1.
To show the movement of nonchaotic islands in the Poincaré
map at other phases, we consider the boundaries, outlined in
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FIG. 2. Poincaré map of double-gyre flow with (a) ε = 0.01
and (b) ε = 0.05. Map is created by plotting the position of
200 tracer particles seeded uniformly across the domain for n =
0, 1, 2, . . . , 500 periods of the map. In (b), boundaries between
nonchaotic islands and the chaotic sea as well as two Cantori (see
text) are indicated. (c) Island boundaries at different phases θ =
0, 0.2, 0.4, 0.6, 0.8 of the flow period are indicated by different col-
ors (gray scale intensities).

Fig. 2(b), between the main islands in each half of the do-
main and the chaotic sea, ignoring smaller nonchaotic islands.
We plot the boundaries of these main islands extracted from
the Poincaré map at four other phases θ = 0.2, 0.4, 0.6, 0.8
in Fig. 2(c), where different colors (gray scale intensities)
represent different phases. The resulting boundaries of the
nonchaotic regions at all five phases form a ringlike struc-
ture surrounding a large central structure in each half of the
domain. Filling in the regions between these period-2 islands
by calculating the Poincaré map with finer phase resolution
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FIG. 3. Initial locations of a 100×200 grid of tracer particles
captured by the capture unit [circle at (1, 0.5)] and colored (shaded)
by the time interval in which they are captured. White regions indi-
cate particles not captured in 104 periods. ε = 0.05.

would create continuous rings surrounding the large non-
chaotic regions indicating that the islands move continuously
through the domain. We also note the existence of leaky
barriers to mixing within the chaotic sea and surrounding the
nonmixing islands, which are called Cantori [36], also called
“ghost” tori [37], as labeled in Fig. 2(b). Cantori result from
the breakup up of KAM tori and can be viewed as tori with
fractal distributions of holes, similar to a Cantor set [37–39].
We return to the effects of Cantori on capture in Sec. V.

Smith et al. [16] noted that the Poincaré map gives hints
to the capture capability of individual circular capture units at
particular locations in the flow. A single capture unit placed
so that it is always in the chaotic sea will capture all tracer
particles in the chaotic sea, since those particles eventually
visit all locations in the chaotic sea. In contrast, a capture unit
located so that it is always entirely within a nonchaotic island
captures only a subset of tracers in the island, namely those
whose trajectories intersect the unit, and none from the chaotic
sea. However, a capture unit located in the chaotic sea for one
portion of the flow period and in an island for the other portion
eventually captures all tracers in the chaotic sea as well as
some tracers from the island. It is this time-dependent charac-
ter of the flow capture problem that is the focus here, namely,
to consider how to optimally locate capture units based on the
flow structure. Essentially, we are interested in connecting the
fixed position of an arbitrary capture unit, which is Eulerian
in character, with the capture of tracers advected by the flow
field, which is Lagrangian in character.

As an example of flow capture, consider a capture unit with
diameter δ = 0.1 in the center of the domain, i.e., at (1, 0.5),
in a flow with ε = 0.05. Figure 3 shows the initial locations of
tracer particles located on a 100×200 grid, indicating which
are captured during the flow period intervals: 0–10, 10–102,
102–103, and 103–104. At this location (black circle), the unit
eventually captures all particles in the chaotic sea. Figure 3
emphasizes that the time to capture tracer particles depends
nontrivially on their initial positions. Approximately 34% of
the total 20 000 particles are captured within the first ten
periods, 24% are captured between 10 and 102 periods, 11%
are captured between 102 and 103 periods, and only 2% are
captured between 103 and 104 periods. Most of the particles
captured between 103 and 104 periods are initially located
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FIG. 4. Capture capability C for cells in a Mbox = 50×100
square tiling of the domain with Ntr = 200×400 uniformly dis-
tributed initial tracer particles. ε = 0.05, t = 1000.

around the boundaries between nonchaotic islands and the
chaotic sea, regions where Cantori are likely to be present.
Further note that the remaining 29% of the particles are in
the nonchaotic islands and, as a result, are not captured by a
capture unit at this location (white regions in Fig. 3).

Smith et al. [16] considered a grid of 50 possible locations
for placing circular capture units with the same diameter
δ and calculated the fraction of uncaptured particles after
1000 periods. To investigate the local capture capability at
higher resolution, we divide the domain into a uniform grid
of Mbox boxes (squares) and calculate the fraction of Ntr initial
tracer particles captured by each individual box, the capture
capability C(t ), at time t , assuming that no other boxes are
capturing any particles.

Continuing with the example of ε = 0.05, we plot C(t =
1000) in Fig. 4. It is evident that different regions of the
flow exhibit different capture capability. C is largest (lightest)
near the left (right) edge of the main left (right) gyre. C is
smallest (darkest) at the gyre centers. To understand the rela-
tionship between capture capability and flow characteristics,
the next sections focus on identifying transport barriers and
other structures in the flow and characterizing the movement
of the chaotic and nonchaotic regions over the period of the
flow.

IV. CHARACTERIZING FLOW STRUCTURES

Methods for detecting barriers to transport can be cate-
gorized into two groups: (1) geometric methods that focus
on concepts of invariant manifolds [38,40–45] and (2) prob-
abilistic methods, which consider almost-invariant sets [46].
Hadjighasem et al. [47] provide a comprehensive review of 12
different methods including both geometric and probabilistic
approaches to detect coherent structures in two-dimensional,
time-aperiodic flows, comparing the strengths and weaknesses
of each method.

A commonly used geometric method computes finite-
time Lyapunov exponents (FTLE) and uses them to identify
Lagrangian coherent structures (LCS) [22,48–59]. The alter-
native probabilistic approach calculates almost-invariant sets
via transfer operators to identify regions that interact mini-
mally with their surroundings [60–63]. The main difference
between the two approaches is that the FTLE is applicable to

detecting flow separation over short times, while the transfer
operator is more practical for detecting almost-invariant sets
over long times. For our work identifying structures in the
double-gyre flow, which is a periodic, nonautonomous flow,
we focus on detecting long-time structures since the time for
significant pollutant capture to occur in geophysical flows is
typically much longer than the period of the flow.

Rather than employing the transfer operator approach di-
rectly to detect flow structures, here we introduce a numerical
approach connecting the Lagrangian particle motion with the
Eulerian framework that combines aspects of the Poincaré
map with the Lyapunov exponent approach. The goal is to dif-
ferentiate nonchaotic and chaotic regions in space and time by
computing the separation between two tracer points initially
separated by a very small distance along the same instanta-
neous streamline of the velocity field. This information is then
used to distinguish nonchaotic regions from the chaotic sea
over the entire cycle of the flow over many periods. To do
this, we utilize the concept of the Lyapunov exponent, which
is a signature of chaos [29]. Specifically, given an initial point
m0 and a nearby point m0 + δ0 on the same instantaneous
streamline, where δ0 is infinitestimally small, the separation
between the two points is δn after n periods of the flow. If
|δn| ≈ |δ0|enλ, then the Lyapunov exponent λ is defined as

λ ≈ 1

n
ln

∣∣∣∣
δn

δ0

∣∣∣∣, (2)

where a positive Lyapunov exponent indicates a chaotic
trajectory. In our implementation, we pick an initial point
(x(0), y(0)), and then find a nearby point (x′(0), y′(0)) along
the same instantaneous streamline according to

x′(0) = x(0) + vx(x(0), y(0), t = 0)τ, (3a)

y′(0) = y(0) + vy(x(0), y(0), t = 0)τ, (3b)

where τ is many orders of magnitude less that the flow period.
Since the two points are on the same instantaneous streamline,
they fall on the same side of any instantaneous barrier to trans-
port. Then, the locations of the two tracer points (x(0), y(0))
and (x′(0), y′(0)) are determined at flow time t such that

(x(t ), y(t )) = 
t (x(0), y(0)), (4)

(x′(t ), y′(t )) = 
t (x′(0), y′(0)), (5)

where 
t is the time dependent flow map, in this case the
tracer position defined by the double-gyre velocity field of
Eq. (1), evaluated over time t . The separation between the two
initially close points after time t is

�(t ) =
√

(x(t ) − x′(t ))2 + (y(t ) − y′(t ))2. (6)

If (x(0), y(0)) is in a chaotic region, � grows with t so
its value is eventually on the order of the domain size; if
(x(0), y(0)) is in a nonchaotic region, � remains small. Here
we choose τ = 10−15, so that the maximum initial distance
between (x(0), y(0)) and (x′(0), y′(0)) is

√
2πAτ ≈ 2×10−15.

The calculation is insensitive to the exact value of τ , e.g.,
τ = 10−13 produces nearly identical results.

To demonstrate how � differentiates chaotic trajectories
from nonchaotic trajectories, Fig. 5 shows stroboscopic maps
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FIG. 5. Separation of two initially nearby points for three initial
conditions (x(0), y(0)): (a), (b) in the chaotic sea = (1, 0.5); (c),
(d) in an island = (0.55, 0.5); (e), (f) starting on a Cantorus =
(0.78, 0.5). (left column) pink (light gray) dots denote (x, y) and blue
(dark gray) dots denote (x′, y′) (see text). In (c) and (e), (x′, y′) data
are partially obscured by (x, y) data. ε = 0.05, t = 0, 1, 2, . . . , 1000.
The dashed line in (b), (e), and (f) indicates the threshold value
� = √

2 for determining if orbits enter the chaotic sea.

for three tracer point pairs starting at different initial positions
with ε = 0.05, where the chaotic sea and nonchaotic islands
have approximately equal areas [16]. Consider, first, a tracer
point at (x(0), y(0)) = (1, 0.5), which is in the chaotic sea at
t = 0 according to Fig. 2(b). Figure 5(a) plots (x(t ), y(t )) and
(x′(t ), y′(t )) for this initial position at each iteration, marked
by pink (light gray) and blue (dark gray) dots, respectively.
The map exhibits the characteristics of a point in the chaotic
sea, which can traverse the entire domain except inside the
nonchaotic islands. The small difference between the initial
locations of the two points leads to completely different tra-
jectories. Figure 5(b) shows the corresponding � after each
iteration, which is initially approximately 10−15, but eventu-
ally grows to nearly span the entire domain. The maximum
possible value for � is

√
5 ≈ 2.236, corresponding to the

distance between opposite corners of the domain.
Figures 5(c) and 5(d) show the results for a second example

with initial point (0.55, 0.5), which lies within the large island
on the left in Fig. 2(b). The trajectories of the initial point and
its nearby neighbor follow essentially the same trajectory. For
this initial condition, � remains small, reaching a maximum
of less than 10−11 after 1000 periods, as shown in Fig. 5(d),
consistent with a point within a nonchaotic KAM island, since
KAM tori act as absolute transport barriers [38,64–66]. In
fact, the very small value of � in this case indicates that the
initial particle and its nearby neighbor remain very close to
one another over 1000 periods as they traverse an approxi-
mately circular path near the center of the nonchaotic region
together.

Last, Fig. 5(e) shows an intermediate case (x(0), y(0)) =
(0.78, 0.5) for a tracer point that is initially on a Cantorus

located on the edge of the left large nonchaotic island and
chaotic sea in Fig. 2(b). The stroboscopic map for (x(0), y(0))
shows that the point remains in the vicinity of the Cantorus
at first, but then meanders further from it as t approaches
1000. The plot of � for this case [Fig. 5(f)] indicates that the
trajectory is chaotic in that it exhibits exponential separation
for t < 500. At longer times, the separation is slowed due
to the fractal structure of the Cantorus [36,38,67,68] which
temporarily blocks the point from reaching the chaotic sea.
At longer times, the tracer eventually escapes into the greater
chaotic sea (t ≈ 1200 for this example).

Based on these examples, it is evident that the value of
� can be used as an indicator of the nature of the flow. The
nonchaotic islands are constrained to be within either the left
or right halves of the domain, and the chaotic interaction
between the two gyres occurs around x = 1. As a result, for
particles starting in nonchaotic islands, the maximum value
for � cannot exceed the length of the diagonal of one square,
i.e.,

√
2. On the other hand, particles starting in the chaotic

sea explore the entire domain and reach a maximum � larger
than

√
2 within 1000 periods. Therefore,

√
2 is used as the

threshold that defines which points are in the chaotic sea and
which are in the nonchaotic islands. We remark that reaching
this threshold can be time dependent, which is especially
important when considering either very short times or the
behavior of chaotic points bounded by KAM islands and
Cantori.

This method to distinguish whether the trajectory of a
tracer particle is chaotic or nonchaotic can be used to classify
any point in the flow at a given phase as either being in
the chaotic region or in a nonmixing island. Specifically, we
introduce a general numerical algorithm (not specific to the
double-gyre flow) for identifying those structures while simul-
taneously determining regions of the domain that the tracer
particles visit over many periods of the flow. Algorithm 1
is based on seeding tracer particles (points) throughout the
domain and determining the maximum separation �max for
each tracer trajectory.

Algorithm 1: Determining chaotic trajectories and F

Data: ω, ε, A, tmax, �t << 1, Mbox

Result: average chaotic fraction F
Initialize (xi(0), yi(0)) for Ntr tracer particles
Divide the domain into Mbox equal boxes;
for i = 1 : Ntr do

Find nearby point (x′
i (0), y′

i(0)) by Eq. (3);
Calculate the trajectory of (xi(t ), yi(t )) and
(x′

i (t ), y′
i(t )) for each �t for 0 � t � tmax by

Eqs. (4) (5);
Use Eq. (6) to determine �max

i ;
if �max

i >
√

2 then
tra ji = chaotic;

else
tra ji = nonchaotic;

for each �t do
Determine the fraction Fj of particles with

chaotic trajectories in each box j;
return F j by averaging Fj at all timesteps
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FIG. 6. Tracer particle locations at (a) t = 0 for particles
with nonchaotic (�max <

√
2) trajectories; (b) t = 0 for particles

with chaotic (�max >
√

2) trajectories; (c) t = 0.25 for particles
with nonchaotic (�max <

√
2) trajectories; and (d) t = 0.25 for par-

ticles with chaotic (�max >
√

2) trajectories. Rectangle indicates
expanded region in right column. Tracers are initially positioned on
a uniform Ntr = 500×1000 grid. ε = 0.05, t = 1000.

Figure 6 shows the sets of initial particle locations
for which �max <

√
2 (particles with nonchaotic trajecto-

ries) or �max >
√

2 (particles with chaotic trajectories). The
result of this step (the first loop in Algorithm 1) indicates
whether a particle starts in one of the nonchaotic islands
[blue (dark gray)] or the chaotic sea [red (light gray)] at
t = 0 in Figs. 6(a) and 6(b). The slight differences between
the two sets, which are complements to one another, result
from the finite size of the data symbols used in the plot.
To clarify the details of small islands, the second column
of Fig. 6 shows magnified views of the boxed regions in
the first column. Figures 6(c) and 6(d) show the location of
nonchaotic or chaotic particles at a different time t = 0.25,
which illustrates the movement of the islands and changes in
the boundary between the nonchaotic islands and the chaotic
sea.

The field F indicates the average fraction of chaotic tracer
particles at locations (boxes) across the entire flow domain.
There are three different regions that can be identified in the
flow, shown in Fig. 7:

(1) Nonchaotic region: F = 0, all trajectories that transit
this region are nonchaotic.
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Mixed chaotic/nonchaotic 

FIG. 7. Average chaotic fraction F on a Mbox = 100×200 square
tiling with time step �t = 0.005. ε = 0.05, tmax = 1000.

(2) Chaotic region: F = 1, all trajectories that transit this
region are chaotic.

(3) Mixed chaotic-nonchaotic regions: 0 < F < 1, both
chaotic and nonchaotic trajectories transit this region.

The value of F throughout the flow domain in Fig. 7
displays the regions evident in Fig. 2(c), a ringlike structure
surrounding each large nonchaotic region, except that F rep-
resents an Eulerian viewpoint based on the types of particles
passing a particular location in the flow. The red (light gray)
region is always chaotic, and the blue (dark gray) region is
always nonchaotic. Particles passing through mixed regions
of the flow may be either nonchaotic or chaotic, depending on
the phase in the period of the flow. The coloring represents
the fraction of particles passing that point in the flow that are
chaotic.

Note that the number of initial particles Ntr and the number
of boxes Mbox covering the flow domain can be varied as
needed to account for computational constraints and reso-
lution requirements. The slight blurring of the structures in
Fig. 7 is due to the finite grid resolution with which it was gen-
erated (100×200); sharper structural details can be revealed
by using finer grid resolution. Furthermore, the value of 1/�t
is equivalent to the increment in the phase θ , and it is neces-
sary to choose �t small enough to resolve the continuously
varying locations of the mixed chaotic-nonchaotic regions
associated with the positions of the small islands evident in
Fig. 2(c).

V. FLOW CONDITIONS AND CAPTURE CAPABILITY

The flow regions shown in Fig. 7 can explain most features
of the capture capability C visible in Fig. 4. The highest C
value regions in Fig. 4 (lightest) occur near the periphery of
the gyres (not in the fully chaotic region) and correspond to
the mixed chaotic-nonchaotic regions surrounding the non-
chaotic cores in Fig. 7 for which a capture unit can remove
all pollutant particles from the chaotic sea as well as a signif-
icant amount of particles from the central nonchaotic islands.
There is also a slight increase in C corresponding to the outer
rings labeled “mixed” in Fig. 7 due to the additional particles
captured there from the two small satellite islands, although
it is not evident in Fig. 4 as the fraction of particles in the
two small islands is quite small. Just inward from the highest
capture regions in Fig. 4, C decreases rapidly [orange (dark
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FIG. 8. Flow and capture characteristics (rows) for ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 (columns). Row 1: Poincaré maps at θ = 0. Row 2:
Average chaotic fraction, F . Row 3: Capture capability, C(t = 1000). Color bars for rows 2 and 3 correspond to those in Figs. 7 and 4,
respectively. Maximum C within each unit and Cunit (t = 1000) are given in Table I.

gray) and black regions], which corresponds to the always
nonchaotic regions in Fig. 7. A capture unit in the mixed
chaotic-nonchaotic region (lightest) will most effectively
capture particles, while a capture unit in the fully nonchaotic
region (darkest) will be the least effective.

The value of C, which is evaluated over a fine grid, can
also be related to the capture capability of a capture unit that
spans a finite area such as the circular capture unit in Fig. 3.
However, it is important to note that length scales become
important here. Returning to our original motivation for this
research, that of carbon capture from the atmosphere, the flow
domain of interest would likely be a large region and the
length scale of structures in the flow would likely be much
larger than the scale of any reasonably sized capture unit. In
this case, analysis based on a fine grid like that in Fig. 4 would
be appropriate, since the capture unit would represent a mere
single point in the flow domain (or a box in our analysis).
On the other hand, it is also reasonable to think in terms of
an array or line of capture units (analogous to a wind turbine
farm for power generation). In this case the length scale of
the array of capture units could be on the scale of structures
in the flow field. Thus, we consider finite area capture units
like that in Fig. 3. Not only does this allow us to account for a
local group of capture units, it also allows us to consider more
deeply the underlying relation between the flow field and the
capture capability to elucidate some of the underlying issues
related to capture unit placement and effectiveness.

We specifically consider circular capture units to avoid is-
sues related to the orientation of the capture unit. For instance,
if we considered a linear array of capture units, the orientation
of the array with respect to the predominant flow direction
would be critical with respect to the capture capability, an
aspect we consider in a later section. Using a circular capture
unit avoids this issue. Nevertheless, for the circular capture
unit with diameter δ = 0.1 in Fig. 3, its periphery can be
approximated by a set of adjacent grids boxes used to compute
C. A lower bound on the capture capability for the circular
unit is the maximum C for any of the grids boxes within its
periphery since the particles captured by any small box must
also enter the large circular unit. In Fig. 3 the maximum C for
all grids boxes within the circular capture unit at (1, 0.5) is
69%, and the capture capability for the circular unit itself is
69%.

With this background we now consider how the nature of
the flow affects the chaotic fraction F and capture capability
C. The flow structure is varied by considering different values
of the flow parameter, ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, as
shown in the columns of Fig. 8. Rows in Fig. 8 display the
following: the first row shows the Poincaré maps; the second
row shows F ; the third row plots C.

Consider the second column in Fig. 8 for ε = 0.05, which
corresponds to the conditions in Figs. 2(b) and 2(c), 4, and 7,
in which there are two large nonmixing islands plus four
smaller islands, two of which circulate around each of the
larger islands (first row). As a result, there are two large
regions where all trajectories are nonchaotic surrounded by
a chaotic-nonchaotic ring (second row). The capture capabil-
ity is optimal at the edge of the large nonchaotic cells, and
the remainder of the domain is chaotic with a slightly lower
capture capability (third row).

Superimposed on the second and third rows are three
circular capture units (δ = 0.1) at (0.6, 0.5), (0.8, 0.5) and
(1, 0.5). By comparing the value of F and the ultimate capture
capability C at these different locations, the interaction of a
capture unit with the flow structures can be visualized and
explained. For ε = 0.05, a single capture unit centered at
(0.6, 0.5), which is entirely within the left nonchaotic region,
captures only a portion of the nonchaotic particles initially
located in the island. On the other hand, a capture unit at
(0.8, 0.5), which intersects all three region types (nonchaotic,
chaotic-nonchaotic, and chaotic), captures a part of the non-
chaotic particles initially in the island as well as all chaotic
particles. The capture unit at (1, 0.5), which is entirely in the
chaotic region, captures only chaotic particles. Because the
unit at (0.8, 0.5) should capture all of the chaotic particles
and some nonchaotic particles from the left gyre ultimately,
the maximum value of C within the unit is larger than units
(0.6, 0.5) and (1, 0.5), where unit (0.6, 0.5) captures the least.
In fact, the maximum C for any of the grid boxes within the
capture unit circle is 5% for the (0.6, 0.5) unit, 68% for the
(0.8, 0.5), and 69% for the (1, 0.5) unit, compared to values
for the entire unit, denoted as Cunit (t = 1000), of 6%, 75%,
and 69%, respectively (see Table I).

Consider now the capture process for other values of ε.
For ε = 0.01 (first column in Fig. 8), most of the domain
is nonchaotic as evident from the Poincaré map in the first
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TABLE I. Maximum C within each unit, Cunit at t = 1000, and
corresponding line styles in Figs. 10 and 11.

Unit ε Max C Cunit Line style Fig.

(0.6,0.5) 0.01 2% 4% 10(a)
0.05 5% 6% 10(a)
0.1 25% 27% 10(c), 11(c)
0.15 7% 15% 10(c), 11(c)
0.2 40% 76% 10(c), 11(c)
0.25 100% 100% 10(b), 11(b)

(0.8,0.5) 0.01 4% 13% 10(a)
0.05 68% 75% 10(c), 11(c)
0.1 91% 91% 10(b), 11(b)
0.15 89% 89% 10(b), 11(b)
0.2 90% 90% 10(b), 11(b)
0.25 100% 100% 10(b), 11(b)

(1,0.5) 0.01 23% 28% 10(c), 11(a)
0.05 69% 69% 10(b), 11(a,b)
0.1 91% 91% 10(b), 11(a,b)
0.15 89% 89% 10(b), 11(a,b)
0.2 90% 90% 10(b), 11(a,b)
0.25 100% 100% 10(b), 11(a,b)

row, with two large islands. The resulting average chaotic
fraction F in the second row is small over much of the do-
main as a result. The capture capability C is low even in
the chaotic region and small mixed chaotic-nonchaotic region
surrounding the nonchaotic regions (third row) because most
tracer particles remain in the large nonchaotic islands and few
are in the chaotic sea. Two capture unit locations, (0.6, 0.5)
and (0.8, 0.5), are fully within the nonchaotic region and
can capture only nonchaotic particles. The unit at (1, 0.5) is
primarily in the chaotic region, but it also covers a bit of
the mixed chaotic-nonchaotic region, so it captures chaotic
particles as well as a small part of nonchaotic particles. But
because the chaotic region is relatively small for ε = 0.01, the
unit captures far fewer particles overall than occurs for other
values of ε corresponding to larger chaotic regions in the first
row (see Table I).

When ε = 0.1 (third column in Fig. 8), three small islands
surround each of the large islands, but the large islands are
smaller compared to those at smaller ε, thereby increasing the
region with a high chaotic fraction (second row) and resulting
in a high capture capability (third row) throughout much of
the domain. The (0.6, 0.5) unit is entirely within the mixed
chaotic-nonchaotic region of the left gyre, so it captures non-
chaotic particles in the left gyre as well as all chaotic particles.
However, the value of C is not the highest of the three units
since it takes longer than 1000 periods for the (0.6, 0.5) unit
to capture all chaotic particles. Units at (0.8, 0.5) and (1, 0.5)
are both located in the chaotic region, and capture similar
quantities of chaotic particles (see Table I).

When ε = 0.15, the small islands disappear, the two large
islands become larger than for ε = 0.1, and the total area of
chaotic sea decreases slightly. This is reflected in the value of
C being slightly lower in the chaotic region than for ε = 0.1.
The (0.6, 0.5) unit overlaps both the nonchaotic region and
the mixed chaotic-nonchaotic region, but captures far fewer
points than the units in the chaotic region over 1000 periods

of the flow (see Table I). For much of the area corresponding
to the mixed chaotic-nonchaotic region in the second row, it is
evident in the third row that the value of C is higher than that
in the chaotic region.

For ε = 0.2, there are still two nonchaotic islands but their
shapes result in the mixed chaotic-nonchaotic region increas-
ing in size so that the region with high C also increases in size.
Unlike the ε = 0.15 case, the (0.6, 0.5) unit captures a signif-
icant fraction of particles even though it overlaps nonchaotic
and mixed chaotic-nonchaotic regions (see Table I). The other
two capture unit locations still capture more chaotic particles,
similar to the ε = 0.15 case.

Finally, when ε = 0.25, the entire region is chaotic, so the
capture capability C over the entire domain can reach 1, and
the capture capability for all three units is the same.

Considering the entirety of Fig. 8, the overall capture capa-
bility depends primarily on the location of the capture unit
relative to the chaotic and nonchaotic regions of the flow.
However, the capture capability also depends on the nature
of the underlying flow, noting that C varies substantially with
ε for the capture unit at (1, 0.5).

VI. TIME DEPENDENCE OF CAPTURE

The number of particles captured by a unit also depends on
time. To consider this, we plot the initial positions of particles
captured between 0–101, 101–102, 102–103, and 103–104 flow
periods by capture units at the three different locations in the
first three rows of Fig. 9 (similar to Fig. 3). The differences
are striking. Capture units at (0.6, 0.5) in the first row are
far less efficient, requiring 102 to 104 periods to capture par-
ticles in the chaotic region, than capture units at (0.8, 0.5)
and (1, 0.5) in the second and third rows, which require less
than 102 periods. Likewise, flow conditions associated with
large nonchaotic regions at low values of ε are ineffective
because few particles can be extracted from the flow (large
white areas).

To further consider the time dependence of capture, it
is helpful to categorize the capture in terms of the average
chaotic fraction, F (row 2 of Fig. 8). Recall that a capture
unit can be placed in the nonchaotic region, where only parti-
cles with nonchaotic trajectories can be captured, the mixed
chaotic-nonchaotic region, where particles with nonchaotic
and chaotic trajectories can be captured, or the chaotic region,
where only particles with chaotic trajectories can be captured.
To quantify the effectiveness of capture units in different
locations we consider the fraction of particles in the domain
captured by a capture unit as a function of time, Cunit (t ), and
organize the results into three groups in Fig. 10 according
to the average value of F within the capture unit, denoted
as F unit: (a) nonchaotic regions (F unit < 1%), (b) chaotic
regions (F unit > 99%), and (c) mixed chaotic-nonchaotic re-
gions (1% < F unit < 99%). Note that the chaotic sea may
contain a number of very small islands [31], so F unit < 1. The
three groups of outlined boxes in the first three rows of Fig. 9
correspond to the three conditions categorized in Fig. 10. With
this categorization, the interaction of a capture unit with the
flow structures at different timescales visualized in Fig. 9 can
be be connected to the differences in the time dependence of
capture fractions for different units in Fig. 10.
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FIG. 9. Capture times for initial positions of tracer particles (on a 100×200 grid) by unit at (0.6, 0.5) (row 1), (0.8, 0.5) (row 2) and
(1, 0.5) (row 3). Box outlines in rows 1–3 indicate capture units in: nonchaotic regions (solid blue), mixed chaotic-nonchaotic regions (dashed
magenta), and chaotic regions (long-short dashed red), corresponding to the three categories in Fig. 10. Row 4: Average separation rate κ

determined by dividing the domain into 100×200 boxes and calculating the separation rate for trajectories of tracer particles with initial
positions on a 100×200 grid through each box location for ten periods using a time step �t = 0.005.

For units entirely in nonchaotic regions [Fig. 10(a)],
the capture fraction Cunit (t ) increases nearly linearly in the
first few periods (see below) and then saturates. The three
cases can capture only nonchaotic particles, and they do so
quickly within the first ten periods (Fig. 9). For ε = 0.01,
the (0.8, 0.5) unit captures particles more rapidly than the
(0.6, 0.5) unit as it is further from the center of the gyre and
captures the particles in a larger diameter annular region, as
shown in Fig. 9. Although the (0.6, 0.5) unit is fully within
the nonchaotic region for both ε = 0.01 and ε = 0.05, slightly
more particles are captured at ε = 0.05 because the slight
side-to-side movement of the large gyre brings more particles
to the capture unit.

For units entirely in the chaotic region [Fig. 10(b)], nearly
all conditions reach a plateau within about 100 periods after
capturing the majority of particles in the chaotic sea. This is
also evident in the boxes outlined in long-short dashes (red
online) in Fig. 9, where in nearly all cases particles through-

out the chaotic region are captured in 100 periods or fewer.
At ε = 0.25, the plateau of Cunit (t ) in Fig. 10(b) reaches 1
since the entire domain is chaotic. An interesting result is that
although the unit at (0.6, 0.5) with ε = 0.25 is in the chaotic
sea, it is much slower in capturing particles than all the other
cases where the capture unit is in the chaotic sea [evident in
Fig. 10(b) and the upper right of Fig. 9]. It seems that even
though no large nonchaotic regions are present, this location,
which is in a location corresponding to that of nonchaotic
regions at lower values of ε, is much slower in capturing
particles than locations farther from nonchaotic regions at
lower ε. The cases with ε = 0.1, 0.15 and 0.2 have a similar
plateau around 0.9 in Fig. 10(b) even with different shapes
of nonchaotic islands evident in the Poincaré maps in Fig. 8.
However, for ε = 0.1, the plateau is slightly higher because of
the larger area of the chaotic sea. For different units with the
same ε, the (0.8, 0.5) unit captures particles more slowly than
the (1, 0.5) unit, but still reaches the same asymptotic value,

FIG. 10. Capture fraction for a circular unit, Cunit (t ), at different ε and unit locations. (a) Units in nonchaotic regions (F unit < 1%). (b) Units
in chaotic region (F unit > 99%). (c) Units in mixed chaotic-nonchaotic regions (1% < F unit < 99%). Line colors (gray scale intensities)
correspond to different values of ε, and line styles correspond to different unit locations as given in Table I.
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FIG. 11. (a) Capture fraction Cunit (t ) for circular unit at (1, 0.5) with different ε at short times. Inset: Slope α (fitted over the first five
periods) averaged over six ε values for three units at (0.6, 0.5), (0.8, 0.5) and (1, 0.5), from lower left to upper right, vs time-averaged flux
junit into each unit. Error bars indicate minimum and maximum values for six distinct ε. Normalized capture fraction ln[1 − C̃unit (t )] vs time t
for units in (b) chaotic region and (c) mixed chaotic-nonchaotic regions. Here C̃unit (t ) = Cunit (t )/Cmax, where Cmax = Cunit (t = 104) for chaotic
region and Cmax = Cunit (t = 105) for mixed chaotic-nonchaotic regions. Line colors (gray scale intensities) correspond to different ε, and line
styles correspond to different unit locations as indicated in Table I.

as shown in Fig. 10(b). This occurs because the flux passing
the perimeter of the unit is higher for the (1, 0.5) unit than for
the (0.8, 0.5) unit due to its location in the flow, as will be
shown shortly. A noticeable exception in Fig. 10(b) is the case
with ε = 0.05 and unit (1, 0.5), where the value of Cunit (t ) is
much smaller than for the other condition after 100 periods
and still slowly increasing (note particles captured between
103 and 104 periods in Fig. 9). The lower value is simply due
to the smaller chaotic region for ε = 0.05 (evident in Fig. 9).
More interestingly, the slow increase in Cunit (t ) is due to the
Cantori regions that surround both large nonchaotic islands,
resulting in a slow leakage of particles around the edge of the
nonchaotic islands into the chaotic sea.

For units in the mixed chaotic-nonchaotic regions shown
in Fig. 10(c), there is an initial capture interval (about ten
periods) in which particles from the nonchaotic regions are
captured, followed by slow capture of all the particles from the
chaotic sea (see boxes outlined in dashed magenta in Fig. 9).
Note that the case with ε = 0.01 and the unit at (1, 0.5) is an
exception, as it is mostly located in the chaotic region, and
captures all chaotic particles in a short time as well as some
nonchaotic particles. However, the overall capture capability
for this unit is small because the area of the chaotic sea
is small (Fig. 9). For all units in mixed chaotic-nonchaotic
regions, capture of particles from the chaotic sea is ten to
100 times slower than for capture units always in chaotic
regions [comparing Fig. 10(c) to Fig. 10(b)] due to the inter-
mittent exposure of the unit to the chaotic flow (i.e., F < 1).
Units with the same ε in the mixed chaotic-nonchaotic region
eventually capture more particles than units in the chaotic
region, but take longer to do so. For example, the (0.6, 0.5)
unit captures more particles than the (0.8, 0.5) and (1, 0.5)
units when ε = 0.1, 0.15 or 0.2, evident as higher plateaus in
Fig. 10(c) than in Fig. 10(b).

The temporal aspects of the capture process are character-
ized by three timescales. In the first, which occurs at short
times, advection dominates and Cunit (t ) initially grows lin-
early as illustrated in Fig. 11(a) for a unit at (1, 0.5) for
all six values of ε. For the first five periods, the curves are
nearly identical with similar slope α, while for longer times,

the ε = 0.01 curve is nearly flat and the curves for other
values of ε increase slower than initially, consistent with a
second timescale in the flow. The duration of the linear capture
regime is simply the time for a particle trajectory to complete
an approximate orbit at the location of the capture unit. At
the limit ε = 0, all tracer particles that can be captured are
captured in the first orbit. Similarly, we can determine α

for units at (0.6, 0.5) and (0.8, 0.5). The slope of Cunit (t )
for small t , α can be related to the time-averaged positive
flux of the flow passing the perimeter of the unit, denoted
as junit = 1

Nθ

∑Nθ

j=1

∑N
i=1(�v · �n)i, j , where �v is the velocity at

the perimeter of the unit, Nθ indicates the number of different
phases within one period, and N indicates different locations
along the perimeter. Here we use 200 phases with a time
step �t = 0.005 and 200 uniform locations along the unit
perimeter. The normal vector �n points toward the center of
the unit, and we consider only regions with �v · �n > 0, i.e.,
inflows. The inset in Fig. 11(a) shows the relationship between
α and junit for the three capture unit locations. The data for
junit are the average over six values of ε, and the error bar
indicates the maximum and minimum value of the six cases.
It is clear that α depends linearly on junit, and that the flux into
a unit largely determines the capture rate during the first few
periods.

The second timescale characterizes particles captured from
the chaotic sea and is reflected in the slower increase in Cunit (t )
evident in Fig. 11(a) after the first few periods. Due to the er-
godic nature of chaotic mixing [46,69–72], Cunit (t ) should be
exponential in time, i.e., Cunit (t ) = Cmax(1 − e−t/τ ) or ln[1 −
C̃unit (t )] = −t/τ , where τ is the second timescale, which
depends on the flow conditions, and C̃unit (t ) = Cunit (t )/Cmax.
Figure 11(b) plots ln[1 − C̃unit (t )] vs t , which shows a linear
regime for all the curves. For ε = 0.25, the linear regime
extends to the plateau where Cunit (t ) asymptotes in Fig. 10(b).
However, for smaller ε where there are still nonchaotic re-
gions, the curves flatten at about 200 periods as most of the
particles in the chaotic region are captured after which there
is a slow accumulation of additional particles, evident by a
deviation from a linear relation, that is associated with slow
leakage from the Cantori regions. Therefore to determine τ ,
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FIG. 12. Separation time ts when particle pair separation � first
exceeds

√
2 for tracer particles with initial positions on a 100×200

grid. (a) ε = 0.1 (b) ε = 0.2. White indicates particles for which
� <

√
2 after 1000 flow periods.

we fit the linear portion of ln[1 − C̃unit (t )] vs time, which
occurs after the initial advection dominated regime, and be-
fore the later and slower regime associated with capture of
particles escaping from the Cantori regions.

For units in the mixed chaotic-nonchaotic region, the nor-
malized capture fraction ln[1 − C̃unit (t ) vs t is shown in
Fig. 11(c). Clearly, the slope τ is much lower than that for
units in the chaotic region. Here we exclude the case with
ε = 0.01 at unit (1, 0.5), as it is included in Fig. 11(a) and
its chaotic region is relatively small compared to the area of
the unit (second row of Fig. 8). Therefore it captures chaotic
particles quickly but in the advection dominated regime.

At this point, it is useful to explore the factors that influence
the chaotic capture rate and the slope τ . Recall that the value
of F unit determines the ultimate capture capability. Consider
two cases in Fig. 11(c) at unit (0.6, 0.5) with ε = 0.1 and
0.2. In row 2 of Fig. 8, the value of F for this unit is greater
at ε = 0.1 than at ε = 0.2, which is centered over a small,
mostly nonchaotic region. However, Fig. 11(c) shows that τ is
larger for the ε = 0.2 case, indicating that it captures chaotic
particles more quickly than for ε = 0.1.

One explanation for this discrepancy could be that particle
trajectories become chaotic faster [using our separation-based
definition, Eq. (6)] for some values of ε than for others,
keeping in mind that F is based on 1000 periods, a relatively
long time given the timescales evident in Figs. 9 and 10 for
some cases. To determine when particle trajectories become
chaotic, we calculate the time ts when the separation � first
exceeds

√
2 for each initial particle location using a uniform

seeding of particles. The result is shown in Fig. 12 for ε = 0.1

FIG. 13. Characteristic capture time τ vs average separation rate
κunit for units in mixed chaotic-nonchaotic regions and chaotic region
corresponding to Figs. 11(b), 11(c). Circle, triangle, and star symbols
represent units at (0.6, 0.5), (0.8, 0.5), (1, 0.5), respectively. Colors
(gray scale intensities) for different ε are the same as Fig. 11.

and ε = 0.2. Particles that separate quickly are darker, while
particles for which � remains less than

√
2 for 1000 periods

are white. It is evident that the chaotic particles around the
islands for ε = 0.1 take much longer to separate than any of
the chaotic particles for ε = 0.2. Even away from the islands
ts is slightly longer for ε = 0.1 than for ε = 0.2. Thus, even
though the value of F , which is calculated at 1000 periods, is
high at a particular location, it is still possible that the chaotic
capture rate is lower than at other locations with similar values
of F .

Extending this idea, we define the separation rate, κ = 1/ts.
To characterize the typical separation rate for tracer particles
at locations across the domain, we divide the domain into
a grid of boxes and determine the average separation rate κ

for trajectories passing through each box over several periods
(ten in this case). We consider only a short time to minimize
the influence of initially distant chaotic particles with short
separation times. This is similar to the method for calculating
F , except that instead of determining the fraction of chaotic
trajectories passing through the box, we calculate the average
separation rate of trajectories passing through the box, noting
that nonchaotic trajectories after 1000 periods are assigned the
separation rate of κ = 0.001, which overestimates the local κ

values. Local κ values for various ε are shown in row 4 of
Fig. 9. When κ is small, particles passing the corresponding
region take longer to become chaotic.

The capture rate of a unit is also related to the flux of
particles into the capture unit, which is related to the ve-
locity field. To determine the separation rate for a circular
unit, we consider the combined effect of average separation
rate and flux, κ (�v · �n), for boxes along the perimeter of the
unit, where we again consider only positive fluxes (into the
unit). To account for the variation of velocity field over one
period, we calculate the time-average separation rate for a unit
as κunit = 1

Nθ

∑Nθ

j=1

∑N
i=1 κ i(�v · �n)i, j , similar to the way junit

is calculated. The relationship between the chaotic capture
slope τ and the average separation rate κunit is revealed in
Fig. 13. For units in the mixed chaotic-nonchaotic region, the
relationship between τ and κunit is monotonic and increasing,
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which confirms that the chaotic capture rate is related to both
the separation time of particles entering the unit and the flux of
those particles into the unit. For units in the chaotic region, the
relationship is also monotonic for the same unit with different
values of ε.

The third timescale characterizing particle capture is ev-
ident for cases in Figs. 10(b) and 10(c) that do not reach a
horizontal plateau at large times after the exponential increase
of capture fraction Cunit . In this regime, there is a slow increase
in Cunit as particles slowly cross the fractal mixing barriers
of the Cantori bounded regions. Although characterizing this
timescale is beyond the scope of this paper, we note that
the relative area of Cantori regions or regions bounded by
Cantori and nonmixing regions is small. Consequently, there
is relatively little change in the capture fraction even after
the relatively long times associated with escape from Cantori
regions (as well as into Cantori bounded regions for capture
units located within them).

VII. CONCLUSIONS

Given the significance of removing pollutants such as CO2

from the atmosphere or debris from the ocean, the motivation
of this research is to explore how the chaotic nature of geo-
physical flows can affect the removal of pollutants. This study
of the double-gyre flow provides context for how to predict
the effectiveness of a capture unit at an arbitrary location in a
real geophysical flow, extending the work of Smith et al. [16]
on the flow capture problem by linking the spatial variation of
capture efficiency to mean locations of chaotic and nonchaotic
regions in the flow. The novelty of this study is in intro-
ducing a numerical approach to characterize transport in the
dynamical system and connecting it with the effectiveness of a
capture unit. While a Poincaré map is useful for demonstrating
the dynamical properties of a flow, it reveals flow character-
istics only at a single phase. In considering the efficacy of a
capture unit at a specific location in a flow, it is necessary to
consider the local flow conditions at different phases during
the flow cycle. By tracing chaotic and nonchaotic trajecto-
ries and calculating the average fraction of chaotic particles
F throughout the domain for all phases, we identify three
different regions in the flow: nonchaotic, chaotic, and mixed
chaotic-nonchaotic. Therefore the study of the efficiency of
an Eulerian capture unit depends on the characteristics of the
behavior of passive scalars in the Lagrangian frame.

Based on the relation of the capture capability to the local
flow structures averaged over a flow period, it is evident that
a capture unit in a mixed chaotic-nonchaotic region is most
effective, as it can capture all of the chaotic particles and

some of the nonchaotic particles. However, since it is not
always in the chaotic region, it takes longer to capture the
chaotic particles than a unit always in the chaotic region.
Thus, the capture timescale is another factor that influences
the overall capture capability, especially for capture units in
mixed chaotic-nonchaotic regions.

For units in mixed chaotic-nonchaotic or chaotic regions,
the capture occurring while the unit is exposed to chaotic
flow is the most critical for determining the capture rate and
efficiency of a unit. However, the separation time for chaotic
particles and the flux through the perimeter of a capture unit
are also both influential factors.

Of course, actual geophysical flows differ from the double-
gyre flow model used here [Eq. (1)] in that they are not
time periodic and they are three-dimensional, both of which
can weaken or destroy the invariant surfaces bounding the
KAM islands. That said, geophysical flows often consist of
transporting vortices as well as time-varying chaotic and
nonchaotic regions, just like the double-gyre flow model.
Furthermore, at large scales, geophysical flows are often ap-
proximated as two-dimensional flows, as the vertical extent
of the domain is negligible compared with the surface extent.
Thus, the approaches developed here are pertinent to real
geophysical flows, and, in fact, could be readily adapted to
fully three-dimensional flows.

Although this research provides insights into where to site
a single unit for optimal capture capability in a model chaotic
flow, the double-gyre flow, the complexity of the broader
problem suggests that further research is needed. As Smith
et al. [16] mentions, it would be worthwhile to consider mul-
tiple capture units and how to site them for optimal capture
efficiency of the group. Another option is to consider moving
capture units, as would be appropriate for removing plastic
debris from the ocean or cleaning up oil spills. Other factors
such as the effects of particle diffusion could be taken into
consideration [73–75]. Furthermore, it is possible to consider
localized time dependent sources of tracer particles rather than
the uniform initial distribution considered here. In addition,
active capture units (for example, the recently opened Orca
plant in Iceland for carbon capture) can have high input and
output fluxes that alter the local velocity field. How these
natural and man-made features affect the interaction between
the flow field, the pollutant source(s), and the capture unit(s)
suggests several avenues for future work.
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