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Enhancing the performance of an open quantum battery via environment engineering
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We investigate the charging process of open quantum battery in the weak system-environment coupling
regime. A method to improve the performance of open quantum battery in a reservoir environment, which
described by a band-gap environment model or a two-Lorentzian environment model, is proposed by manip-
ulating the spectral density of environment. We find that the optimal quantum battery, characterized by fast
charging time and large ergotropy, in the band-gap environment can be obtained by increasing the weights of two
Lorentzians and the spectral width of the second Lorentzian, which is in sharp contrast to the quantum battery
in two-Lorentzian environment. Then we extend our discussion to multiple coupled reservoir environments,
which are composed of N coupled dissipative cavities. We show that, the performance of quantum battery can
be enhanced by increasing the coupling strength between the nearest-neighbor environments and decreasing the
size of the environments. In particular, to fully charge and extract the total stored energy as work for quantum
battery can be achieved by manipulating the coupling strength between the nearest-neighbor environments. Our
results provide a practical approach for the realization of the optimal quantum batteries in future experiments.
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I. INTRODUCTION

In recent years, with the development of quantum technol-
ogy promoted by the potential power of quantum mechanics
[1–12], quantum effects have been considered by people
to realize the miniaturization of technology, which opens
up new prospects for sensing [13–16], computing [17], and
other quantum technologies [18,19]. As an important part of
the research on technology miniaturization of nanodevices,
quantum batteries play an important role on the quantum
level [20–23]. Compared with classical batteries, the charg-
ing power of a quantum battery can be greatly improved by
using collective quantum resources. Therefore, people have
conducted extensive research on quantum batteries [24,25],
especially how to use quantum resources to obtain the opti-
mal quantum battery [26–28] that not only has high charging
efficiency but also can transfer the stored energy to the con-
sumption center to the greatest extent.

In the beginning, many researchers regard quantum bat-
tery as a closed system [29–31], that is, the charger and
the quantum battery are not influenced by the environment.
For example, by using closed Dicke quantum battery and
closed Rabi quantum battery as examples [29], the quantum
advantage of the charge power of Dicke quantum battery is
demonstrated. Then for a two-photon closed Dicke quantum
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battery, the authors showed that the two-photon coupling leads
to better performances both in the charging times and aver-
age charging power of the quantum battery compared to the
single-photon case [30]. Closed quantum battery consisting
of an ensemble of two-level atoms has also been investigated
[31]. It has been found that noninteracting atoms can be fully
charged by a harmonic charging field. Furthermore, charging a
closed quantum system composed of N independent two-level
atoms through a time dependent classical resource has been
reported. The above studies focus on how to charge the closed
quantum battery faster so as to obtain the optimal quantum
battery.

Because the actual systems interact with the environment
[32], it is very important to study open quantum batteries
[33–40]. Recently, a number of studies [41–44] have shown
that, with proper design, the negative effects of the envi-
ronment on the performance of the quantum batteries can
be greatly reduced. In certain cases, environment can even
help to improve the performance of the quantum battery. For
instance, the authors introduce an open quantum battery pro-
tocol using dark states to achieve both superextensive capacity
and power density, with noninteracting spins coupled to a
reservoir [24]. Salimi et al. [44,45] has shown the strong
system-environment couplings can enhance the charging per-
formance of quantum battery. However, in most cases, the
coupling between the system and the environment is very
weak, which causes the charging performance of the quan-
tum battery to be greatly reduced. Therefore, in the weak
system-environment coupling regime, how to improve the
performance of quantum battery is an important problem.
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In this paper, we study the charging process of the
quantum battery in the weak system-environment coupling
regime. We first consider the band-gap environment model
and two-Lorentzian environment model. Currently, these two
environmental models can be implemented experimentally.
More specifically, the band-gap environment model can be
realized by a two-level atom embedded in a photonic crystal
cavity with the periodic dielectric structures forming photonic
band gaps [46,47]. Two noise environmental sources faced
by a single nitrogen-vacancy (NV) spin can be modeled as
a two-Lorentzian environment [48]. Based on these actual
physical scenarios, it is reasonable for us to consider the
band-gap environment model and the two-Lorentzian envi-
ronment model. Both models are formed by adding a new
Lorentzian spectrum to the original single Lorentzian spec-
trum. The charging performance of the quantum battery in
the band-gap environment can be enhanced by increasing the
weights of two Lorentzians and the spectral width of the
second Lorentzian. However, for the two-Lorentzian environ-
ment, the manipulation the weights of two Lorentzians and
the spectral width of the second Lorentzian cannot change the
fact that the ergotropy of the quantum battery is always zero.
Therefore, compared with the two-Lorentzian environment,
the situation of the quantum battery in the band-gap environ-
ment should be selected to obtain the optimal quantum battery.
Then among other factors, the coupling strength between the
environments and the size of the environment are a significant
knob to control the charging performance of the quantum
battery. We, thus, explore the coupling strength between the
nearest neighbor environments and the scaling effects of the
environment on the charging process of the quantum battery
by considering the situation that the quantum battery is in
the multiple coupled reservoir environments. We find that the
storage energy of the quantum battery, the average charging
power, and the ergotropy can be promoted with the increase
of the coupling strength between the environments and the
decrease of the size of the environment. In particular, the
maximum internal energy and maximum extractable work of
a quantum battery can be obtained by increasing the coupling
strength between the environments.

This paper is organized as follows. In Sec. II we review the
energy stored of the quantum battery, average charging power,
and the extractable work. Section III discusses the influence
of the weights of two Lorentzians and the spectral width of
the second Lorentzian on the performance of the quantum
battery from two cases that the quantum battery is in band-gap
environment or two-Lorentzian environment, respectively. In
Sec. IV we discuss the scaling effects of the environment
and the coupling strength between the environments on the
charging process of the quantum battery. The conclusions
drawn from the present study are given in Sec. V.

II. QUANTUM BATTERY

A good quantum battery should have two conditions: one
is to store the maximum energy in the shortest time, and
the other is the ability to discharge the energy sufficiently in
the required time. To get a good quantum battery, we study the
performance of the quantum battery, i.e., the energy stored,
average charging power, and the extractable work.

At t time, the energy stored of the quantum battery is
defined as

EB = Tr [HBρB(t )] − Tr [HBρB(0)], (1)

where HB is the Hamiltonian of the quantum battery, ρB(s)
(s = 0 or t) is state of the quantum battery at time s. The
average charging power at time t is given by

PB = EB

t
. (2)

In both cases, we focus on maximum storage energy and stor-
age power. Therefore, we introduce Emax ≡ maxt [EB(t )] ≡
EB(tE ), Pmax ≡ maxt [PB(t )] ≡ PB(tP ).

To define quantum battery’s ability to produce useful work,
the ergotropy is introduced as

WB = Tr (ρB(t )HB) − Tr (σρB HB), (3)

in which σρB is called as passive states where no amount of
work can be extracted from the quantum battery in a cyclic
unitary process. The maximum ergotropy can be obtained by
Wmax ≡ maxt [WB(t )] ≡ WB(tW ).

In the following, we use the storage energy EB, the average
charging power PB and the ergotropy WB to evaluate the per-
formance of the quantum battery. The larger EB, PB, and WB

are expected to be.

III. THE CHARGING PERFORMANCE OF THE QUANTUM
BATTERY IN A SINGLE ENVIRONMENT

Our total system consists of two two-level systems (a quan-
tum battery B and a quantum charger C) interacting with each
other, and the structure electromagnetic reservoirs. Then to
get the conditions under which quantum batteries can charge
more efficiently, we considered two situations that the quan-
tum battery in a two-Lorentzian environment or a band-gap
environment.

A. Case of the quantum battery in band-gap environment

We first consider that the quantum battery interacts reso-
nantly with its structural environment. The Hamiltonian of the
system under the rotational wave approximation can be given
as H = H0 + HI , where

H0 = ω0

2
σ B

z + ω0

2
σ C

z +
∑

k

ωka†
kak, (4)

HI = �(σ B
+σ C

− + σ B
−σ C

+ ) +
∑

k

(gB
kσ

B
+ak + g∗ B

k σ B
−a†

k ), (5)

here the first two terms in Eq. (4) represent the Hamilto-
nian of the quantum battery and the quantum charger, as
well as the last term is the Hamiltonian of the reservoir.
The interaction Hamiltonian of the system is represented
in Eq. (5), where σ

j
+ and σ

j
− represent the raising and

lowering Pauli operators of the jth qubit. For the sake
of analysis, we assume that the spectral density function
of the reservoir is D(ω) = W1�1/[(ω − ωc)2 + (�1/2)2] −
W2�2/[(ω − ωc)2 + (�2/2)2], which is composed of positive
weight Lorentzian spectrum and negative weight Lorentzian
spectrum. For an ideal band-gap model, the two Lorentzian
spectrums are centered at same frequency ωc. To ensure the
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FIG. 1. Schematic representation of the quantum charger
C, quantum battery B, and pseudomodes system in band-gap
environment.

positivity of the spectral density D(ω), the weights and the
widths of the two Lorentzian spectrums are satisfied W1 −
W2 = 1 and �2 < �1. In particular, for a perfect band-gap
model, D(ωc) = 0, i.e., W1/�1 = W2/�2. In the following, we
use pseudomodes approach [49–53] to study the dynamical
behavior of quantum battery in the reservoir environment.
This approach relies on the relationship between quantum
battery dynamics and the shape of the spectral distribution of
the reservoir. More accurately speaking, the key quantities af-
fecting the time evolution of the quantum battery are the poles
of the spectral distribution in the lower half complex plane.
Each pole is associated with a pseudomode. For the band-gap
reservoir environment, the reservoir can be represented by
two nondegenerate pseudomodes that leak into the Marko-
vian reservoir with dissipation rates �′

1 = W1�2 − W2�1 and
�′

2 = W1�1 − W2�2, as described in Fig. 1. Then the quan-
tum battery only interacts with the second pseudomode PM2

(the strength of the coupling κ) which is in turn coupled
to the first pseudomode PM1 [the strength of the coupling
V = √

W1W2(�1 − �2)/2].
The dynamics of the total system can be given by the exact

pseudomode master equation

dρ

dt
= −i[H1

0 , ρ] − �′
1

2
(a†

1a1ρ − 2a1ρa†
1 + ρa†

1a1)

− �′
2

2
(a†

2a2ρ − 2a2ρa†
2 + ρa†

2a2), (6)

where H1
0 = ω0σ

B
z /2 + ω0σ

C
z /2 + ωca†

1a1 + ωca†
2a2 +

�(σ B
+σ C

− + σ B
−σ C

+ ) + κ (σ B
+a2 + σ B

−a†
2) + V (a†

1a2 + a1a†
2),

here a j (a
†
j ) represents the annihilation (creation) operators of

the jth pseudomode. We consider quantum charger C, quan-
tum battery B, and pseudomodes (PM1, PM2), respectively,
in the excited state |1C〉 and the vacuum state |0B0PM1 0PM2〉,
i.e., ρ(0) = |1C0B0PM1 0PM2〉〈1C0B0PM1 0PM2 |. According to
Eq. (6), the solution of the total system dynamics can be
written as ρ(t ) = λ(t )|0000〉〈0000|CBPM1PM2 + |̃ϕ(t )〉〈̃ϕ(t )|,
with |̃ϕ(t )〉 = u(t )|1000〉CBPM1PM2 + v(t )|0100〉CBPM1PM2 +
m1(t )|0010〉CBPM1PM2 + m2(t )|0001〉CBPM1PM2 , where λ(t )
is the vacuum state |0000〉〈0000|CBPM1PM2 population, and
satisifies λ̇(t ) = �′

1|m1(t )|2 + �′
2|m2(t )|2. u(t ), v(t ), and

mn(t ) (n = 1, 2) correspond to probability amplitudes
for the quantum charger, battery, and pseudomodes,
respectively. Substitute the expression for ρ(t ) into
Eq. (6), the time-dependent amplitudes u(t ), v(t ), m1(t ),
m2(t ) are determined by a set of differential equations

FIG. 2. (a, b) The internal energy EB and the charging power PB

of the quantum battery as a function of the dimensionless quantity
κt for different values of the weight of the two Lorentzians W2/W1.
(c) Maximum charging power Pmax of the quantum battery as a
function of the weight W2/W1 of the two Lorentzians. The parameters
are: (a–c) �1 = 5κ , � = 0.1κ .

as idu(t )/dt = ω0u(t ) + �v(t ), idv(t )/dt = κm2(t ) +
�u(t ) + ω0v(t ), idm1(t )/dt = (ωc − i�′

1/2)m1(t ) + V m2(t ),
idm2(t )/dt = (ωc − i�′

2/2)m2(t ) + κv(t ) + V m1(t ). The
above differential equations can be solved by combining
standard Laplace transform with numerical simulation.
The dynamics of the quantum battery B can be obtained
by tracing the quantum charger C and two pseudomodes,
i.e., ρB = TrC,PM1,PM2 ρ. The matrix elements of ρB are
ρB

ee(t ) = |v(t )|2, ρB
gg(t ) = 1 − |v(t )|2, ρB

ge(t ) = ρB
ge(0)v(t ),

ρB
eg(t ) = ρB

eg(0)v∗(t ).
According to Eqs. (1), (2), and (3), we can get the internal

energy EB = ω0|v(t )|2 of the quantum battery, charging power
PB = ω0|v(t )|2/t , and the ergotropy WB = ω0(2|v(t )|2 −
1)
(|v(t )|2 − 1

2 ), where 
(x − x0) is the Heaviside function.
Then, we can analyze the influences of the weights of the two
Lorentzians and the spectral width of the second Lorentzian in
the perfect band-gap environment on the internal energy EB,
charging power PB and ergotropy WB of the quantum battery.

For a single-Lorentzian spectrum environmental model
D(ω) = �/[(ω − ωc)2 + (�/2)2] (i.e., W2/W1 = 0 in Fig. 2),
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when the spectral width � of the Lorentzian and the cou-
pling strength κ between the system and the pseudomode
satisfies � > 2κ , the system and the environment is in the
weak coupling regime, leading to a lower charging power of
the quantum battery. The band-gap spectrum environmental
model is formed by adding a negative weight Lorentzian spec-
trum to the original single Lorentzian spectrum. Therefore,
when the first Lorentzian spectrum in the band-gap environ-
ment meets the weak coupling regime (i.e., �1 = 5κ), the
effect of additional negative weight Lorentzian spectrum on
the charging performance of quantum battery should be ex-
plored. Our aim is to improve the charging power of quantum
battery in the weak system-environment coupling regime (i.e.,
�1 = 5κ in Fig. 2) by manipulating the weight W2/W1 of
the two Lorentzians and the spectral width �2. In perfect
band-gap environment, due to the relationship between the
weights (W1,W2) of the two Lorentzians and the spectral
width (�1, �2), for a fixed �1 = 5κ , the spectral width is
�2 = W2�1/W1. Thus, �2 and W2/W1 have the same influence
on the charging performance of the quantum battery. For con-
venience, let us study the influence of W2/W1 on the internal
energy EB and charging power PB. We find that EB and PB of
a quantum battery can be improved by increasing the weight
W2/W1 of the two Lorentzians, as shown in Figs. 2(a) and 2(b).
Then to comprehensively understand the influence of W2/W1

on the charging process of the quantum battery, we plot the
change of the maximum charging power Pmax with W2/W1

in Fig. 2(c). It is shown that the maximum charging power
Pmax of a quantum battery increases monotonically as W2/W1

increases. This means that, in the weak system-environment
coupling regime, to achieve the optimal charging power, a
larger the weight W2/W1 of the two-Lorentzians and a larger
the spectral width �2 should be consider.

A good quantum battery would also be able to transfer
stored energy completely to the center of consumption in
a useful way. Here we also investigate the influence of the
weight W2/W1 of the two Lorentzians on the ergotropy WB.
As depicted in Fig. 3(a), a larger W2/W1 will give a larger
ergotropy WB, meaning that an increase in WB allows us to
extract more energy from the battery. Then Fig. 3(b) shows the
dependence of maximum ergotropy Wmax on W2/W1. The Wmax

will monotonically increase as W2/W1 is over certain threshold
W2c/W1c. That is to say, to improve the charging performance
of quantum battery in perfect band-gap environment, a larger
the weight of the two Lorentzians W2/W1 and a larger the
spectral width �2 are required.

One may wonder why the increase of W2/W1 improves the
charging performance of quantum battery. Here we explain
this problem from the perspective of the energy flow between
the pseudomodes and the quantum battery. To witness the
direction of energy flow between the quantum battery and the
pseudomodes (i.e., PM1 and PM2), the compensation rate for
the population change of the pseudomodes is used, which is
defined as [49]

M(t ) ≡ d
∑2

n=1 |mn(t )|2
dt

+
2∑

n=1

�′
n|mn(t )|2, (7)

where |mn(t )|2 is the excited state population of the pseudo-
modes PM1 and PM2. If the pseudomodes energy decreases

FIG. 3. (a) Ergotropy WB as a function of the dimensionless
quantity κt for different values of the weight W2/W1 of the two
Lorentzians. (b) Maximum ergotropy Wmax of the quantum battery
as a function of the weight W2/W1 of the two Lorentzians. The
parameters are: (a, b) �1 = 5κ , � = 0.1κ .

(i.e., d
∑2

n=1 |mn(t )|2/dt < 0) and this decrease cannot be
compensated for by the dissipation term

∑2
n=1 �′

n|mn(t )|2 of
the pseudomodes, then we can determine that the energy
flow is from the pseudomode PM2 to the quantum battery
(i.e., M(t ) < 0). In other words, the negative value of M(t )
represents the energy flow from the pseudomode PM2 to the
quantum battery B. In Fig. 4, we plot the witness M(t ) as
a function of κt for different W2/W1. We find that, when
W2/W1 = 0, M(t ) is always positive, which means that the
energy has been flowing from the quantum battery B to the
pseudomode PM2, resulting in poor charging performance of

FIG. 4. The witness M(t ), Eq. (7), as a function of the dimen-
sionless quantity κt for different values of the weight W2/W1 of the
two Lorentzians. The parameters are: �1 = 5κ , � = 0.1κ .
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FIG. 5. Schematic representation of the quantum charger,
quantum battery and pseudomodes system in two-Lorentzian
environment.

the quantum battery. While W2/W1 �= 0, the negative value of
M(t ) begins to appear, and the larger W2/W1 is, the earlier the
negative value of M(t ) appears. This implies that with the in-
crease of the weight W2/W1 of the two Lorentzians, the energy
will flow from the pseudomode PM2 to the quantum battery
earlier, leading to better charging performance of the quantum
battery. That is to say, the fundamental reason, for improving
the charging power of a quantum battery by adjusting W2/W1,
is the energy flow from the pseudomode PM2 to the quantum
battery.

B. Case of the quantum battery in two-Lorentzian environment

Now let us consider a quantum battery B in a two-
Lorentzian environmental model, which the spectrum den-
sity is D(ω) = W1�1/[(ω − ωc)2 + (�1/2)2] + W2�2/[(ω −
ωc)2 + (�2/2)2], where the weight of the two Lorentzian
spectrum satisfies W1 + W2 = 1. This spectrum environmen-
tal model is formed by adding a positive weight Lorentzian
spectrum to the original single Lorentzian spectrum. The total
Hamiltonian of the system is H = H0 + HI , where

H0 = ω0

2
σ B

z + ω0

2
σ C

z +
∑

k

ωkb†
kbk, (8)

HI = �(σ B
+σ C

− + σ B
−σ C

+ ) +
∑

k

(gkσ
B
+bk + g∗

kσ
B
−b†

k ), (9)

here b†
k (bk) represents the raising (lowering) operators of the

kth mode of the reservoir. The pseudomode method is also
used to represent the two-Lorentzian reservoir as shown in
Fig. 5. The exact master equation for the quantum battery-
environment and charger dynamics in the two-Lorentzian
environmental model can be written as

dρ

dt
= −i

[
H2

0 , ρ
] − �1

2
(b†

1b1ρ − 2b1ρb†
1 + ρb†

1b1)

− �2

2
(b†

2b2ρ − 2b2ρb†
2 + ρb†

2b2), (10)

where H2
0 = ω0σ

B
z /2 + ω0σ

C
z /2 + �(σ B

+σ C
− + σ B

−σ C
+ ) +

ωcb†
1b1 + ωcb†

2b2 + κ
√

W1(σ B
+b1 + σ B

−b†
1) + κ

√
W2(σ B

+b2 +
σ B

−b†
2). We assume that only quantum charger C is in the

excited state |1C〉, quantum battery B and other pseudomodes
(PM1, PM2) are in the vacuum state |000〉. Then according to
the same steps of quantum battery in band-gap environment,
the dynamics of the quantum battery in the basis (|e〉, |g〉) can

FIG. 6. (a, b) The internal energy EB and the charging power PB

of the quantum battery as a function of the dimensionless quantity
κt for different values of the weight of the two Lorentzians spectrum
W2/W1. (c) Maximum charging power Pmax of the quantum battery
as a function of the weight of the two Lorentzians spectrum W2/W1.
The parameters are: (a–c) �1 = 5κ , �2 = κ , � = 0.1κ .

be obtained

ρB(t ) =
[ |c(t )|2 ρeg(0)c(t )
ρge(0)c∗(t ) 1 − |c(t )|2

]
.

(11)

To get how to improve the charging power of quantum battery
B in two-Lorentzian environment, we analyzed the influ-
ence of the weight W2/W1 of the two Lorentzians and the
spectral width �2 on the charging power of the quantum
battery. According to Eqs. (1), (2), (3), and (11), the inter-
nal energy EB = ω0|c(t )|2 of the quantum battery, charging
power PB = ω0|c(t )|2/t , the ergotropy WB = ω0(2|c(t )|2 −
1)(|c(t )|2 > 1/2) and WB = 0 for |c(t )|2 � 1/2 can be
obtained.

Unlike the situation of the quantum battery in band-gap
environment, the internal energy EB and charging power PB

of quantum battery would be decreased with the increase of
W2/W1, as described in Figs. 6(a) and 6(b). To understand
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FIG. 7. Maximum internal energy Emax of the quantum battery
as a function of the weight W2/W1 of the two Lorentzians and the
spectral width �2/κ . The parameters are: �1 = 5κ , � = 0.1κ .

the impact of W2/W1 on the charging process of quantum bat-
terys more clearly, Fig. 6(c) displays the change of maximum
charging power Pmax for different W2/W1. It is worth noting
that, the maximum charging power Pmax of a quantum battery
decreases monotonically as W2/W1 increases, meaning that
the charge power of the quantum battery cannot be enhanced
by increasing W2/W1. This may be the result of that more
energy are lost in the pseudomodes environment when W2/W1

is large. We also analyze the influence of the spectral width �2

on the charging power of the quantum battery. A comprehen-
sive picture for the dependence of Emax on �2 and W2/W1 is
shown in Fig. 7, where we can see the maximum internal en-
ergy Emax of the quantum battery could be enhanced as W2/W1

decreases and �2 increases. Here, by fixing �1 = 5κ and � =
0.1κ , the optimal internal energy Emax = |c(t )|2 = 0.0498 of
the quantum battery is less than 1/2, resulting in WB = 0.
In other words, when the first Lorentzian spectrum satisfies
the weak coupling mechanism (i.e., �1 = 5κ), the quan-
tum battery in a two-Lorentzian environment cannot transfer
energy to the consumption center by manipulating W2/W1

and �2, leading to the poor performance of the quantum
battery.

IV. THE CHARGING PERFORMANCE OF QUANTUM
BATTERY IN THE MULTIPLE COUPLED ENVIRONMENTS

In the previous section, we considered the charging per-
formance of the quantum battery in a structure reservoir
environment. In this section, we extend our results to multiple
coupled reservoir environments to explore the the coupling
strength between the nearest-neighbor environments and the
scaling effects of the environments on the performance of
the quantum battery. For this purpose, the quantum battery
is in a controlled environment consisting of N coupled reser-
voir environment. We model each reservoir environment as
a bosonic mode, mn, decaying to a Markovian reservoir. In
this general setup, as shown in Fig. 8, the quantum battery
is coupled with strength κ to the mode mn, which decay to
their respective Markovian reservoirs with rates �n = �. The
coupling strength between the two nearest-neighbor cavities

FIG. 8. Diagrammatic representation of the quantum battery in
multiple coupled environments.

is γ . It is then valuable to point out that this multi-coupled
environments can be restored to the situation of the band-gap
environment and two-Lorentzian environment by reducing the
size of the environment and manipulating the coupling of
various parts between the system and the environment. The
total Hamiltonian of the system is given by H = H0 + HI and
reads

H0 = ω0

2
σ B

z + ω0

2
σC

z +
N∑

n=1

ωnd†
n dn,

HI = �(σ B
+σC

− + σ B
−σC

+ ) +
N∑

n=1

κ (σ B
−d†

n + σ B
+dn)

+
∑
〈i j〉

γ (d†
i d j + d†

j di ), (12)

where d†
n (dn) is the creation (annihilation) operator of mode

mn (n = 1, 2, ..., N ). 〈i j〉 means the nearest-neighbor cavities.
The density operator of the total system can be written as

dρ

dt
= −i[H, ρ] −

N∑
n=1

�

2
(d†

n dnρ − 2dnρd†
n + ρd†

n dn). (13)

Here, we consider quantum charger C in the excited state
|1C〉, quantum battery B and other cavity modes mn in the
vacuum state |00...0〉B,m1,...mn . Then in accordance with the
same steps of quantum battery in band-gap environment, we
can obtain the elements of the density matrix of the quan-
tum battery as ρB

ee(t ) = |r(t )|2, ρB
gg(t ) = 1 − |r(t )|2, ρB

ge(t ) =
ρB

ge(0)r(t ), ρB
eg(t ) = ρB

eg(0)r∗(t ). The internal energy EB =
ω0|r(t )|2, power PB = ω0|r(t )|2/t , and extractable work WB =
ω0(2|r(t )|2 − 1)(|r(t )|2 > 1/2, W (t ) = 0 for |r(t )|2 � 1/2)
of the quantum battery can be obtained from Eqs. (1), (2),
and (3). In the following, we mainly focus on how the perfor-
mance of the quantum battery can be enhanced by controlling
the scaling effects N of the environments and the coupling
strength γ between environments.

If there are no other lossy cavities, then the quantum bat-
tery’s dynamics mainly depends on the parameters � and κ

in such a way that � > 4κ (� < 4κ ), identified as the weak-
coupling (strong-coupling) regime, leads to the poor charging
performance of quantum battery (the strong charging perfor-
mance of quantum battery). In the case of adding the lossy
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FIG. 9. (a–c) The internal energy EB, the charging power PB,
and the ergotropy WB of the quantum battery in the weak system-
environment coupling regime as a function of the dimensionless
quantity κt for different values of the number of cavity modes N .
(d–f) The internal energy EB, the charging power PB, and the er-
gotropy WB of the quantum battery in the weak system-environment
coupling regime as a function of the dimensionless quantity κt
for different values of the coupling strength γ /κ between the two
nearest-neighbor cavity modes. The parameters are: (a–c) � = 5κ ,
� = κ , γ = 5κ; (d–f) � = 5κ , � = κ , N = 2.

cavities, the charging performance of the quantum battery
would be considered in the weak system-environment cou-
pling regime. In Fig. 9, the internal energy EB, the charging
power PB, and the ergotropy WB of the quantum battery in the
weak system-environment coupling regime as a function of
the dimensionless quantity κt have been plotted. In Figs. 9(a),
9(b) and 9(c), the charging performance (i.e., EB, PB, and
WB) of the quantum battery decreases with the increase of the
number of the cavities. This may be due to the increase in the
number of dissipative environments resulting in more energy
dissipation of the quantum battery in the environment. How-
ever, in Figs. 9(d), 9(e) and 9(f), the charging performance
of the quantum battery can be improved as the increase of
the coupling strength γ . That is to say, in the weak system-
environment coupling regime, the larger the value γ and the
smaller value N can be requested to trigger the stronger charg-
ing performance of the quantum battery.

To fully understand the influence of the number of dissi-
pative cavities N and the coupling strength γ between the
nearest dissipative cavities on the maximum internal energy
Emax and maximum extraction work Wmax of the quantum
battery, we plot the changes of Emax and Wmax with N and
γ in Figs. 10 and 11, respectively. In Fig. 10, the maximum
internal energy Emax of the quantum battery can be en-
hanced in the weak system-environment coupling regime by

FIG. 10. Maximum internal energy Emax of the quantum battery
as a function of the number of cavities N and the coupling strength
γ /κ between the two nearest-neighbor cavity modes. The parameters
are: � = 5κ , � = κ .

increasing γ and decreasing N . Here, it is worth noting that,
the coupling strength γ increase makes it possible to achieve
the fully charged for the quantum battery. Similarly, the small
number of dissipative cavities N and large coupling strength γ

can improve the maximum ergotropy of the quantum battery.
We find that extract the total stored energy of the quantum
battery as work can be gotten by manipulating the coupling
strength γ . To obtain the optimal quantum battery, the larger
γ and the smaller N in the weak system-environment coupling
regime are required to improve the charging performance of
the quantum battery.

V. CONCLUSION

In summary, we have studied the charging performance of
the quantum battery in a single environment and the multi-
ple coupled environments for the weak system-environment
coupling regime. To be more specific, we first consider the
quantum battery in a reservoir environment, which described
by a band-gap environment model or a two-Lorentzian model.
We show that, the performance of the quantum battery in

FIG. 11. Maximum ergotropy Wmax of the quantum battery as a
function of the number of cavities N and the coupling strength γ /κ

between the two nearest-neighbor cavity modes. The parameters are:
� = 5κ , � = κ .
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band-gap environment can be enhanced with the increase of
the weights W2/W1 of the two Lorentzians and the spectral
width �2, when the first Lorentzian spectrum meets the weak-
coupling regime. However, in a two-Lorentzian environment,
the performance of the quantum battery cannot be improved
by increasing the weight W2/W1 of the two Lorentzians. And
in this case, no available energy can be extracted from the
quantum battery in the weak system-environment coupling
regime by manipulating W2/W1 and �2. Therefore, to obtain
the best performance of the quantum battery in a reservoir
environment, two conditions have to be met: (1) Select the
situation of the quantum battery in the band-gap environment.
(2) The larger the weights W2/W1 of two Lorentzians and
the larger the spectral width �2 of the second Lorentzian are
required. Here it is worth noting that, in the experiment, the
spectral width and the weights of the two Lorentzians can be
controlled. For example, by adjusting the correlation time of
the environment and the coupling strength between a single
NV spin and environment, the spectral width and the weights
of the two Lorentzians can be manipulated [48]. Thus, it is
significant to improve the charging performance of quantum
batteries by regulating the weights of two Lorentzians and the
spectral width of the second Lorentzian.

We have also extended our results to the multiple coupled
reservoir environments, which are composed of N coupled
dissipative cavities. Then we explore the coupling strength
between the nearest-neighbor cavities and the scaling effects
of the environment on the performance of the quantum battery.
We find that, the optimized quantum battery can be obtained
by decreasing the number of the cavities and increasing
the coupling strength between the nearest-neighbor cavities.
Particularly, the quantum battery can be fully charged by ma-
nipulating the coupling strength between the nearest-neighbor
cavities. The obtained results in this paper provide possible
ways to acquire the optimal charging performance of open
quantum battery in the weak system-environment coupling
regime.
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