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Thermodynamic uncertainty relations for many-body systems with fast
jump rates and large occupancies
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A universal large N theory of nonequilibrium fluctuations emerges in the limit of fast jump rates and large
occupancies. We use this theory to derive a set of coarse-grained thermodynamic uncertainty relations—one of
them being an activity bound. Importantly, the activity serves as a tighter bound for the entropy production in
1D systems. These results are particularly useful in the many-body regime, where typically a coarse-grained
approach is required to handle the large microscopic state space.
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I. INTRODUCTION

The second law of thermodynamics resulting in, e.g., the
Carnot bound on the maximum efficiency of thermal engines,
demonstrates the importance that inequalities play in physics.
The Carnot efficiency bound is remarkably independent of
specific design. More recently and in the same spirit, the
thermodynamic uncertainty relations (TUR) [1–3] revealed
that fluctuations in thermal systems cannot be freely mini-
mized. Rather they are bounded from below by the inverse
entropy production irrespective of system design. The ideas
of the TUR led to an effort towards optimizing the bounds
[4–7], generalizing the bound in the regime of large deviations
[8,9], quantum systems [10–13], explicit time-dependence
[14], athermal analogues [15], and results of the same spirit
[16–20].

A common starting point for discussing the TUR is via
a master equation. The master matrix of the rates may be
time-dependent or not. This language is particularly suited
for a single particle dynamics, where a state corresponds to
the particle localized in a given site. For many-body sys-
tems, the applicability of the TUR is limited due to the large
state space. Namely, evaluating the particle densities involves
finding the zero eigenvalue state of a large Markov matrix.
Similarly, evaluating current fluctuations requires finding the
largest eigenvalue of a large tilted Markov matrix [21] (also
see detailed discussion later). This renders the overall pro-
cedure tedious and quite often intractable. We stress that in
a few particular cases, finding the largest eigenvalue of the
tilted matrix is possible, employing powerful techniques like
the Bethe ansatz [21–23]. This however is the exception rather
than the rule.

Indeed, it is only in 1D nonequilibrium steady state with
local particle conservation, that the current and current fluc-
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tuations are evaluated along a single bond only. But for any
generic network, accounting for a large number of states, cal-
culating, measuring or obtaining numerically the fluctuations
of the current is typically hard: thus limiting the usefulness
of the TUR and its large deviation bound counterpart. This
difficulty can be overcome using universal nonequilibrium
theories that result in a coarse-grained picture, allowing a
compact description to calculate current statistics [24–28].
Naturally, the question arises on whether one can write a
useful TUR in a coarse-grained manner.

In this work, we show how this can be done in a system-
atic way from a nonequilibrium theory: Consider a master
equation with fast rates and large particle occupancies on
a finite graph [29,30]. The fast-rates-large-occupancy large
N limit leads to a universal coarse-grained nonequilibrium
theory, dubbed here—the large N theory (see also Ref. [26]
and earlier works [31,32]). Within the framework of this large
N theory, we show that the variance of the current is bounded
from below by either the activities or the coarse-grained en-
tropy production. Interestingly, the activity serves as an upper
bound for the entropy production and a tighter bound in 1D
systems. The latter bound becomes tight in the large N limit
hence serving as a better tool to infer entropy production.
These results, reinstate the importance and relevance of the
TUR and similar inequalities in many-body systems even in
the case where the states space is unmanageable to treat,
analytically or numerically.

The outline of this work is as follows. In Sec. II, we lay
the setup for the large N theory and present the main results.
In Sec. III, we numerically validate the main results for a
particular interacting model system: the asymmetric inclusion
process (ASIP) at finite N [33,34]. Section IV focuses on the
derivation of the bound and the results of Sec. II. We conclude
in Sec. V where we summarize the work and point out future
directions.

II. SETUP AND RESULTS

Consider a stochastic process with a finite set of sites with
particle occupancies nx = 0, 1, 2, .... Assume that a particle
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jumps from site x to y with rate κ̃y,x that may depend on the
local occupancies. Particles are added to/removed from the
system only through a finite number of bonds to a reservoir or
a set of reservoirs. In particular, we restrict the discussion to
processes with fast rates; scaling like N 2 with respect to the
large parameter N � 1. Under this assumption, we consider
the rescaled occupancies ρx(τ ) = nx/N and the rescaled time
τ = N t . Then, κ̃y,x = N 2κy,x + O(N ), where κy,x depends
only on the rescaled densities ρ. Gathering these definitions,
the rescaled evolution equation is

∂τρx = −(div κ )x,

(div κ )x = −
∑
y∼x

κx,y − κy,x, (1)

where
∑

y∼x denotes summation over all the neighbors of
x. Note that this summation may include the coupling to
reservoirs which are assumed to have fixed densities. We now
define the empirical unidirectional flux q̃x,y(t ) that counts the
number of particles jumping from site y to x during the time
interval [t, t + dt]. At the large N limit, the rescaled empirical
unidirectional flux is q̃y,x(t ) = N 2qy,x(τ ) + O(N ). Note that,
on average, 〈qx,y(τ )〉 = 〈κx,y[ρ(τ )]〉 = κx,y[〈ρ(τ )〉]. The last
equality uses the mean-field approximation, which will be
shown to be exact at N → ∞. The notation κ[ρ] implies that
κ depends on the local densities. The (rescaled) empirical cur-
rent is given by jx,y(τ ) ≡ qx,y(τ ) − qy,x(τ ). We further define
Jy,x(ρ) ≡ κy,x − κx,y. Thus, on average, 〈 jy,x〉 = 〈Jy,x(ρ)〉 =
Jy,x(〈ρ〉) and again the last inequality is exact only in the limit
N → ∞. Last, we define the local activity ax,y ≡ qx,y + qy,x

[25,35–37] that will play an important role later on.
In what follows, we explore the properties of a generalized

fluctuating charge transfer defined in the following:

Q = N
∫ τ

0
dτ ′ ∑

x

∑
y>x

dy,x jy,x +
∑

x

uxρx, (2)

where dy,x, ux are predetermined weights. We furthermore de-
fine dx,y = −dy,x for convenience. It has no bearing on Q. Note
that the functional contains both the current and occupation
like terms. In this work, we derive a bound for the cumulant
generating function μ(λ) ≡ 1

N τ
ln〈eλQ〉 of the charge Q at

the steady state. In particular, the bound on the generalized
current variance reads

μ′′(0) � (d⊥)2〈A‖〉, (3)

where (A‖)−1 ≡ ∑
x,y>x

1
ay,x

—an impedancelike parallel sum-

mation over the activities, and d⊥ ≡ ∑
x,y>x dy,x – an

impedancelike series summation over the weights. A similar
notation will be used for the series activity A⊥ = ∑

x,y>x ay,x.
Detailed derivation of our results is presented in Sec. IV. In
the large N theory, 〈a−1

x,y〉 = 〈ax,y〉−1 and the mean bond activ-
ities depends only on the mean densities. The lower bound is
accessible analytically and numerically. Moreover, even if the
rates are not known, the activities—a measure on the number
of jumps—are still accessible experimentally in many cases
[38,39]. Interestingly, the activity bound Eq. (3) can further be
generalized to a large deviation bound Eq. (15) that we show
later.

FIG. 1. Numerical demonstration of the first inequality in
Eq. (4). The value of μ′′ (0)−(d⊥ )2〈A‖〉

μ′′ (0) in the random ASIP. We present
200 random realizations for each N value. (a) The minimal values of
the random realizations are seen to converge to zero with increasing
N . (b) The violation—the negative of the minimal value of all the
realizations—is shown to vanish like 1/N , as expected from the
large N theory. The fitting gives a slope of −1.008 close to the ex-
pected slope of −1 at N = ∞. For more details, see Appendix. C.

In particular for a 1D lattice, we can improve the well
known entropy production bound by using the parallel activity

μ′′(0) � (d⊥)2〈A‖〉 �
2(μ′

j )
2

〈�〉 , (4)

with μ′
j ≡ ∑

x,y>x dy,x〈 jy,x〉 and

� =
∑

x,y>x

jy,x log
ay,x + jy,x
ay,x − jy,x

, (5)

as the entropy production rate [40,41]. For noninteracting par-
ticles, Eq. (4) was already obtained in Ref. [42] in the case of
a 1D periodic system governed by a master equation. Notice
that the inequalities in Ref. [42] were evaluated through the
microscopic master equation itself whereas in our case, we are
interested in the coarse-grained quantities, e.g., the densities ρ

and the rescaled rates κ . Therefore, the coarse-grained series
of inequalities need not be exact at finite N and deviations
from it are observed, but controlled; see Fig. 1. As noted be-
fore, Eq. (4) suggests the bound is given in terms of the mean
local activities which are accessible numerically, analytically
and usually also experimentally when dealing with a finite
graph.
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Last, let us use Eq. (4) to imply two more appealing
bounds. Observe that

1

A‖ =
∑
x,y>x

1

ax,y
�

(
∑

x,y>x 1)2∑
x,y>x ay,x

= (
∑

x,y>x 1)2

A⊥ , (6)

where the inequality is a direct consequence of Titu’s lemma
[43]. Using Eq. (6) together with Eq. (4) implies Eq. (7),
where the mean field 〈 1

ax,y
〉 = 1

〈ax,y〉 is exact in the large N
limit. Furthermore, A‖ � ax,y for any bond pair x, y, which
leads to Eq. (8):

〈�〉 �
2(μ′

j )
2(

∑
x,y>x 1)2

(d⊥)2〈A⊥〉 , (7)

〈�〉 �
2(μ′

j )
2

(d⊥)2〈ax,y〉 ∀x, y. (8)

The first bound Eq. (7) limits the entropy production in
terms of the activity. This bound does not bear the same
content as the kinetic uncertainty relation [44] as it bounds
the entropy production and not the current variance. The
second inequality, Eq. (8), is particularly interesting for prac-
tical purposes. It allows to get a lower bound on the entropy
production from a single bond current and activity. In 1D
systems, the steady-state current is uniform for any bond, i.e.,
μ′

j = d⊥〈 jy,x〉,∀ y > x. The activity, however, is not uniform
which makes this result surprising.

To conclude this section, let us put the highlighted re-
sults in perspective. The goal here is to obtain useful TUR
bounds for interacting many-body systems. For noninteracting
(essentially single body physics), useful bounds have been
extensively studied. In particular, the bounds Eqs. (4) and
(19) were already obtained [2,42], without coarse graining for
noninteracting particles. Later on, in Sec. IV, we will show
that the action of the large N theory is equivalent to the action
in the case of noninteracting systems. Therefore, inequalities
in the large N limit can be inferred from known results in
the noninteracting case. Nonetheless, it is crucial to remember
that in the large N limit, the inequalities are with respect to
coarse-grained quantities and become exact only at N → ∞.
In what follows, we demonstrate the validity of the large N
bounds in a specific setup.

III. APPLICATION: THE ASIP

In this section, we illustrate our results using an interacting
particle system, namely, the Asymmetric Inclusion Process
(ASIP) [33,34]. In particular, we focus on the dynamics on a
1D chain [33,34] where we have κ̃x±1,x = p±(x)nx(N + nx±1)
with the rates p±(x) � 0. Then, κx±1,x = p±(x)ρx(1 + ρx+1).
To validate our claims, in particular Eq. (4), we consider the
ASIP with N = 2 particles and a periodic system of L = 3
sites and random rates p±(x) ∈ [0, 1]. We evaluate the local
densities at the steady state and recover local coarse-grained
activities and currents.

In Fig. 1, the inequality μ′′(0) − (d⊥)2〈A‖〉 � 0 is demon-
strated in the large N limit, with 1/N corrections, as expected
from the large N theory. Namely, the inequality is pre-
cise only at N → ∞. In Fig. 2, the inequality (d⊥)2〈A‖〉 �
2(μ′

j )
2/〈�〉 is shown to hold for any N . This need not be

FIG. 2. Numerical demonstration of the second inequality in

Eq. (4). The evidence of
(d⊥ )2〈A‖〉−2(μ′

j )2/〈�〉
(d⊥ )2〈A‖〉 � 0 in the random ASIP.

We present 200 random realizations for each N value. (a) The min-
imal values of the random realizations are seen to converge to zero
with increasing N indicating the tightening of the bound. (b) The
distance from violation—the minimal value of all the realizations—is
shown to vanish like 1/N . The fitting gives a slope of −0.9715 close
to the expected slope of −1 at N = ∞. For more details, see Sec. C.

generally true, and probably results from the particular choice
of the ASIP dynamics. Nevertheless, this inequality is shown
to become the tightest in the large N limit with 1/N conver-
gence. Further details on the numerical results are discussed
in the Appendices C and D.

IV. DERIVATION OF THE BOUNDS

In this section, we derive the central results that were
highlighted in Sec. II. We start by noting that the joint path
probability for the current and density at the large N limit
is given by P( j, ρ) ∼ exp (−N

∫
dτL) [26] (also, see Ap-

pendix A and the discussion [45]). The Lagrangian L defines
the path probability at the large N limit up to 1/N correc-
tions, with

L =
∑
x,y>x

�( jy,x, κy,x, κx,y), (9)

where

�( j, κ+, κ−) = j ln
j +

√
j2 + 4κ+κ−
2κ+

−
√

j2 + 4κ+κ− + κ+ + κ−. (10)

Note that the summation in Eq. (9) avoids double counting
of the bonds. Equation (10) is not new, and can be found
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in Refs. [26,29,30] and of course earlier in the noninteract-
ing limits where κy,x ∝ ρx [25]. The form of the Lagrangian
in Eq. (9) is identical to the noninteracting case without
coarse graining [26]. This implies that single particle results
can be adapted almost immediately to the large N limit. In
the large N theory, the mean-field limit is exact only when
N → ∞, whereas for noninteracting particles the mean-field
treatment is always exact. This mean-field limit is the main
advantage of the large N theory for interacting systems. Note
that L is not limited to closed systems. In open systems, the
incoming/outgoing rates κ± may depend on the fixed density
of the reservoirs [26,30]. In this case, the state space of the
Markov matrix is unbounded and the large N theory is partic-
ularly useful.

It is now useful to present the Lagrangian LY , which
depends on the tilting field Yy,x, constrained to satisfy Kirch-
hoff’s junction rule [15,46]∑

y∼x

Yy,x = 0 and Yy,x = −Yx,y. (11)

The expression is defined locally �Y ( j, κ+, κ−) ≡ �( j, κ+ +
1
2Y, κ− − 1

2Y ) which leads to the steady-state densities 〈ρx〉 =
〈ρx〉Y , but a different steady-state current 〈 jy,x〉Y = 〈 jy,x〉 +
Yy,x [47]. The averaging 〈 · 〉Y is with respect to the tilted
Lagrangian LY . One natural choice for the tilted dynamics is
to induce a mapping to equilibrium, i.e., setting 〈 jx,y〉Y = 0,
implying the choice Yy,x = −〈 jy,x〉 = 〈κx,y − κy,x〉. Another
natural choice is to set Y such that 〈 jx,y〉Y = −〈 jx,y〉, realizing
the steady-state time-reversed dynamics. This in turn allows
one to evaluate the entropy production—a central quantity
in the study of nonequilibrium physics. Recently, Dechant
and Sasa also used a similar idea to extend the time reversal
mapping in order to possibly tighten the TUR [48].

Here, the tilted dynamics allows more freedom, but in turn
may lose an amenable physical interpretation as � is defined
only for nonnegative κ+. Nevertheless, this mathematical trick
leads to an optimized bound with a clear physical interpre-
tation. Moreover, it allows us to optimizes the bound on the
variance of Q via a set of linear equations [see Eq. (17)].

The cumulant generating function can now be expressed
using the tilted dynamics

μ(λ) = 1

N τ
log〈eλQ+N

∫
dτ LY −L〉Y . (12)

Using the Jensen inequality in above leads to

μ(λ) � λ

N τ
〈Q〉Y + 〈LY − L0〉Y . (13)

Note that at this point, optimization of Eq. (13) with respect to
the tilting field Y leads to a set of nonlinear equations which
are hard to solve in general. To produce a useful inequality
on the current fluctuations, we take Eq. (13) together with the
rescaling Y → λY [48] and expand both sides to second order
in λ:

1

2
μ′′(0) �

∑
x,y>x

dy,xYy,x − Y 2
y,x

1

2〈ay,x〉 . (14)

Recall that ay,x = κx,y[ρ] + κy,x[ρ] is the bond activity. Equa-
tion (14) together with Kirchhoff’s junction rule Eq. (11)
compose one of the central results of this work. We stress that

the explicit result could be obtained due to the the saddle point
approximation in the path probability resulting from the large
N value. For finite N , Eq. (14) and what follows from it, may
be erroneous as demonstrated for finite N in Fig. 1. Taken
together with the Kirchhoff’s junction rule Eq. (11)—which
is a constraint, and simultaneous minimization of Yx,y leads to
tightening the TUR.

Equation (14) implies that many different bounds could be
obtained. In what follows we discuss two particular choices
for Y leading to two different bounds: the activity bound
and the entropy production bound. Then we discuss how to
optimize the bound using the tilting field. We conclude this
section by showing that for 1D systems, the bounds can be or-
dered, making them particularly useful. For completeness, we
also connect our derivation to the kinetic uncertainty bound
[4,6,44] in Appendix E.

A. Activity bound

Let us first explore the simplest tilting field Yy,x = Y for
y > x together with Yy,x = −Yx,y satisfying Kirchhoff’s rule
Eq. (11). The resulting bound is still valid for any Y . Opti-
mization of the constant Y [see the right-hand side of Eq. (14)]
leads to Y = d⊥〈A‖〉 and to the activity bound Eq. (3). Fur-
thermore, we can directly use this (suboptimal) choice of Y in
Eq. (13), leading to the large deviation bound

μ(λ) − λμ′(0) � (d⊥)2λ2〈A‖〉 − 〈L0〉λd⊥〈A‖〉. (15)

While the right-hand side of Eq. (15) seems cumbersome, it
can be evaluated in a straightforward manner using the mean
local activities and currents only or through the densities if the
rates κ are known.

B. Optimizing the bound

Next, we sketch the optimization of the bound with respect
to the tilting field. Define FY such that μ′′(0) � 2FY according
to Eq. (14) and Kirchhoff’s junction rule Eq. (11). Then, we
aim to find the maximum of

FY =
∑
x,y>x

(
dy,xYy,x − Y 2

y,x

2〈ay,x〉
)

+ νx

∑
y∼x

Yy,x, (16)

where νx are Lagrange multipliers accounting for Kirchhoff’s
junction rule Eq. (11). The solution to this optimization
problem is

2FY,max =
∑
x,y>x

d2
y,x〈ay,x〉 − 〈ay,x〉2(νx − νy)2,

0 =
∑
y∼x

(dy,x + νx − νy)〈ay,x〉. (17)

Note that one needs to first solve the set of linear Eqs. (17)
to obtain FY,max. The size of the set is essentially the number
of bonds in the graph while coupling to reservoirs enlarges
this number. A different optimization scheme was carried out
recently resulting in the same optimized bound [6]. Other
useful bounds can be obtained from Eq. (14). In what follows,
we present a few physically relevant bounds and explore their
relation and relevance.
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C. Relations between bounds

In this subsection, we benchmark the TURs which were
derived in Refs. [2,42], using the tilted Y approach. Consider
Yy,x = α〈 jy,x〉. This choice satisfies the Kirchhoff’s rule for
any constant α as the steady-state current is divergence free.

Furthermore, one can show that 2 〈 jy,x〉2

〈ay,x〉 � 〈 jy,x〉 log 〈ax,y〉+〈 jx,y〉
〈ax,y〉−〈 jx,y〉

as 2x2 � x log 1+x
1−x for x = j

a ∈ [−1, 1]. Simple additivity of

terms imply then
∑

y>x 2 〈 jx,y〉2

〈ax,y〉 � 〈�〉. Hence, we recover

μ′′(0) � αμ′
j − α2

4 〈�〉. Finding the optimal α leads to the
entropy production bound

μ(λ) − λμ′(0) � λ2

2

2(μ′
j )

2

〈�〉 , (18)

μ′′(0) �
2(μ′

j )
2

〈�〉 . (19)

The entropy production bound as well as the activity bound
can be derived by a certain choice of the tilting field Yx,y.
Therefore, it is not only the current variance that can serve as
an upper bound. Let us define F ≡ ∑

x,y>x d2
y,x〈ay,x〉, namely,

it optimizes the tilting field Yx,y without necessarily satisfying
Kirchhoff’s rule Eq. (11). Therefore, we find that

F � 2
(μ′

j )
2

〈�〉 , (d⊥)2〈A‖〉. (20)

Equation (20) could be made more physically relevant.
The nonnegativity of d2

y,x, 〈ay,x〉 implies F � ∑
y>x d2

y,x〈A⊥〉.
Therefore, we recover from Eq. (20) the physical bound

∑
y>x

d2
y,x〈A⊥〉 � 2

(μ′
j )

2

〈�〉 . (21)

It is important to notice that Eq. (21) is valid for any graph,
unlike Eq. (7) which are valid for the case of a 1D chain.

At this point, it is unclear whether F relates to either
μ(λ) − λμ′(0), μ′′(0). In what follows, we discuss a special
case where one can order the bounds as already noticed in
Ref. [42]. Furthermore, we show that F and μ′′(0) do not
bound one another.

D. Application of TUR in 1D lattice—A series of bounds

Consider an 1D lattice of L sites which can be either
open (boundary driven) or with periodic boundary conditions.
Other boundary conditions can also be treated. We further-
more assume only nearest-neighbors jumps [49]. In this case,
there is a single solution to Kirchhoff’s junction rule Eq. (11):
Y ≡ Yx+1,x for any x on the lattice. This in turn implies
that the bound Eq. (3) is indeed optimal in the 1D setup.
Notice that the summation depends on the boundary condi-
tions in question. Since the activity bound is optimal (see the
Appendix B for a direct proof), we can also order the activity
and entropy production bounds to follow Eq. (4). Numerical
evidence for the validity and relevance of these bounds were
shown in Figs. 1 and 2.

The large deviation bound Eq. (15) is not optimal even in
the 1D case. Therefore, it is unclear whether one can order
the large deviation bounds [Eqs. (18) and (15)] in a similar
fashion. Nevertheless, it is clear that in processes with even

FIG. 3. The value of F−μ′′ (0)
μ′′ (0) in the random ASIP of N = 2

particles and L = 3 sites with periodic boundary conditions. We
present 200 random realizations for each N value, where the rates
p±(x) ∈ [0, 1] are randomized. (a) While most realizations at any
N satisfy the bound, there are violations. The maximal violations
of each N are plotted in panel (b). They does not vanish with
increasing N .

a single unidirectional rate (no local equilibrium) 〈�〉 → ∞
and the bound Eq. (18) becomes irrelevant. In this case, clearly
the large deviation bound Eq. (15) dominates. Furthermore, in
the 1D case 〈 jy,x〉 = J for any y > x. This further simplifies
the evaluation of Eq. (15).

We stress again that Ref. [42] proved a similar bound to
Eq. (4) even for finite N . However, at large N values, the
bound Eq. (4) becomes tight and indeed a more informative
bound to explore the entropy production. Moreover, here we
consider the coarse-grained densities instead of the densities
that span over the full state space—this renders a major advan-
tage in the application of the bounds in many-body systems.

Last, let us consider F = ∑
x,y>x d2

y,x〈ay,x〉, which is a
combination of the average activities. Since F � 2 maxY FY

and μ′′(0) � 2 maxY FY one may conjecture another bound
F � μ′′(0). We have tested this conjecture numerically in
Fig. 3. For most random realizations, the conjecture holds for
any N . However, a fraction of the realizations indeed exhibits
violations of the conjecture which does not decrease with
larger N values.

V. DISCUSSION AND SUMMARY

Inferring entropy production of an irreversible system is
a central quest in biological systems and in thermal en-
gines. Only recently, a major breakthrough has come through
the field of stochastic thermodynamics—a set of relations,
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namely, the TUR and subsequent results have been derived
which show that the entropy production could be bounded
by current fluctuations. Nevertheless, current fluctuations are
only easily accessible in an effective single body problem and
specific solvable models. In many-body systems, trading the
difficulty of assessing the entropy production in assessing the
current fluctuations usually means trading one difficult prob-
lem with another. Therefore, it is of interest to find meaningful
accessible bounds to the entropy production in many-body
systems. This work exactly addresses this question.

Our approach to study bounds on current fluctuations and
the entropy production is based on a large N theory spanned
over finite graphs. We show that the current variance Eq. (3)
as well as the cumulant generating function Eq. (15) can
be bounded by the coarse-grained activities that are given
in terms of the steady-state densities. Moreover, the entropy
production is bounded by a the total activity in the system
Eq. (21). Generally, and on an arbitrary graph, the entropy
production bounds Eq. (21) and the TUR Eq. (18) cannot be
ordered. Nevertheless, it is clear that if the number of sites on
the graph becomes large, the bound Eq. (21) becomes irrele-
vant. This is because the entropy production is proportional to
the volume of the graph and it is bounded by a term scaling
like the inverse of the volume. Namely, Eq. (21) is particularly
relevant in small graphs with large occupancy.

Additionally, in 1D systems, we have shown that a series
of bounds exists for the current variance, the activities and
the entropy production. Surprisingly, the entropy production
of the entire system can be bounded from the information in a
single bond Eq. (7). To gain further insights on these results,
we have further studied an interacting model system, namely,
the Asymmetric Inclusion Process (ASIP), and demonstrated
that the activity bound is a significantly better bound for the
entropy production when a large N limit is taken.

The large N theory assumes fast transition rates and large
occupancies. Our results are valid within this framework, with
a controlled error scaling like 1/N . This implies that our
results could give a feasible estimate also for finite N values.
Moreover, other scaling approaches could be considered in
the large N limit [30], probably resulting in different bounds;
such a possibility is left for future studies.

The series of bounds is an appealing result as it suggests
that fluctuating quantities can have useful bounds both from
above and below. It remains to be seen whether one can
bound, e.g., the entropy production from above as well as from
below. Another interesting avenue is an inverse problem of
constructing networks such that useful series of bounds are
obtained, following Eq. (17). It is also of interest to explore
what is the family of networks (besides the 1D case) where
Eq. (4) still applies.

We note that our work could be extended beyond steady-
state physics into the realm of periodically driven systems in
the large N limit similar to Ref. [42]. Moreover, we expect
the bounds derived here to remain relevant also close to phase
transitions as well as dynamical phase transitions [29,50–52].
This statement might be surprising since at this regime fluctu-
ations dominate and one may expect that finite N corrections
to � are important. While this is true, it was already estab-
lished that universal theories capture the relevant corrections
close to a phase transition, i.e., the universal scaling function

is attained [53,54]. Nevertheless, it would be interesting to
explore the saturation of the bound close to a phase transition.

Designing principles consistent with thermodynamics in
interacting particle systems leading to phenomena such as
organization and self-assembly is an important challenge [55].
Dynamic instability of biological machines such as micro-
tubules is another such example where microtubules can grow
and shrink from a centrosome in different tracks following
absorption and escape of tubulins [56,57]. The lattice ASIP
model that has been studied here is a crude and elemen-
tary version of microtubules where particles play the role of
tubulins. In this paper, we have shown how the uncertainty
relations derived herein can be useful to provide informative
bounds for interacting systems with large occupancies. Future
studies need to be made to see whether such statistical model
systems can be useful inspirations to unravel thermodynamic
complexities in biological machines.
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APPENDIX A: FORMULATION OF THE PROBABILITY
DISTRIBUTION AND EQ. (10)

The purpose of this section is to derive the probability
distribution P( j, ρ) [more specifically, to obtain �( j, κ+, κ−)
as in Eq. (10)] in the large N limit. To this end, let us consider
a jump process of two sites x, y. The rate for a particle to
jump from x → y is denoted κ̃+ and to jump from y → x is
denoted κ̃−. We wish to find the cumulant generating function
of eλQ+dt−λQ−dt , where Q± counts the number of jumps from
x � y. Now, expanding the cumulant generating function
leads to

eλQ+dt−λQ−dt = [
eλκ̃+dt + (1 − κ̃+dt )

]
× [e−λκ̃−dt + (1 − κ̃−dt )]. (A1)

Using the large N scaling κ̃± = N 2κ±[ρ] + O(N ) and dt =
dτ/N , we find

eλQ+dt−λQ−dt = eN dτμ(λ), (A2)

where

μ(λ) = (eλ − 1)κ+ + (e−λ − 1)κ−. (A3)

The saddle point at large N insures that the probability
distribution P( j, ρ) ∼ exp (−N

∫
dτL) is connected to the

cumulant generating function by a Legendre transform L =
λ j − μ(λ). Through the Legendre transformation we find

λ( j) = log
j +

√
j2 + 4κ+κ−
2κ+

, (A4)

L = �( j, κ+, κ−), (A5)

where � is given by Eq. (10). Note that the generalization to
multiple sites and larger τ times is straightforward.

064141-6



THERMODYNAMIC UNCERTAINTY RELATIONS FOR … PHYSICAL REVIEW E 104, 064141 (2021)

APPENDIX B: DERIVATION OF THE SERIES OF BOUNDS

In the main text, we have shown that μ′′(0) � (d⊥)2〈A‖〉.
Furthermore, it is by now well known that μ′′(0) �
2(μ′

j )
2/〈�〉 [1,2]. Thus, we are left to prove that indeed

(d⊥)2〈A‖〉 � 2(μ′
j )

2/〈�〉 for 1D systems.
To prove the inequality, we use J = 〈 jx+1,x〉 for any x in

the 1D setup. First, define rx ≡ 〈ax+1,x〉/|J| � 1. Second, note
that

1

2
r log

r + 1

r − 1
� 1 for r > 1. (B1)

Then, it simply follows

(d⊥)2〈A‖〉〈�〉
2(μ′

j )
2

=
∑

x log
( rx+1

rx−1

)
∑

x
2
rx

� 1. (B2)

as claimed in Eq. (4).

APPENDIX C: DETAILS OF THE NUMERICAL
EXPLORATION OF THE BOUNDS AS PRESENTED

IN THE MAIN TEXT

In this section, we provide further details of the numerical
simulations that were conducted to demonstrate our bounds in
the main text. We consider an ASIP model with L = 3 sites
and N = 2 particles with periodic boundary conditions. At
each realization, we randomize the asymmetry rates p±(x) ∈
[0, 1] for x = 1, 2, 3. We consider the total charge flux on the
ring Q = ∑

x=1,2,3 jx+1,x. Namely, dx+1,x = 1, ux = 0.
For the small N = 2, L = 3 values, it is straightforward to

write the 6 × 6 Markov matrix M as well as the tilted matrix
allowing to calculate the cumulants [21]. In the tilted matrix
M, we redefine the Markov coefficients Mx,y → eλqMx,y when
the transition leads to the flux q. The largest eigenvalue of the
tilted Markov matrix corresponds to the cumulant generating
function μ(λ). From μ(λ), the first two cumulants are directly
accessible by differentiation. So, the current and current vari-
ance values obtained in the numerical procedure are exact and
not a large N approximation. One can also define a tilted
matrix for the activities to obtain them exactly. The densities
and entropy production can be directly evaluated using the
eigenstate corresponding to the zero eigenvalue of the Markov
matrix. This eigenstate corresponds to the steady-state occu-
pancies. By following this procedure we would recover the
series of inequalities as in Ref. [42].

However, we wish to show that Eq. (4) exists at the large
N limit with 1/N corrections. For the activities and currents,
we use the large N result

〈ax+1,x〉 = p+(x)〈ρx〉(1 + 〈ρx+1〉)

+p−(x)〈ρx+1〉(1 + 〈ρx〉),

〈 jx+1,x〉 = p+(x)〈ρx〉(1 + 〈ρx+1〉)

−p−(x)〈ρx+1〉(1 + 〈ρx〉). (C1)

The steady-state densities 〈ρx〉 are evaluated from the eigen-
state corresponding to the zero eigenvalue of the Markov
matrix. Finally, the entropy production is evaluated by the
steady-state currents and steady-state activities discussed
above. This mean-field approach is naturally valid in the large
N limit. Therefore, violations of the bounds may be expected.

We consider in the Figs. 1 and 2, the ASIP process with 200
realizations of the random rates. It becomes apparent that the
two bounds become tight at the large N limit. Furthermore,
we showed that indeed the bounds become tight with 1/N
corrections. This can be validated by considering the minimal
differences. The plots indeed show that

μ′′(0) − (d⊥)2〈A‖〉
μ′′(0)

,
(d⊥)2〈A‖〉 − 2(μ′

j )
2/�

(d⊥)2〈A‖〉 ∼ 1/N , (C2)

as predicted theoretically. We note that while the variance-
activity bound can be both positive or negative for finite N ,
the activity-entropy production bound is strictly nonnegative
for any N . This need not persist for any dynamics. How-
ever, note that for each local activity 〈 1

ax,y
〉 � 1

〈ay,x〉 , making
violations uncommon in finite N . Equality is reached only
in the large N limit. Together with the Ref. [42] bound, the
positivity of the bound for any N is therefore not surprising.

APPENDIX D: NUMERICAL EXAMINATION OF THE
BOUND F � μ′′(0)

In the main text (Sec. IV D) it was argued that F � μ′′(0)
is satisfied for most realizations, but not all. Furthermore, this
statement does not depend on the N value. Here we present
numerical evidence for this claim. See Fig. 3 and the captions
therein.

APPENDIX E: DERIVATION OF THE SERIES ACTIVITY
BOUND: THE KINETIC UNCERTAINTY RELATION

In this section, we use Eq. (14) derive a bound on the cur-
rent variance in terms of the series activity 〈A⊥〉 also known
in the literature as the kinetic uncertainty relation [4,6,44].
Let us start from Eq. (14) and take Yx,y = α〈 jx,y〉 for some
constant α. Notice that this choice immediately satisfies the
Kirchhoff’s junction rule Eq. (11). From Eq. (14), we then
find the following inequality:

1

2
μ′′(0) � αμ′

j − α2
∑
x,y>x

〈 jy,x〉2

〈ax,y〉

= αμ′
j − α2

∑
x,y>x

〈ax,y〉 〈 jy,x〉2

〈ax,y〉2
. (E1)

Notice that since |〈 jy,x〉/〈ax,y〉| � 1, we obtain

1
2μ′′(0) � αμ′

j − 1
2α2〈A⊥〉. (E2)

Now, it is straightforward to choose α = μ′
j/〈A⊥〉 to obtain

the kinetic uncertainty bound

μ′′(0) �
(μ′

j )
2

〈A⊥〉 , (E3)

that was obtained in Refs. [4,6,44].
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