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Edwards-Wilkinson depinning transition in random Coulomb potential background
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The quenched Edwards-Wilkinson growth of the 1 + 1 interface is considered in the background of the
correlated random noise. We use random Coulomb potential as the background long-range correlated noise.
A depinning transition is observed in a critical driving force F̃c ≈ 0.037 (in terms of disorder strength unit) in
the vicinity of which the final velocity of the interface varies linearly with time. Our data collapse analysis for
the velocity shows a crossover time t∗ at which the velocity is size independent. Based on a two-variable scaling
analysis, we extract the exponents, which are different from all universality classes we are aware of. Especially
noting that the dynamic and roughness exponents are zw = 1.55 ± 0.05, and αw = 1.05 ± 0.05 at the criticality,
we conclude that the system is different from both Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ)
universality classes. Our analysis shows therefore that making the noise long-range correlated, drives the system
out of the EW universality class. The simulations on the tilted lattice show that the nonlinearity term (λ term in
the KPZ equations) goes to zero in the thermodynamic limit.
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I. INTRODUCTION

The growth of rough interfaces in random media has ab-
sorbed much attention due to its vast application in the fluid
dynamics in porous media [1–3]. The wettability and the
disorder are two factors which along with the driving force
give the dynamics of the interfaces [4–6]. Several authors in
the past have focused on multiphase flow in mixed wet porous
media, and discovered clear discrepancies in the fluid behav-
ior in uniform wet systems and in mixed wet systems [7–11].
Also, much attention was paid to the dynamics associated with
a Haines jump [12], the interface of fluid and porous structures
using the smoothed particle hydrodynamics model [13], the
propagation of a reaction front inside a porous medium [14],
depinning and dynamics of imbibition fronts in the paper un-
der increasing ambient humidity [15], lattice models for flow
in porous media [16], fluid-fluid displacement [9,10,12,17–
19], fire front motion [20], and motion of flux lines in su-
perconductors [21]. Magnetic domains [22] and evolution of
cell colony fronts [23] are other examples of the growth of
rough interfaces in random media. An important large class of
interface dynamics is the ones that are pushed, and at the same
time get pinned at random obstacles already present in the host
media. The stochasticity of the dynamics of these interfaces
is due to the latter, which originates from the stochasticity
of the obstacles, i.e., their size, permeability, etc. Generally,
the properties of the interfaces depend on two ingredients
[24]: the dynamical laws governing the interfaces and the
pattern of the quenched disorder present in the host media.
The effect of the governing laws has been vastly studied in the
literature [25]. The depinning transition phenomenon is one
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of the important observations in this field, which is defined as
a point that the system changes behavior from being pinned
to obstacles (which is identified by a zero interface velocity
at long times), to a moving phase (nonzero interface velocity
at long times). This second-order transition, for which there
is much experimental and theoretical evidence, is due to the
nonlinearity of these systems, and the competition between
the driving force and the resistance force due to the obstacles
[6]. On the theoretical side, there are two general approaches
for modeling these systems: continuous and discrete mod-
els which are classified based on the critical exponents in
the vicinity of the transition. Quenched Edwards-Wilkinson
(QEW) and Kardar-Parizi-Zhang (KPZ) classes are the most
famous continuous models, and the directed percolation de-
pinning class is one of the most important discrete models.
For a good classification of the models, see [6,25]. Many
aspects and applications of these models were studied in the
literature [14,25–32]. Despite this huge literature, little work
has been done on the effect of the type of the quenched noise
(mainly correlated vs uncorrelated) in the host media. In most
applications, the authors concentrated on the quenched disor-
ders which are realized by the uncorrelated noises in a given
range. Nature may behave in a more complicated way, i.e.,
the disorder can be correlated in various ways which should
be realized by the models which contain the key parameters
as in the original system.

Correlated noises and also long-range correlations are
ubiquitous in nature. Examples include the correlations that
exist in the porosity [32–34], diffusion [35], and permeability
[33,34,36,37] in porous media. Also many random systems
are described in terms of or mapped to the random Coulomb
potential (RCP), ranging from the free Bosonic system to the
Edwards-Wilkinson (EW) model of surface growth process
[38], inverse turbulence cascades [39], and the electric field
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of randomly charged noise [40,41]. Here we focus on the op-
posite limit of uncorrelated noises, which is two-dimensional
long-range correlated disordered systems. We use the RCP
to model the quenched noise, which is a well-known model
in statistical mechanics. Many properties of this model are
known; for example, it is quite similar to the Edwards-
Wilkinson model in the stationary phase [40,41], which itself
is c = 1 conformal field theory [42] in two dimensions, and
Coulomb gas [43]. From the global point of view, the in-
terfaces of this model are described by Schramm-Lowener
evolution with the diffusivity parameter κ = 4 [43]. The host
media which is governed by RCP is long range since the corre-
lation of fields is logarithmic (equivalent to the zero roughness
exponent in the EW model) and therefore the corresponding
noise is quite long range [44,45]. Previously some dynamical
models combined with a random Coulomb potential model,
like the percolation [41] and the Ising [40].

In this paper we consider the depinning transition governed
by the QEW model on top of a media for which the correlation
of the noise is controlled by RCP. We find that the properties
of the depinning transition change significantly by introducing
the RCP correlations. In particular, we see a new type of two-
parameter scaling relation around the critical driving force
F = Fc.

The paper is organized as follows: In the next section,
we explore the main properties of the depinning transitions.
The general setup of the RCP noise in our paper is presented
in Sec. III. Section IV is devoted to the presentation of our
results. We close the paper with a conclusion.

II. GENERAL PROPERTIES OF DRIVEN INTERFACES

We study the driven interface dynamics in two-dimensional
random media as its background, represented by stochastic
obstacles, whose positions and strengths are correlated. The
problem is 2 + 1 dimensional, where two spatial components
are (x, y), and 1 stands for the time t . We especially con-
centrate on the motion pattern of one-dimensional interface
y = h(x, t ), the border between “dry” and “wet” phases, in
the presence of “quenched noise” η(x, y) distributed over the
space, and also driving force (here represented by F ). For
small enough driving forces the interface is shown to be in the
“pinned” phase in which the interface stops, more precisely
h̄(t ) ≡ ∑L

x=1 h(x, t ) (where L is system size) vanishes at large
enough time due to the obstacles, meaning that the disordered
resistance force is statistically more effective than the driving
force. For large enough F ’s the interfaces are in the “moving”
phase. There is a critical value of F , represented by Fc where
the interface undergoes a transition from the pinned phase
to the moving phase, named the depinning transition. Let us
define the average velocity of the interface by

v̄F (t, L) = ∂〈h̄〉
∂t

, (1)

where the 〈· · · 〉 is the ensemble average. The order param-
eter of the depinning transition is then defined by v̄∞ ≡
limt→∞ d

dt h̄, i.e., v̄∞ = 0 for the pinned phase, and v̄∞ > 0
for the moving phase. When η(x, h(x, t )) is an uncorrelated
quenched random noise, and the governing equation is the
EW, not surprisingly the underlying interface at Fc becomes a

self-similar (more precisely self-affine) extended object with
critical properties similar to the one-dimensional EW univer-
sality class. In this case, many statistical observables display
scaling behaviors. An example is the interface width, which
has become a standard tool in the study of growing surfaces
for various theoretical and experimental models of growing
interface. It characterizes the roughness of the interface, and
is defined by the fluctuations of the height field. It is defined by

w2 = 〈(h(r) − h̄)2〉, (2)

where the overbar represents the spatial average O ≡
1
L

∑
i O(x = i). For the EW model it is well known that there

is a crossover timescale tX . For t � tX the width increases as a
power of time w(L, t ) ∼ tβw , where the exponent βw is called
the growth exponent and characterizes the time-dependent
dynamics of the roughening process. The power-law increase
of width does not continue indefinitely, but is followed by a
saturation regime (for t � tX ) during which the width reaches
a saturation value, wsat. Indeed wsat itself scales with Lαw ; the
exponent αw being called the roughness exponent, is a second
critical exponent that characterizes the model. The timescale
tX depends on L in a power-law fashion ∼Lzw , where the
dynamic exponent zw is equal to βw

αw
. These relations are sum-

marized in a famous scaling relation for the interface width,
w, as well as some other statistical quantities [25,46–55]

w(L, t ) = Lαw Fw

(
t

Lzw

)
= tαw/zw Gw

(
t

Lzw

)
(3)

from which the exponents can be extracted. The functions
Fw(x) and Gw(x) = x−αw/zw F (x) (showing that zw = αw

βw
)

are some universal functions with the asymptotic behavior
Fw(x) = { xβw x 
 1

const. x � 1.
For 1 + 1 EW the exponents are αw = 0.5, βw = 0.25,

and zw = 2, whereas for QEW we have αw = 0.92(4), βw =
0.85(3), and zw = 1.08(1).

For the QEW class at F = Fc the average velocity v̄F (t )
decreases with time in a power-law fashion [23]

v̄F (t ) ∼ t−q, (4)

whereas v̄F (t ) ∼ e−t/ξF for F < Fc, where ξF ∼ |F − Fc|−ν

and ν is called the correlation length exponent. In the vicinity
of Fc, we have also

v̄∞ ∼ f θ , f ≡ F − Fc

Fc
, (5)

where θ > 0 is the velocity exponent. Close to this transition,
some parts of the interface are growing, and some parts are
pinned, forming pinning paths, and the growth occurs by the
propagation of these growing regions. Taking into account
that the characteristic time required for this propagation is
tX (since it is the time required for correlations to propagate
across the system), and the typical advance for each move-
ment (from one blocking the path to the other) is wsat, one
obtains [6]

v̄∞ ∝ wsat

tX
∝ ζ α/ζ z ∝ f ν(z−α) (6)

giving us the hyperscaling relation θ = ν(z − α).
There are many experiments to realize the driven inter-

faces, like fluid-fluid displacement [17,56,57], imbibition of
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coffee in paper towels [58–60], which reported scattered expo-
nents for the critical driven interfaces [6]. Also, many effects
in this field have been studied, such as 1/ f noise in driven
interfaces [61] and anomalous noise in driven interfaces [18].
Recently it was conjectured by Grassberger that critically
pinned interfaces in two-dimensional isotropic random media
with short-range correlations are always in the universality
class of ordinary percolation [62]. There is a clever method
to distinguish the universality classes of the driven interfaces,
especially the KPZ universality class. If we start from a tilted
initial configuration, i.e., h0 = mx, then the final velocity be-
haves like

v̄∞(m) = v̄∞(m = 0) + λm2, (7)

where v̄∞(m = 0) = v̄∞ ∝ f θ scales with f as before, and
λ ∼ f φ , where φ < 0 for the KPZ universality class, and
φ > 0 for the EW universality class. We see that

v̄∞(m) ∝ f θ + a f φm2, (8)

where a is an unimportant constant. It is worthy to note that
these predictions are limited to the QEW and KPZ universality
classes that are actually reductions of more sophisticated,
more realistic models like the Darcy’s model, which may
show more complex behaviors. Given that λ is proportional
to the nonlinearity coefficient in the KPZ model, one can see
that the former is equivalent to a large nonlinearity term in the
transition point governed by the KPZ class [46,63,64].

III. TWO-DIMENSIONAL RANDOM COULOMB
POTENTIAL NOISE; OUR MODEL

In this section, we consider a two-dimensional host system
with the correlated scale-invariant disorder. Correlated noises
and also long-range correlations are ubiquitous in nature.
Examples include the correlations that exist in the porosity
[32–34], diffusion [35], permeability [33,34,36,37], and elas-
tic constant, and wave speed [65] in porous media. RCPs are
an important type of correlated disorder since many systems
are mapped to them, such as free bosons and the EW model
[38], inverse turbulence cascades [39], and the electric field of
random charged noise [40,41]. Here we consider a different
realization of RCP is the Poisson equation in the background
of white-noise charge disorders, which itself is mapped to the
EW model in the stationary state. We construct a correlated
random (quenched) noise system, through which the driven
interface moves. The governing equations of the interface
dynamics are considered to be the ones for QEW equations.
We can imagine this problem as the coupling of the driven
interface problem with the random Coulomb potential model,
or the critical phenomena on the fractal systems [66]. This
concept can be extended to dilute systems that are fractal in
some limits [67–71].

Before describing the problem in this type of media, let us
first briefly introduce our method of generating RCPs shown
by the field η(r) to be used as a quenched noise in the dy-
namics of the driven interface. We consider a two-dimensional
Poisson equation governing the η(r)

∇2η(r) = −ρ(r). (9)

η(r) is indeed a quenched spatial noise through which the
interface moves. In this equation ρ(r) is the spatial white noise
with the normal distribution and the properties 〈ρ(r)〉 = 0
and 〈ρ(r)ρ(r′)〉 = (nia)2δ3(r − r′), ni is the total density of
Coulomb disorder and a is the lattice constant. This connec-
tion can be confirmed from both numerical and analytical
levels. In the theoretical level, if one takes a look at the prob-
ability measure of Eq. (9), one finds that it is exactly the same
as the probability measure of the EW in the stationary state
(see Ref. [25]). On the numerical level also, we have seen that
all of the statistical observables are the same. For example, the
two-point correlations are logarithmic, the fractal dimension
of isoheight contours is 1.5, the critical exponent of the gyra-
tion radius is 3.0, and the critical exponent of the loop lengths
is 7/3 in accordance with the RCP [72]. It is well known
that this model in the scaling limit is described by Gaussian
distribution function [73]. It is also known that the contour
lines of this model are described by the Schramm-Loewner
evolution (SLE) theory with the diffusivity parameter κ = 4
[43], which is understood in terms of the conformal field
theory (CFT)/SLE correspondence with the relation c = (6 −
κ )(3κ − 8)/(2κ ). The fractal dimension of the contour loops
DRCP

f = 3
2 which is also compatible with the relation D f =

1 + κ
8 . Before we proceed, it seems necessary to review some

points: Actually the Poisson equation (9) with random un-
correlated noise is mapped onto the stationary state of the
EW equation as explored in the literature. In this paper, we
aimed to consider correlated quenched noises, which are de-
scribed by self-similarity parameter α, quantifying the range
of correlations. For this purpose, we found the EW model
more appropriate than others, since for this case the corre-
lations are logarithmic, i.e., 〈η(r + d )η(r)〉 ≈ log d , which
is more long range than other models in our list for which
〈η(r + d )η(r)〉 ≈ dα with α > 0. Therefore, the EW model
fits our purpose (having long-range correlations) better than
other models. All in all, we chose a two-dimensional Poisson
equation with random uncorrelated charges as a representative
of a stationary state of the EW model in two dimensions,
employed to model the long-range-correlated quenched noise
in our system. Please note that it should not be confused with
the QEW model which was used to model the dynamics of the
interface.

The probability distribution function of these fields trans-
forms under r → br as follows: scaling law

η(br)
d= bαRCPη(r), (10)

where the parameter αRCP is the roughness exponent or the
Hurst exponent of the RCP and b is a scaling factor and

the symbol
d= means the equality of the distributions. The

distribution of this system, like a wide variety of random
fields, is Gaussian [72]. Various correlation functions [e.g.,
C(r) ≡ 〈[η(r + r0) − η(r0)]2〉], and the height total variance
show power-law behavior [25], defining the roughness expo-
nents of which are α = 0. It is shown that [74] the probability
distribution functions of this RCP noise are Gaussian:

P(V ) ≡ 1

σ
√

2π
e−V 2/2σ 2

, (11)
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where σ is the standard deviation. In addition the contour loop
ensemble can be characterized through the loop correlation
function G(r) = G(r) (r ≡ |r|) which is the probability mea-
sure of how likely the two points separated by the distance
r lie on the same contour. For large distances this function
scales with r as [72]

G(r) ∼ 1

r2xl
, (12)

where xl is the loop correlation exponent. It is believed that the
exponent xl is superuniversal, i.e., for all the known monofrac-
tal Gaussian random fields in two dimensions, this exponent
is equal to 1

2 [72]. This model belongs to c = 1 CFT and also
SLE4.

We study the flow of a fluid in a two-dimensional random
media as its background, represented by stochastic obstacles,
whose positions and strengths are correlated as explained
above [η(r) in Eq. (9)]. The dynamics are governed by the
QEW continuous growth equation. The system is 2 + 1 di-
mensional, where two spatial components are r ≡ (x, y), and
1 stands for the time t . We especially concentrate on the
motion pattern of one-dimensional interface y = h(x, t ), the
border between “dry” and “wet” phases. The motion of h(x, t )
is governed by the QEW equation

∂h(x, t )

∂t
= υ∇2h(x, t ) + F + η(x, h(x, t )). (13)

where υ is the surface tension that is considered to be υ = 1,
and F is the driving force. It is worthy to note that a more com-
plete description of fluid flow in porous media needs models
like the Darcy model [70,75]. It is not simple to relate Darcy’s
nonlinear model to linear equation (13). One, however, can
find such a mapping by considering Darcy’s model for the
frontier of the growing cluster where this frontier proceeds in
the direction with the lowest pressure and considering a linear
relationship between the rate of growth and the local gradient
of pressure (see Darcy’s law of velocity [70]).

In our simulations η(r) belongs to [−ηmax, ηmax] (ηmax =
10). One can normalize the equation so that the quantities
are compared with unity using h̃(r) = η−1

maxh(r), F̃ = η−1
maxF ,

and η̃(r) = η−1
maxη(r), where ηmax is the maximum η in the

simulations, which gives

∂ h̃(x, t )

∂t
= ∇2h̃(x, t ) + F̃ + η̃(x, y). (14)

IV. RESULTS

We consider the time evolution of a rough (1 + 1)-
dimensional interface described by the vertical coordinate y =
h̃(x, t ) (the height of the interface at the horizontal position x
and the time t). We start the simulation from h̃(x, t ) = 0. To
solve the EW equations we use the finite element method for
both time (t) and space (x), whereas h̃(x, t ) is originally con-
tinuous. We use the first-order (Euler) discretization method
which shows clean enough scaling properties to yield the
critical exponents required for the EW universality class and
also for the case under study here. The discretization scheme
is very crucial in both growth as well as driving interface
models. For the QEW model, due to its linear nature the Euler
discretization scheme is enough (especially in one dimen-

sion), while for nonlinear growth models like the KPZ model,
the Euler method is questionable. Due to this fact, one can see
that most of the investigations on the EW and QEW models
suffice to work with the Euler discretization scheme. The
examples are [76–79]. We consider the effect of correlation
in the quenched noise (realized by RCP) on a Lx × Ly lattice
in which the interface grows on this environment. The RCP
noise is defined on the lattice, and to obtain it at a point on the
interface at x = i (i being an integer), we calculate the integer
part of h at this point to detect the integer vertical coordinate,
i.e., j = int[h̃(i, t )] so that the interface falls into the site (i, j)
experiencing the random resisting force η̃(i, j) to be inserted
into Eq. (13).

RCP samples as the basic noise (as described in the previ-
ous section) are generated using Eq. (9) with open boundary
conditions. This has been already done in our previous works
with exponents consistent with the RCP universality class
[40,41]. In this method, one distributes charged (white noise)
impurities with normal distribution over the lattice, and the
Poisson equation is solved to obtain the potential field, which
serves as the quenched noise in the growth process of the
interfaces. We generated more than 105 RCP samples and
simulated the motion of one interface for each sample using
Eq. (13), i.e., we have generated 105 interfaces for ensemble
averaging. From now on, let us call the vertical direction (the
y axis along which the interface grows) as the time direction
and the x axis as the space direction. Generally, we need
samples with more extension along the time direction since
the interface needs more space to reach the steady state. In this
work we considered samples with Ly = 2 × 104, with Lx ≡
L = 32, 64, 128, 256, 512, and 700, space step �x = 1 and
time step �t = 0.01, and the number of interface realizations
is 103. The CPU time (12 cores with frequency 3.2 GHz) was
≈1.04 × 107 s, i.e., about 4 months.

By considering quenched noise, the interface undergoes
a pinning-depinning transition that takes place at a certain
critical value Fc of the driven force [see Eq. (13)].

We analyze the time dependence of the ensemble average
(denoted by 〈·〉 for any observable) of the mean height of the
interface, i.e., 〈 ¯̃h〉 in terms of the driving force F as is shown
in Fig. 1(a). Although for small times 〈 ¯̃h〉 varies linearly with
time for all F̃ values, for low enough F̃ ’s at a long time limit
the graphs deviate from linearity in the log-log plot, i.e., bend
downwards, showing a tendency of becoming constant in long
enough times, i.e., ¯̃v∞|lowF̃ = 0 which is the characteristic of
the pinned phase. For large F̃ values, however, 〈 ¯̃h〉 varies
linearly with time in this limit, showing that the system is
in the moving phase, and a depinning phase transition takes
place in between. As seen in the inset of Fig. 1(a), ¯̃vF̃ (t, L)
is constant for early times for all F̃ ’s, and crosses over to
a new regime in the longer times which is power-law decay
for low F̃ ’s and nearly constant for large F̃ ’s. For low F̃ ’s,
¯̃vF̃ (t, L) falls even faster for larger times, signaling that we
are in the pinned phase according to the argument given in
Eq. (4) where an extra exponential decay factor is required
[as mentioned in the line after Eq. (4)]. The graphs become
almost constant at long times for F̃ > F̃c, showing that the
system is in the moving phase. We have two possibilities to
calculate ¯̃v∞ which is required for detecting the critical force
F̃c, which are as follows: (1) consider the velocity at the largest
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FIG. 1. (a) Log-log plots of the average height 〈 ¯̃h〉 versus time t for various rates of the driving force F̃ = 0.025, 0.04, 0.05, 0.053, 0.056,
0.06, 0.07, 0.08, 0.09, and 0.1. In fact, the velocity strongly depends on the driving force F̃ . The inset is log-log plots of velocity ṽ as a
function of time t as obtained for different driving forces F̃ that show F̃c = 0.053 that measured for a system size L = 700. After a short time,
for F̃ > F̃c the interfaces grow at a constant velocity and for F̃ < F̃c the interfaces become pinned. For all figures, the results are obtained
by starting with flat interfaces and averaged for 1000 realizations. (b) The plot of the velocity of growing interface for long enough times ¯̃v∞
versus driving force F̃ , as measured for different system sizes L. We observe that all the interfaces become pinned below the critical point
( ¯̃v∞ = 0). The pinning-depinning transition of the interfaces takes place at critical values of driving forces of different system sizes. The inset
shows critical values of driving forces F̃c vs different system sizes 1

L .

time available in our data as an approximation of ¯̃v∞, and (2)
extrapolate ¯̃vF̃ (t, L) to find it. Since the extrapolation needs
the precise fitting formula, the identification of which itself
causes a large error (note that such a fitting formula is not clear
for intermediate F̃ ’s), we considered the first strategy, and
F̃c is estimated as the point where ¯̃v∞ becomes considerable
(increases abruptly an order of magnitude) for the first time
[see Fig. 1(b)]. Our statistical analysis reveals that the critical
force is F̃c = 0.053 ± 0.002 for L = 700, which is identified
by an arrow in the inset of Fig. 1(a) as the separator of the two
phases. The velocity-time curve for F̃ = 0.053 does not, how-
ever, follow a power-law behavior as is evident in this figure,
and instead, the log-log plot of the orange curve (F̃ = 0.04) is
linear for two decades. To understand this we considered the
finite size dependence of F̃c which is presented in Fig. 1(b),
inside which F̃c is plotted as a function of 1/L with a nice
linear fit. This analysis shows that F̃c is extrapolated linearly
to 0.037 ± 0.002 as L → ∞. Also we notice that ¯̃v∞ grows
almost linearly with F̃ for F̃ > F̃c, i.e., θ ≈ 1 in Eq. (5).

As discussed in the arguments that led to Eq. (3), we expect
that the data collapse of the roughness of the interface gives
us some new exponents, i.e., αw and zw. In Figs. 2(a)–2(c) we
show the log-log plot of 〈w̃〉 (that w̃ = η−1

maxw) versus time for
different system sizes. The data collapse analysis is presented
for F̃ = 0.025, 0.04, and 0.08 (the upper insets), each of
which shows the finite size scaling hypothesis according to
Eq. (3). The lower insets show the saturated roughness w̃sat

in terms of L. The resulting exponents in terms of F̃ are
shown in Fig. 2(d). In contrast to βw which is nearly constant
for all F̃ values, the exponents αw and zw show a change at
F̃ � 0.037. For F̃ � F̃c � 0.037, αw � 1.05 ± 0.05 and zw �
1.55 ± 0.05, whereas for F̃ = 0.025 (below the transition
point) we have αw = 0.852 ± 0.05 and zw = 1.32 ± 0.05,
which are different from the corresponding exponents F̃ > F̃c.

For both of the phases, the obtained exponents are different
from those of the EW and KPZ classes. Therefore we see
that the random Coulomb potential correlated host changes
the universality class of the driven interface.

Actually ¯̃vF̃ (t, L) deviates from Eq. (4). To show this, let
us consider the L dependence of the velocity curves in each
phase, i.e., Fig. 3 where the results for F̃ = 0.025, F̃ = 0.04,
and F̃ = 0.08 [Figs. 3(a), 3(b), and 3(c), respectively] are
shown. Interestingly we see that in all cases, the graphs cross
each other in an almost single point, denoted by t∗ which we
interpret as the crossover point from pinned to moving phase.
The slopes of the graphs at t∗ are definitely L dependent.
We see from Fig. 3(d) that t∗ ∼ F̃−η, where η = 0.64 ± 0.04.
Also we observe that [Fig. 3(d)] ṽ∗ ≡ ¯̃vF̃ (t∗, L) shows power-
law dependence on t∗ and F̃ consistently, i.e.,

ṽ∗ ∼ t∗−1.77±0.1 and ṽ∗ ∼ F̃ 1.14±0.05, (15)

which is consistent with the amount of η that we found.
Before exploring the properties of t∗ in more detail, let us

apply the data collapse analysis based on single scaling only
to the first part of the graphs (t 
 t∗), i.e., the relation

¯̃vF̃ (t
t∗ )(t, L) = Lα(1)
v Fv1

(
t

Lz(1)
v

)
, (16)

where Fv1 is a function with limx→0 Fv1 (x) = const. v1 repre-
sents that the analysis applies for the velocities only in the
early times. This analysis, which fits only the early parts of
the graphs, is shown in the lower insets, the results of which
are shown in Table I. We see that the exponents do not vary
with F̃ .

It is important to note, however, that all parts of the ve-
locity are not fitted with this relation, i.e., the portions in
longer times are different. The most optimal way out of this
inconsistency is to consider a scaling relation with two vari-
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FIG. 2. Log-log plots of the average interface width 〈w̃〉 versus time t for different sizes L. From the best fit of the data in the inset, we obtain
the following: (a) For F̃ = 0.025, αw = 0.852 ± 0.05, zw = 1.32 ± 0.02 and βw = 0.6 ± 0.03. (b) For F̃ = 0.04, αw = 0.987 ± 0.008, zw =
1.52 ± 0.02, and βw = 0.64 ± 0.01. (c) For F̃ = 0.08, αw = 1.10 ± 0.01, zw = 1.6 ± 0.02, and βw = 0.69 ± 0.01. Right-hand side insets:
Log-log plot of interface width during the saturation regime (w̃sat) as a function of the system size L (data obtained from the main figure for
t � tX ). (d) We plot αw , βw , and zw exponents in terms of F̃ and the dashed line shows Fc = 0.037.

ables. To understand this, let us recall that there are two
relevant spatial scales, namely, the system size L and the
correlation length ξF̃ . This correlation length is related to
the correlation time which is given by the time dependence
of the velocity [see one line below Eq. (4)] and accordingly
a correlation length which is ζ = v̄ξF . This correlation be-
comes infinity (more precisely of the order of the length of
the lattice for finite systems) right at the depinning transition
point, so that Eq. (4) is obtained which includes no char-
acteristic length scale. The correlation length behaves like
ξ∞

F̃
≡ ξL→∞

F̃
∼ (F̃ − F̃c)−ν in the thermodynamic limit close

to the continuous transition points. This, alongside the fact
that ¯̃vF̃ (t, L) is L independent at t∗ implies that the velocity is
in the form

¯̃vF̃ (t, L) = L−αv G

(
t − t∗

Lz1
,

t

Lβvξ∞
F̃

z2

)
, (17)

TABLE I. Numerical results for exponents of interface velocity
in different phases in near critical point.

Quantity αv zv βv = αv

zv

F̃ = 0.025 0.15 ± 0.04 0.42 ± 0.05 0.34 ± 0.06
F̃ = 0.04 0.14 ± 0.04 0.42 ± 0.05 0.32 ± 0.06
F̃ = 0.08 0.13 ± 0.03 0.42 ± 0.05 0.31 ± 0.04

where αv , βv , z1, and z2 are scaling exponents. We propose
(and confirm later) that G(x, y) asymptotically behaves like

G(0, y) ∼ y−αv/βv , G(−x, 0) ∼ a′x−γ + b, (18)

where γ is a new exponent, and a′ and b are some nonuniver-
sal constants. Therefore, at t = t∗ we have

¯̃vF̃ (t∗, L) ∝ (
ξ∞

F̃

)αvz2/βv t∗−αv/βv (independent of L) (19)

and also

lim
t→0

¯̃vF̃ (t, L) = a′L−αv+γ z1t∗−γ + bL−αv . (20)

To fix these exponents, we analyzed ¯̃vF̃ (0, L) in terms of L for
fixed F̃ (and consequently fixed t∗), the results of which are
shown in Fig 4. Figure 4(a) shows the dependence on F̃ , which
reveals that ¯̃vF̃ (0, L) is linear with respect to F̃ . Therefore,
recalling that t∗ ∝ F̃−η, one obtains γ = 1

η
= 1.56 ± 0.09.

This illustrates that

lim
t→0

¯̃vF̃ (t, L) = m(1)
L F̃ + m(2)

L , (21)

where m(1)
L = aL−αv+(z1/η) and m(2)

L = bL−αv , and a is a
nonuniversal constant. The dependence of these slopes on
L is shown in Fig. 4(b), giving αv = 0.39 ± 0.09 and z1 =
0.29 ± 0.07.

The only remaining exponents are z2 and βv , which are ob-
tained by analyzing ṽ∗. Since ṽ∗ ≡ ¯̃vF̃ (t∗, L) does not vanish,
or become divergent at F̃c that we have found above (does not
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FIG. 3. (a) Log-log plots of ¯̃vF̃ (t, L) versus t at the driving force F̃ = 0.025, as measured for different system sizes L (all sizes are in
pinned phase). (b) Log-log plots of ¯̃vF̃ (t, L) versus t for F̃ = 0.04. (c) Log-log plots of ¯̃vF̃ (t, L) versus t for F̃ = 0.08. Numerical results for
exponents of interface velocity in different phases are given in Table I. (d) Log-log plot t∗ time in the crossover point versus F̃ and the inset is
log-log plot ṽ∗ versus F̃ for a system size L = 700.

depend on ξ∞
F̃

), we conclude that z2 = 0, giving rise to

ṽ∗ ∼ t∗−αv/βv . (22)

Using Eq. (15) we find that βv = 0.22 ± 0.07. These expo-
nents are shown in Table II.

As an important check for the validity of Eq. (17), we study
the slope of ¯̃vF̃ (t, L) in the vicinity of t∗. Consider two vari-
ables x ≡ L−z1 (t − t∗) and y ≡ tξ−z2

F̃
L−βv so that (x∗, y∗) ≡

(0, t∗

Lβv ξ
z2
F̃

) is the crossover point, so that (noting from the

above that t∗ is only F̃ dependent) ¯̃vF̃ (x∗, y∗) is apparently

FIG. 4. (a) The log-log plot of ¯̃vF̃ (0, L) in terms of (a) F̃ and (b) L with the exponents shown in the inset.
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FIG. 5. The dependence of sL (F̃ ) versus L for F̃ = 0.04. The
dashed line is the fitting with the exponents z1 = 0.3 ± 0.04, βν =
0.2 ± 0.03, and z2 = 0 according to Eq. (25).

L independent. One can expand ¯̃vF̃ (t, L) in the vicinity of x∗
and y∗, giving rise to

¯̃vF̃ (t, L) = ṽ∗ + (t − t∗)

(
AF̃ (L)

Lz1
+ BF̃ (L)

Lβvξ
z2

F̃

)
+ · · · , (23)

where AL(F̃ ) ≡ ∂xG(x∗, y∗) = A( t∗

Lβv ξ
z2
F̃

) and BL(F̃ ) ≡
∂yG(x∗, y∗) = B( t∗

Lβv ξ
z2
F̃

) are the expansion coefficients.

We then have

¯̃vF̃ (t, L) − ṽ∗ ∝ sL(F̃ )(t − t∗), (24)

where

sL(F̃ ) = AL(F̃ )

Lz1
+ BL(F̃ )

Lβvξ
z2

F̃

. (25)

The fact that AL(F̃ ) and BL(F̃ ) are L and F̃ dependent, makes
this analysis hard to do. For F̃ � F̃c, however, we found
that these dependencies are negligible, and the obtained ex-
ponents are very close to the ones found above. The result
is shown in Fig. 5, in which the exponents are shown, i.e.,
βv = 0.2 ± 0.03 and z1 = 0.3 ± 0.04, which are consistent
with the fittings just found in our previous analysis. From

TABLE II. The exponents of the velocity, given in Eq. (17).

αν βν γ z1 z2 η

0.39(9) 0.22(7) 1.56(9) 0.29(7) 0 0.64(4)

this study we infer that there is a crossover from L < L∗ to
L > L∗, where L∗ = (A/B)1/(z1−β )ξ

z2/(z1−β )
F̃

. More precisely
for L > L∗ we expect that the slope is given by BL−βξ

−z2

F̃
,

whereas for L < L∗ it is AL−z1 .
Now let us consider the velocities in the tilted setup,

i.e., Eq. (7), using which one can determine the universality
classes. Figure 6 presents the results (the average velocity
¯̃v∞) of the setup in which the initial interface is tilted with
a slope m for various driving forces, and for a system size
L = 700. This figure shows that v varies almost linearly with
m2 [Fig. 6(a)], especially in large m2 values which confirms
the relation (7). We use the data collapse technique using the
relation (8), which is shown in the inset of Fig. 6(a). With a
simple rescaling ¯̃v∞

f̃
and m2

f 1/4 . We see that the curves fit to each
other. It is seen that θ is almost 1, and 1 − φ = 0.25, giving
rise to φ ≈ 3

4 . This shows that the λ term does not diverge
in the thermodynamic limit as the KPZ universality class.
The F dependence of λ is depicted in Fig. 6(b) in the vicin-
ity of F̃c ≈ 0.081 for L = 256, from which we see a nearly
constant λ. For the F̃c this slope is a monotonic decreasing
function of L, and extrapolates to zero in the L → ∞ limit.
This analysis shows again that the nonlinearity term (which
is responsible for lateral growth in KPZ) is not present in our
model.

V. CONCLUDING REMARKS

In this paper, we considered the effect of correlation in
the (quenched) noise on a Lx × Ly square lattice to the de-
pinning transition and observed that it has a nontrivial effect
on the motion and the morphology of an interface. To this
end, we considered the dynamics of interfaces which are
described by the QEW driven by the force F̃ on top of a
lattice in which the noise results from a random Coulomb

FIG. 6. (a) The dependence of ¯̃v∞ of the tilted setup in terms of m2. Inset: data collapse analysis of the main panel. (b) The slope of the
¯̃v∞ − m2 relation in terms of F̃ , i.e., λ(F̃ ). Inset shows λc ≡ λ(F̃c ) in terms of the system size L, which decreases with L, extrapolating to zero
as L → ∞.
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potential noise (which corresponds to the two-dimensional
Edwards-Wilkinson model in the stationary regime). The in-
terface is shown to be pinned by disorder if the driving
force is small, and there is a critical force, shown by F̃c

where the interfaces are critically pinned, so that for the
forces just above this critical force the interface advances
by jumping from one pinning path to another with a ve-
locity almost proportional to F̃ [see Fig. 1(b) that shows
the final velocity ¯̃v∞]. In the vicinity of the transition point
the velocity varies according to Eq. (5) with θ ≈ 1. In
the moving phase, i.e., very large driving forces (F̃ � F̃c),

the velocity of the interfaces is proportional to the driv-
ing force (the interfaces grow with constant speed). The
analysis of the roughness shows that the growth exponents
of our model are αw = 1.05 ± 0.01 and the dynamical ex-
ponent zw = 1.55 ± 0.05, showing that the system is in a
new universality class which is different from both EW and
KPZ.

We also developed a two-variable scaling analysis for the
velocity which is based on the observation of a crossover point
where the velocity becomes L independent. The exponents of
this analysis are reported in Table II.
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