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Percolation analysis of the atmospheric structure
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The atmosphere is a thermo-hydrodynamical complex system and provides oxygen to most animal life at
the Earth’s surface. However, the detection of complexity for the atmosphere remains elusive and debated.
Here we develop a percolation-based framework to explore its structure by using the global air temperature
field. We find that the percolation threshold is much delayed compared with the prototypical percolation model
and the giant cluster eventually emerges explosively. A finite-size-scaling analysis reveals that the observed
transition in each atmosphere layer is genuine discontinuous. Furthermore, at the percolation threshold, we
uncover that the boundary of the giant cluster is self-affine, with fractal dimension df , and can be utilized to
quantify the atmospheric complexity. Specifically, our results indicate that the complexity of the atmosphere
decreases superlinearly with height, i.e., the complexity is higher at the surface than at the top layer and vice
versa, due to the atmospheric boundary forcings. The proposed methodology may evaluate and improve our
understanding regarding the critical phenomena of the complex Earth system and can be used as a benchmark
tool to test the performance of Earth system models.
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I. INTRODUCTION

The Earth behaves as a complex and adaptive system that
contains two main components: the ecosphere as well as the
human factor [1]. The development of Earth system science
has achieved a deep integration of biosphere, geosphere, and
human dynamics to build a unified understanding of the Earth
system [2]. During its evolution, some new concepts such as
sustainability [3], anthropocene [4], and planetary boundaries
framework [5] have arisen. In particular, the terms of tipping
elements [6] were introduced to describe the Earth, which is
a large-scale system that may pass a tipping point. Recently,
Lenton et al. highlighted that nine climate tipping points, such
as the collapse of the Greenland ice sheet, the loss of the
Amazon rainforest and the slowdown of the Atlantic Merid-
ional Overturning Circulation have been activated in the past
decade [7], and therefore urgent action to reduce greenhouse
gas emissions to prevent key tipping points should be taken.
Critical phenomena in physics are analogous to the tipping
elements in Earth science [8], where a system will collapse
and follow a breakdown, if it is close to a phase-transition
point [9,10]. They are among the most striking phenomena of
nature and society [11]. The atmosphere, as one of the main
components of Earth, plays a vital role in the function and sus-
tainability of the Earth’s system. Peters and Neelin pointed out
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that the atmospheric convection and precipitation behave as a
critical phenomenon with water vapor as the tuning parameter
[12].

Percolation, a basic example of a critical phenomenon,
describes a geometrical phase transition where the critical
concentration separates a phase of finite clusters from a phase
where an infinite (or giant) cluster is present [13,14]. It further
becomes an effective tool for studying the structure, robust-
ness, and function of complex systems [15,16] and has been a
cornerstone in the theory of spatial stochastic processes with
broad applications such as epidemiology [17–19], networks
[20–23], turbulence [24], and traffic [25]. It has also been
successfully implemented in Earth sciences, for instance, to
study the critical behavior of transport in sea ice [26], to
analyze the global patterns of tropical forest fragmentation
[27], to investigate the geometrical features of Earth [28,29],
to predict the occurrence of extreme climate events [30] and
impacts of climate change [31], etc. [32]. In this Letter, we
apply percolation theory to unveil the criticality, complexity,
and structure of the atmosphere. Generally speaking, the at-
mosphere exhibits irregular variations and fluctuations, and is
composed of four concentric layers: the troposphere, strato-
sphere, mesosphere, and thermosphere [33]. About 99% of the
total atmospheric mass is concentrated in the first 30 km above
Earth’s surface. The complexity of the atmosphere is mainly
driven by physical processes, such as radiation, convection,
and aerosol movement. Figure 1 depicts the atmospheric
wind circulation patterns within different pressure levels, i.e.,
from top to surface, 10, 850, and 1000 hPa, respectively.
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FIG. 1. Schematic of atmospheric wind circulation patterns for
different pressure levels, from top to bottom, 10, 850, and 1000 hPa,
respectively. Here we chose the wind speed (m/s) data from January
1, 2020.

We find that the structure and circulation patterns are quite
complex and different from each other. It was reported that
the complex nonlinear atmospheric dynamics cascaded from
planetary scales down to small viscous scales [34]. There
are many nonequilibrium dynamic phenomena that must be
analyzed to completely understand the atmosphere [35].

II. DATA AND METHODS

Our analysis is based on global monthly mean-air-
temperature data with as many as 37 vertical pressure levels
from the European Centre for Medium-range Weather Fore-
casts (ECMWF) ERA5 reanalysis datasets [36]. The searching
principle for air-temperature data is as follows: (i) It is the
most commonly measured weather or climate parameter and
describes the kinetic energy, or energy of motion, of the gases
that make up air. (ii) Temperature varies greatly at different
heights relative to the Earth’s surface and characterizes dif-
ferent layers of the atmosphere. More specifically, each layer
represents a special meteorological meaning, e.g., 1000 hPa
stands for the near surface level; 850 hPa temperature is ap-
proximately 1.5 km above sea level, usually just above the
boundary layer, and is used to locate and identify warm and
cold fronts; 200 hPa is the upper boundary of the troposphere
(top of the troposphere), the temperature generally decreases
with increasing height up to the troposphere; 1 hPa means the
top layer of the stratosphere, which is approximately 50 km
above sea level. For each layer of the atmosphere, the temper-
ature field is divided into N grids (nodes) with resolution r =
0.25◦, resulting in N = 721 × 1440, where 721 is the number
of grids in the meridional (north-south) direction, and 1440
is the number of grids in the zonal (east-west) direction. Due
to the Earth’s spherical shape, the grids at different latitudes
represent different area, i.e., proportional to cos (φ), where φ

is the latitude. We therefore define the reduced area for each

site i at latitude φi as

si = cos (φi )∑N
j=1 cos (φ j )

. (1)

The time period spans from 1979 to 2020 (the data can be
downloaded from Ref. [37]).

Data filtering. To avoid the strong effect of seasonality,
we subtract the mean seasonal cycle over 42 years. For each
node or grid i (i.e., longitude-latitude grid point), we calcu-
late the monthly atmospheric temperature anomalies T̃i(t ) =
Ti(t ) − 〈Ti〉, where Ti(t ) is the actual temperature value, 〈Ti〉
stands for the climatological average at the given node i, and
t is the time. We then define the standard deviation Ri =
std(T̃i(t )) as the climate variance at node i, which quantifies
the deviation or variation of real temperature from the mean
seasonal cycle. The spatial structure of the air-temperature
anomalies standard deviation field Ri varies between different
pressure levels [see, e.g., Figs. 2(a)–2(c)], reflecting different
atmosphere-ocean-land interaction processes, is thus a good
indicator of atmosphere complexity. It reveals some climate
modes and patterns, e.g., the ENSO and the Antarctic circum-
polar current, as shown in Fig. 2(a).

Percolation model. We first rank all the nodes according
to their climate variance Ri, from the largest to the smallest
value (see Fig. 2). Our percolation model is defined as follows:
starting from an unoccupied node (or site) on a lattice network
embedded in two dimensions (2D), the nodes are occupied
one by one according to their ranking, i.e., we first choose and
add the node with the highest Ri, then the second, etc. Second,
we identify the clusters based on classical percolation theory:
a cluster is a subset of nearest-neighbor nodes such that there
exists at least one path from each node in the subset to another
[16,38]. Here we use the efficient Newman–Ziff algorithm
to detect the different clusters in evolving progress [39]. In
this study, sites are indeed defined as latitude-longitude grids,
with resolution r = 0.25◦ on this sphere. Since our Earth is
spherical in shape, i.e., the sites at latitude 90◦ S (south pole)
and latitude 90◦ N (north pole) are not adjacent, therefore, free
boundary conditions are adopted along the north-south direc-
tion. However, the sites at longitude 0◦ and longitude 360◦
are actually the same, thus, periodic boundary conditions are
adopted along the east-west direction. Therefore, each node
has four nearest neighbors (except the north and south poles).
Besides, we perform a percolation analysis of the atmospheric
structure, and we do not consider Earth’s surface, i.e., cov-
ered by water (i.e., oceans) or land. In percolation theory,
the relative size of the largest cluster is usually defined as
the order parameter [13]. Different from classical percolation
theory due to the Earth’s spherical shape, the largest cluster
s in the atmospheric system is redefined as [31] according to
Eq. (1):

s = max

[(∑
i∈H1

si

)
,

(∑
i∈H2

si

)
, . . . ,

( ∑
i∈Hm

si

)
, . . .

]
, (2)

where Hm denotes a series of disjoint subnetworks. During the
evolution of our atmospheric system, we measure the order
parameter s(P) at time step P and compute its relative largest
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FIG. 2. Illustration of air temperature anomaly spatial standard deviation Ri maps for three specific pressure levels: (a) 1000 hPa,
(b) 850 hPa, and (c) 10 hPa. R quantifies the deviation or variation of real temperature from the mean seasonal cycle for each pressure
level. Here R is normalized from 0 to 1.

one-step gap � [40,41]:

� ≡ max
P

(s[P + 1] − s[P]). (3)

Meanwhile, we define the occupied probability p = P/N , the
time step with the largest jump � as Pc and the correspond-
ing reduced transition point as pc = Pc/N . Equation (3) is
used to determine the percolation threshold. As explained in
the following, our results indicate that the percolation model
undergoes an abrupt and explosive phase transition at the
critical threshold pc, with a significant discontinuity in the
order parameter s (shown in Fig. 3).

III. RESULTS

Figure 3(a) shows the atmospheric (1000 hPa) network
cluster structure in the color map at the percolation threshold
pc [indicated by the dashed line in Fig. 3(b)]. We find that the
network is characterized by two major compact communities:
the largest one is located in the Northern Hemisphere (red
color) and the second-largest one in the Southern Hemisphere
(blue color). In the next step, a critical node will add and
merge the two clusters, resulting in the formation of a super-
giant component. Figure 3(b) depicts the relative size of the
largest cluster s as a function of p. It shows that s undergoes
an abrupt jump at the percolation threshold pc ≈ 0.76, which
is much delayed compared with the prototypical site perco-
lation model, pc ≈ 0.593 [39]. This pc describes the tipping
point at which the atmospheric system switches from several
smaller clusters to very fewer larger ones. Each cluster had
similar climate phenomenon. This finding allows us to relate
changes in the cluster structure of the climate system to more
specific phenomena. For example, the clusters can capture the
El Niño Southern Oscillation (ENSO) pattern very well; see
the central and eastern equatorial Pacific in Fig. 3(a). ENSO is
one of the most influential coupled ocean-atmosphere climate
phenomena, occurring about every two to seven years [42].
To verify our conjecture, we perform the same analysis for
every five years separately. The results are shown in Fig. S1
of the Supplemental Materials [43] and we find that the ENSO
pattern only appears in the period including very strong El
Niño events (1982–1983, 1997–1998, and 2014–2016) as well
as strong La Niña events (2007–2008 and 2010–2011).

Figures 3(c) and 3(d) illustrate the atmospheric cluster
structure at the percolation threshold, and the evolution of s
at the 850 hPa pressure level. Likewise, we also obverse an
abrupt percolation phase transition. However, there are some

substantial differences for the atmospheric cluster structure
between 1000 and 850 hPa: The ENSO pattern disappears
[Fig. 3(c)] because of the weakening ocean-atmosphere inter-
actions from the surface layer [44,45]. For the case of 10 hPa,
we demonstrate the results in Figs. 3(e) and 3(f). To better
understand the temperature mode and the dynamic percolation
progress in different pressure levels, we show six nodes worth
of temperature in Fig. S2 and illustrate the dynamical evolu-
tion of percolation in the Movies S1–S3 (see Supplemental
Materials [43]).

The order of the phase transition is a fundamental prop-
erty in critical phenomenon. A lattice or network system is
expected to undergo a continuous percolation phase transi-
tion during a random occupation or failure process [46]. To
demonstrate that the observation of the jump � in the order
parameter is genuinely discontinuous, we study the finite-size
effects of our atmospheric system by altering the resolution of
nodes, i.e., we increase the resolution from r = 0.25◦ to 0.5◦,
resulting in L = 1440 to 720, etc. Note that, in this progress,
we do not change or rescale the real data (not reproduce new
data). We then calculate �(L), see Eq. (3), the largest gap in s
as a function of network system size L and see how it behaves
when extrapolated to infinite system size. Following Ref. [41],
�(L) is anticipated to exhibit a scaling relation, as a function
of system size L,

�(L) ∼ L−β1 , (4)

where β1 is the critical exponent characterizing the universal-
ity class of the percolation problem. The value of β1 indicates
the order of the percolation, i.e., β1 = 0 immediately im-
plies a discontinuous percolation transition; otherwise, β1 > 0
implies the continuity of the phase transition. Figure 4(a)
presents the order parameter s as a function of the occupied
probability p with different system sizes L = 1440, 720, 360,
and 180. Our results suggest that there are no significant
finite-size effects for our model, since the three curves are
nearly overlapping. In addition, Fig. 4(b) reveals that β1 = 0,
indicating � tends to be a nonzero constant as L → ∞.

Null model. To demonstrate that the discontinuity in our
atmospheric percolation model is not accidental, we propose
a null model. The null model is numerically generated by
shuffling the surrogate of the original data. We have realized
10 000 such randomizations and performed the percolation
in each sample. This procedure destroys the spatial associ-
ation in the standard deviation (Ri) profile, while it keeps
its distribution (see Fig. S3 of the Supplemental Material
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FIG. 3. Snapshots of the atmospheric percolation cluster structures. (a) Plot of the giant (red) and second-largest (blue) clusters just before
the percolation threshold pc ≈ 0.76 for 1000 hPa pressure layer. (b) Schematic plot of the largest cluster size s versus the occupied probability
p, the number of attached nodes per N for the percolation model. Analogous to panels (a) and (b), panels (c) and (d) show the case of the
850 hPa pressure layer, and panels (e) and (f) show the case of the 10 hPa pressure layer. The grid resolution is 0.25◦, resulting in L = 1440,
and N = 1440 × 721. The dashed lines in panels (b), (d), and (f) indicate the corresponding percolation threshold.

[43]). As expected, the shuffled samples all correspond to
the classical uncorrelated site percolation class [39] with a
continuous phase transition at p ≈ 0.59, and critical exponent
β1 = 15/144 ≈ 0.104 [41], as shown in Fig. 4. For the case
of other pressure levels, 850 and 10 hPa, we observe similar
results that are shown in Fig. S4 of the Supplemental Material
[43].

In the following, we analyze the fractal dimension of the
percolation cluster and use it to quantify the complexity of
the atmosphere. The fractal concept was first introduced by
Mandelbrot [47] and applied to percolation by Stanley [48].
It is used to describe the cluster shapes at the percolation
threshold pc. The giant cluster is self-similar on all length
scales and can be regarded as a fractal. Here, we consider the
boundary (interface) of the largest cluster at the percolation
threshold (as shown in Fig. S5 of the Supplemental Material
[43]) and define Nb as the number of nodes in this boundary.
The fractal dimension d f can be estimated by examining the

following power-law fit:

Nb(L) ∼ Ld f . (5)

The value of d f indicates the self-similar fractal patterns and
complexity of a system, such as coast lines [49]. The goodness
of fit, as shown in Fig. 5(a), provides excellent support for
Eq. (5), suggesting that the boundary of the largest cluster
is self-affine. Figure 5(b) shows the value of d f for all 37
pressure levels. We uncover that d f generally increases su-
perlinearly with pressure P because d f (P ) − 1 ∼ P4. This
means that the complexity of the atmosphere is much higher
on the surface (1000 hPa) than at the top (1 hPa). We as-
sociate the possible climatological and physical origin of
the complexity with the atmospheric boundary forcings, i.e.,
solar radiation and ocean-surface and land conditions. The
atmospheric state (winds, temperatures, humidities, etc.) is
significantly affected by the exchange of energy and fluxes
at the interface of the ocean (or land) and atmosphere through
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FIG. 4. Finite-size effects of the percolation for both real data and shuffled (null model) data. (a) The largest cluster size s plotted as a
function of p with different system size. (b) Log-log plot of the size of the largest gap �(L) versus L. The dashed lines in panel (b) are best-fit
lines for the data with R2 > 0.99. Results for the null model are obtained over 10 000 independent realizations.

compensatory dynamical circulations [50]. Remarkably, these
coupled interactions become weaker for higher layers and thus
yielding a lower complexity.

The complex Earth system is modulated by both external
(e.g., solar radiation, the sphericity of the earth, rotation, to-
pography, vegetation cover, etc.) and internal factors (e.g., the
intrinsic properties of the atmosphere, composition, various
instabilities, and the general circulation). The numerical cli-

mate model is considered as the primary tool for investigating
our Earth. It rests on the fundamental laws of physics, chem-
istry, and biology. However, there are still processes that it
cannot emulate because (i) they are insufficiently understood
or (ii) they occur on spatial-temporal scales which the model
cannot capture. Our theoretical approach proposed here is
based on the observed data and provides a fresh insight into
the underlying mechanism of the Earth system. In particular,

FIG. 5. (a) Log-log plot of the length of the boundary Nb(L) versus L at the percolation threshold for 1000, 850, and 10 hPa pressure levels.
The dashed lines are the best-fit lines for the data with R2 > 0.99. (b) Plot of the fractal dimension df (P ) as a function of pressure level P .
The dashed line is a fitting line described by a quartic regression equation with df (P ) = 1 + 8 × 10−14P4.
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it builds an essential parameter for quantifying complexity
which can be used as a benchmark tool to test the performance
of Earth system models.

To demonstrate that our method can be used as a bench-
mark tool to diagnose the climate system, we perform the
same percolation analysis on the temperature field of the two
Earth system models, i.e., the CMCC-CM model and the
CNRM-CM5 model with the Representative Concentration
Pathway 8.5 (RCP8.5) scenario in the Coupled Model In-
tercomparison Project Phase 5 (CMIP5) twenty-first century
climate change simulations. The chosen principles for the
models are as follows: (i) they must contain air tempera-
ture fields with different pressure layers, and (ii) they must
have higher resolution. Resolutions are given as the number
of latitude × longitude grid points, e.g., CMCC-CM with
240 × 480 and CNRM-CM5 with 128 × 256. The evolution
of the largest cluster size S with increasing occupied prob-
ability is shown in Figs. S8 and S10 of the Supplemental
Material [43] for the two models, respectively. The fractal
dimension d f as a function of pressure levels is also shown in
Figs. S9 and S11. Compared with the over-served ERA5
reanalysis dataset, we find that both models undergo dis-
continues percolation phase transitions for different layers.
The fractal dimension for the CMCC-CM model exhibits an
increasing trend with pressure levels, which indicates that
the complexity of the atmosphere decreases with its height.
However, for the CNRM-CM5 model, we do not find such
a significant increasing trend [see Fig. S11(b)], in particular,
for the lower pressure levels. Based on the diagnostic of com-
plexity, we thus think further improvement is needed for the
CNRM-CM5 model.

IV. DISCUSSIONS

In summary, the structure of the atmosphere governs the
Earth’s energy behavior and controls how the climate devel-
ops. It is thus of great importance that its better characteristics
will improve our description and understanding of the Earth
system. Here, we developed a percolation model that analyzes
the atmospheric structure and its complexity in a systematic
and quantitative way. Our method is based on the global air
temperature with as many as 37 pressure levels. Specifically,
we have observed an abrupt jump during the dynamical evolu-
tion of percolation; applying a finite-size scaling analysis, we
have uncovered that the transition is genuine discontinuous.
Furthermore, the fractal dimension of the largest cluster at
the percolation threshold was introduced and used to measure
the complexity of the atmosphere. The methodology proposed
here provides two breakthroughs: (i) enriching the under-
standing of the discontinuous phase transition, in particular,
the explosive percolation phenomenon as a practical model
emerging in a natural dynamical system governing the global
properties of Earth in connection with the time spread of
global warming [51–56]. Some climate spatial patterns, such
as ENSO and ocean currents, can produce a natural external
bias to systematically suppress the formation of the largest
cluster; (ii) assessing the quality and reliability of sophisti-
cated climate models. Even though the models range from
simple energy balance models to complex Earth system mod-
els, they can be very impressive and give good approximations
to atmospheric behavior. However, they are not complete
and true representations of the governing physics [57]. Our
method allows us to enhance and improve the capacity build-
ing for addressing climate change.
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