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Cycle counts and affinities in stochastic models of nonequilibrium systems
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For nonequilibrium systems described by finite Markov processes, we consider the number of times that
a system traverses a cyclic sequence of states (a cycle). The joint distribution of the number of forward and
backward instances of any given cycle is described by universal formulas which depend on the cycle affinity,
but are otherwise independent of system details. We discuss the similarities and differences of this result to
fluctuation theorems, and generalize the result to families of cycles, relevant under coarse graining. Finally, we
describe the application of large deviation theory to this cycle-counting problem.
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I. INTRODUCTION

Fluctuations in nonequilibrium systems continue to pro-
vide surprises and new insights in statistical physics. Among
the most famous examples are fluctuation theorems [1–5],
which come in different types. Some of them (detailed fluc-
tuation theorems) are symmetries of probability distributions
[1,3,4], while others allow the results of dynamical experi-
ments to be related to (static) quantities such as free energies
[2,3]. More recently, thermodynamic uncertainty relations
(TURs) have been derived [6–10], which are inequalities that
relate the variances of physical observables to underlying
properties of a system, particularly its entropy production.

These results reflect an elegant mathematical structure that
underpins the physical models to which they apply. They also
have experimental relevance [11,12]. Still, it is notable that
fluctuation theorems for nonequilibrium steady states usually
involve quantities such as affinities or the entropy production,
which are difficult to characterize from experimental (or simu-
lation) data. There is an ongoing effort to infer such quantities
by TURs [13–15].

In this context, a recent result of Biddle and Gunawardena
(BG) [16] offers a potentially new route towards inference
of cycle affinities from data. Analyses of steady-state fluctua-
tions often focus on currents, but BG’s results concern cycles,
sequences of states that begin and end at the same point. They
showed that for long times, the affinity of a cycle can be
computed by counting the number of times that the cycle is
traversed, in each direction. In their approach, completion of
a cycle corresponds to the system visiting a particular set of
states, in a particular order. This distinguishes their analysis
from a different body of work that involves decomposition
of the full stochastic trajectory into a sequence of completed
cycles [17–19]: in that case, a system’s progress around a
single cycle may include other cycles within it; see also
[20] for a recent example of this decomposition in practice.

Yet another approach [4] is based on Schnakenberg network
theory [21], where the probability currents between pairs of
states are decomposed into a minimal set of cycle currents;
see also [22,23]. However, that construction does not provide
information about any specific cyclic sequence of states.

Given their definition of a cycle as a specific sequence
of states, BG’s approach [16] can be interpreted as a gen-
eralization to continuous-time Markov chains of a set of
discrete-time problems, including counting the number of
occurrences of a given word, in a random sequence of let-
ters. Such problems are relevant for DNA sequence analysis
[24–27]. There are also physical results for cycle counting in
discrete time, at least for unicyclic models [28].

In this paper, we follow [16], exploring in more detail the
distribution of the number of times that cycles are traversed,
in either direction. The results apply at all times. Hence they
generalize BG’s results, which concern the mean of the dis-
tribution, for long trajectories. We also outline methods for
analysis of large-deviation events [29–31], where the cycle
count takes a nontypical value at very large times. As might be
expected, the cycle affinity plays a central role in the statistics
of cycle counts, especially for the cycle current, which is
the difference in counts for forward and reverse cycles. By
contrast, the statistics of the total count have a complex depen-
dence on all model parameters, as expected for time-reversal
symmetric (frenetic) quantities [32]. Some of the methods
used here, particularly renewal theory and mth-order Markov
processes, are similar to those used for sequence analysis,
although our results concern processes in continuous time.

The form of the paper is as follows: Sec. II defines the mod-
els and quantities of interest, and Sec. III describes the main
results for fluctuations of cycle counts, in finite time intervals.
Section IV discusses these results, including some possible
extensions, and the connection with fluctuation theorems. The
relevant theory for large deviations of cycle counts is outlined
in Sec. V. Finally, Sec. VI gives a short conclusion.
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FIG. 1. (a) Diagram showing a simple system of four states, with
transitions indicated by straight arrows. The cycle C = ABCA is also
indicated. (b) Example trajectory for a time period [0, τ ], with jumps
between states at times tX = (t1, t2, t3, t4). The sequence of states is
xX = (D, A, B, C, A) so nC (X ) = 1 and nR

C (X ) = 0.

II. MODEL AND DEFINITIONS

A. Model

We consider nonequilibrium systems that are modeled as
Markov chains with discrete states, in continuous time. A very
simple example system is shown in Fig. 1(a). The set of states
is denoted by �, which in the example is {A, B, C, D}. The
transition rate from state x to state y is denoted by w(x →
y) � 0. We emphasize that the results apply for any finite
set �, so they include complex systems like (finite) exclusion
processes and are not at all restricted to simple models like the
example of Fig. 1.

We restrict to irreducible systems, and we also assume that
if w(x → y) > 0 then also w(y → x) > 0 (which is some-
times called weak reversibility or microreversibility). This
ensures that the steady state is unique and that every state
x has a nonzero probability in the steady state, denoted by
π (x). Also the average entropy production rate is finite and
non-negative.

B. Trajectories

A trajectory of the system can be specified for a time period
[0, τ ], an example is shown in Fig. 1(b). Let X denote a
trajectory, which consists of a sequence of states

xX = (x0, x1, x2, . . . , xM ) (1)

and the associated transition times

tX = (t1, t2, . . . , tM ) (2)

with 0 < t1 < t2 < · · · < tM < τ . Here each xi ∈ �, the sys-
tem starts in state x0 and jumps to state xi at time ti. The
number of transitions M is a random (trajectory-dependent)
quantity.

C. Words and cycles

We consider sequences of states visited by the Markov
chain. Similar objects have been studied for models in discrete
time, especially in the context of DNA sequence analysis
[24–27]. The continuous-time case is very similar, although
it requires some additional bookkeeping.

A sequence of states is called a word. We always restrict
to words that can occur in trajectories of the system. [In the

example of Fig. 1, AB or BAC would be suitable words,
but ABD is excluded because w(B → D) = 0.] A word that
begins and ends with the same letter is called a cycle, and
if C is a cycle then CR denotes its time reversal. For exam-
ple, if C = ABCA then CR = ACBA. The cycle length mC
is the number of transitions required to complete a cycle, so
mC = 3 in this example (one fewer than the corresponding
word length).

Denote by C j the jth state in cycle C, so 1 � j � mC + 1.
Then the cycle affinity for C is

AC =
mC∑
j=1

ln
w(C j → C j+1)

w(C j+1 → C j )
, (3)

which is also the entropy production for one cycle in the
steady state. For allowed cycles then all rates are nonzero (by
the weak reversibility property) so the affinity is finite.

In a trajectory, it is convenient to define the start time
of a word (or cycle) as the time of the jump between the
first two states, and the end time as the time of the jump
between the last two states. So for ABCA the word starts at the
transition A → B and ends at C → A. The completion time is
the difference between the start and end time.

As noted in Sec. I, this definition of a cycle [16] (which
might also be called a cyclic word)—and the corresponding
start and end times—differ from the definitions used in other
works such as [19,20,33,34]. Our definition leads to a simpler
analysis, but some of the results and methods are similar.

D. Counting cycles

Given a trajectory X and a cycle C, write n̂C (X ) for the
number of occurrences of C in X . This is the number of times
that the word C appears in the sequence xX . (The hat serves
as a reminder that n̂C is a random variable.) The cycle must
appear exactly as in its definition, and different occurrences
of the cycle may overlap. (For example the cycle ABABA ap-
pears twice in the sequence ABABABA.) Of course, generic
words can be counted in the same way, not only cycles. It is
convenient to write n̂R

C = n̂CR for the number of occurrences
of the reverse cycle.

E. Nonrevisiting cycles

It will be convenient in the following to distinguish two
kinds of cycle. Recalling that a cycle always begins and ends
at the same point, we define a nonrevisiting cycle as one that
does not return to its initial point, until the end. For example
ABA is a nonrevisiting cycle but ABCACBA is not. One
sees that different occurrences of a nonrevisiting cycle cannot
overlap each other, and that a general cycle can be decom-
posed as the concatenation of nonrevisiting cycles. The class
of nonrevisiting cycles is larger than that of simple cycles (for
example ABCBCA is nonrevisiting), but it is not as large as
the class of nonoverlapping cycles (or words) from [25].

III. RESULTS: FINITE TIME

This section contains some general results for the proba-
bility distribution of the number of cycle counts, for finite
trajectories with time t ∈ [0, τ ]. We first summarize the
results before giving the derivations. The analysis leading to
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these results is quite straightforward, but we argue that the
results are interesting for two reasons: first, as a possible way
to infer model parameters (specifically, affinities) from data
[16], and as a starting point for more detailed analysis of cycle
counts. Both these directions are discussed in later sections.

A. Overview

Our results concern the random variables n̂C, n̂R
C , for cycles

as defined above. In the palindromic case C = CR then none of
these results have any content, so we assume throughout that
C �= CR. We are motivated by one of BG’s results [16], which
is that for long trajectories

lim
τ→∞

n̂C (X )

n̂R
C (X )

= eAC . (4)

Such formulas require some care because the left-hand side
is a random (trajectory-dependent) quantity but the right-hand
side is deterministic: the equation holds in the same sense as
a law of large numbers. The physical idea behind (4) is that
the cycle affinity can be inferred by counting cycles that are
traversed in forward and backward directions.

In the following, we derive several results, related to (4).
First, the derivation of [16] can be easily generalized to obtain
a result for steady-state averages over trajectories of finite
length τ , with arbitrary initial condition. The result is

〈n̂C〉〈
n̂R
C
〉 = eAC , (5)

where 〈·〉 indicates an average over trajectories of the system
(the dependence of the cycle counts on X is implicit). This
result states that cycles with positive affinity happen more
often in the forward direction, as expected. As τ → ∞ then
n̂C (X ) → 〈n̂C〉 with probability one; this is a weak law of
large numbers. The proposal of [4] was that (4) might be used
to infer affinities from data; in this case (5) seems also useful
since long trajectories are not required.

We note in passing that the mean number of cycles is not a
simple linear function of the trajectory length, that is, 〈n̂C〉 �=
τω(C) in general. [Here ω(C) would be a cycle completion
rate.] The reason is that there is typically a significant lag
time between starting and ending a cycle. So the fact that (5)
applies for all τ is not trivial.

We now consider the joint distribution of nC, nR
C , which

we denote by Pτ (nC, nR
C ). Our results for this distribution are

restricted to nonrevisiting cycles, but they hold for any trajec-
tory length τ and for any initial condition (it is not necessary
that the probabilities are evaluated in the steady state of the
system). We show that

nCPτ

(
nC, nR

C − 1
) = eACnR

CPτ

(
nC − 1, nR

C
)
. (6)

The physical origin of (6) is that replacing any nonrevisiting
cycle C by its time-reversed counterpart CR changes the tra-
jectory probability by a factor e−AC . The prefactors nC and nR

C
are of combinatorial origin.

Also, it is straightforward to show that for nonrevisiting
cycles

Pτ

(
nC, nR

C
) = Pτ

(
nR
C , nC

)
exp

[(
nC − nR

C
)
AC

]
, (7)

which has some similarities to the fluctuation theorem of
Andrieux and Gaspard [4]; see Sec. IV B.

Both (6) and (7) are direct consequences of a binomial
structure in the distribution Pτ (nC, nR

C ). In order to state this
property conveniently, identify the total number of cycles in
trajectory X and the corresponding net flux as

K̂C (X ) = n̂C (X ) + n̂R
C (X ),

ĴC (X ) = n̂C (X ) − n̂R
C (X ). (8)

Denoting the joint distribution of these quantities by P̃τ (K, J )
and the marginal of K by P̃τ (K ) = ∑

J P̃τ (K, J ), we show
in Sec. III C that the conditional distribution of Ĵ , namely,
P̃τ (K, J )/P̃τ (K ), is binomial, so that

P̃τ (K, J ) = P̃τ (K )

(
K

1
2 (K + J )

)
exp(JA/2)

[2 cosh(A/2)]K
. (9)

Here and in the following, we sometimes omit the label C for
variables and affinities, where there is no ambiguity. The key
point of (9) is that the dependence of P̃τ on J is explicit. This
formula holds for all models and for any nonrevisiting cycle
C. In discrete time, a similar result is given in [28], for the
restricted case of unicyclic models.

These results extend BG’s analysis [16] from the most
likely number of cycles to its full fluctuation spectrum. How-
ever, they are restricted to nonrevisiting cycles: we emphasize
that (6) and (7) are derived from the more general (9), so
this restriction is necessary for all these results. For such
cycles, one may then recover previous results for the mean,
in particular (5) is obtained by summing both sides of (6) over
nC, nR

C .
It is useful to recall that the path weight of trajectory X in

our general model is

P[X ] = P0(x0)

[
M−1∏
i=0

w(xi → xi+1)e−r(xi )(ti+1−ti )

]

× e−r(XM )(τ−tM ), (10)

where t0 = 0; also P0(x0) is the (arbitrary) distribution of the
initial state and we introduced the exit rate from state x, as

r(x) =
∑
y( �=x)

w(x → y). (11)

From this formula, the result (6) can be anticipated by ob-
serving that any instance of a nonrevisiting cycle C in X can
be replaced by an instance of CR, so that P[X ] changes by a
factor e−AC . A precise argument along these lines is given in
Sec. III C; see also Fig. 2. Alternatively, this result [and also
(9)] may be derived using renewal theory; see Appendix B.

B. Average cycle counts

We now derive (5). Consider the probability that an in-
stance of cycle C starts between times t and t + δt and ends
before time τ . For small δt denote this by PC (t, τ )δt . Consid-
ering trajectories for the time period [0, τ ], the average 〈n̂C〉
may then be decomposed as

〈n̂C〉 =
∫ τ

0
PC (t, τ ) dt . (12)
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time t0 t1 t2 t3 t4 τ

A B C AD B A C B A B C A
. . .

C CCR

tarr1tdep
1

0 τtarr2 tarr3tdep
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22
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3

a
3

τ

τ

Trajectory X

B

Trajectory X̃2

A B C AD B A CB A B C A B

time t
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FIG. 2. (Top) A trajectory X of the four-state system in Fig. 1,
and the corresponding sequence of completions of the cycle C or
CR. We keep track of the departure and arrival times for state A that
enclose instances of C or CR. The second such instance is highlighted
in red. (Bottom) Applying time reversal to the highlighted part of
the trajectory leads to the trajectory X̃2, transforming the cycle CR

into C.

Moreover, the probability that a transition C1 → C2 occurs
between times t and t + δt is p(C1, t )w(C1 → C2)δt , where
p(C1, t ) is the probability that the system is in state C1 at time
t . Since every instance of cycle C starts with such a transition,
it follows that

PC (t, τ ) = p(C1, t )w(C1 → C2)pseq(C)Ffin(τ − t, C), (13)

where

pseq(C) =
mC∏
j=2

w(C j → C j+1)

r(C j )
(14)

is the probability that the system follows the correct se-
quence of states, and the factor Ffin(τ − t, C) in (13) is
the probability that the cycle is completed in a time less
than τ − t . [This cycle completion time is a sum of mC −
1 exponentially distributed random variables with means
r(C2)−1, r(C3)−1, . . . , r(CmC )−1.] Hence

〈n̂C〉 =
∫ τ

0

[
p(C1, t )r(C1)

mC∏
j=1

w(C j → C j+1)

r(C j )
× Ffin(τ − t, C)

]
dt . (15)

Repeating the same argument for the reversed cycle CR one finds

〈n̂R
C〉 =

∫ τ

0

[
p(C1, t )r(C1)

mC∏
j=1

w(C j+1 → C j )

r(C j+1)
× Ffin(τ − t, CR)

]
dt . (16)

Note that the time to complete cycle CR is the same sum of
exponentially distributed random variables as for C, so

Ffin(τ − t, CR) = Ffin(τ − t, C); (17)

see also [33,34], an explicit formula for Ffin is given in
(A4). Also, the fact that the cycle starts and ends at the
same point means that

∏mC
j=1 r(C j+1) = ∏mC

j=1 r(C j ). Combin-
ing these facts with (3), (15), and (16), one recovers (5).

Note that there is no restriction here to nonrevisiting cycles,
the physical reason is that (12) decomposes the mean number
of cycles into a sum of independent averages. To see this, re-
call that the average number of cycles that start between time t
and t + δt and end before time τ is PC (t, τ )δt . Integrating over
t corresponds to summing these independent averages and
gives the average number of completed cycles within the full
trajectory. The possibility of overlapping cycles is important
for fluctuations in their number, but not for the mean.

C. Fluctuations for nonrevisiting cycles

We now restrict to nonrevisiting cycles, and we derive (6)–
(9). We use a methodology similar to proofs of fluctuation
theorems based on path weights [5]; see Appendix B 1 for a
derivation using concepts of renewal theory.

Suppose that the cycle C of interest starts in state A (this
does not lose any generality). For any trajectory X we can
identify the sequence of completions of the cycle in either

forward or backward direction, for example,

S[X ] = (C, CR, C, C, CR), (18)

along with the sequence of start and end times of the cycles,
denoted by (tdep

1 , tdep
2 , . . . ) and (t arr

1 , t arr
2 , . . . ), respectively;

see Fig. 2. (The start and end times of the cycle correspond
to the departure and arrival times from and to state A.) The
probability to observe a specific sequence S of forward and
backward cycles within time τ can be expressed as

Pτ (S ) =
∑

X

P[X ]δ(S,S[X ]), (19)

where the sum runs over all trajectories of length τ , suitably
parameterized as a path integral. The function δ(S,S ′) = 1 if
S = S ′, and zero otherwise.

To derive (9), we first obtain formulas that relate the prob-
abilities of specific trajectories; then we sum over (classes
of) trajectories to obtain the distribution of (K, J ). Note that
the sequence S[X ] consists of K̂ (X ) elements. For every tra-
jectory X we define a conjugate trajectory X̃k as follows: If
k � K̂ (X ), then X̃k is obtained from X by reversing in time
the kth cycle in S[X ], that is:

X̃k (t ) =
{

X
(
t arr
k − t + tdep

k

)
, if tdep

k < t < t arr
k

X (t ), otherwise
. (20)

See Fig. 2, which shows how X̃k is obtained from X for
k = 2 by reversing the second instance of the cycle. Similar
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partial time-reversal operations have been considered before
in the context of simple chemical reactions [33,34] as well
as in other works on cycle counting [19,20]. It is conve-
nient to extend this definition to include k > K̂ (X ) by taking
X̃k (t ) = X (t ).

Noting that the sojourn times in each state are unaffected
by the partial time reversal, we see from (10) and (3) that

P[X ]

P[X̃k]
=

{
e±AC , if k � K̂ (X )
1 otherwise

, (21)

where in the first case we take the plus sign if the kth entry in
S (X ) is C, and the minus sign if this entry is CR.

Now define S̃k[X ] = S[X̃k]; for example, if S =
(C, CR, C, C, CR) and k = 2, then S̃2 = (C, C, C, C, CR).
The mapping between X and X̃k is a bijection, which means
that (19) can be expressed as

Pτ (S ) =
∑

X

P[X̃k]δ(S,S[X̃k])

=
∑

X

P[X̃k]δ(S, S̃k[X ]), (22)

where the first equality is obtained by relabeling the trajecto-
ries and the second uses the definition of S̃ . Using (21) yields

Pτ (S ) = e±ACPτ (S̃k ), (23)

where we take the plus (or minus) sign if the kth entry in
S (X ) is C (or CR), as in (21). (It is assumed that the number
of entries in S is at least as large as k.) The result (23) is a
special example of a detailed fluctuation theorem [5].

Now, given a sequence S , one may use (23) and succes-
sively replace all instances of CR by C to obtain

Pτ (S ) = e−nR
CACPτ (C, C, . . . , C), (24)

where nR
C is the number of occurrences of CR in the sequence

S . Write KS for the number of entries in S . Then the right-
hand side of (24) is the probability of KS forward cycles
and no reverse ones, that is, Pτ (KS , 0) in the notation of (6).
The probability Pτ (KS − n, n) can be obtained by summing
(24) over sequences S with the requisite numbers of forward
and reverse cycles: the number of elements in the sum is a
binomial coefficient. One obtains

Pτ (nC, nR
C ) =

(
nC + nR

C
nC

)
e−nR

CAC Pτ (nC + nR
C , 0). (25)

Reparameterization in terms of K, J yields (9). As noted in
Sec. III A, both (6) and (7) follow straightforwardly from this
result.

Finally, we observe that while these results have been
derived for nonrevisiting cycles, this is not the most general
case in which (23) and hence (9) apply. Equation (23) does
not apply for all cycles because if two instances of the same
cycle can overlap each other, then it is not generally possible
to reverse a single instance of the cycle, leaving all other
instances unchanged. [For example, consider the (revisiting)
cycle ABCABCA and a trajectory that contains the sequence
ABCABCABCA.] A similar problem arises if an instance
of C can overlap with an instance of CR. The assumption of
nonrevisiting cycles is sufficient to ensure that such overlaps

never occur and (23) holds, but this condition is not necessary.
Classes of nonoverlapping words are discussed, for example,
in [25]; we avoid such issues here to simplify the analysis.

IV. DISCUSSION OF FINITE-TIME RESULTS

A. Coarse-grained measurements: Families of cycles

The results derived so far concern the statistics of com-
pletions of a given cycle C, which is a specific sequence of
states. Hence, any measurement of nC requires complete infor-
mation about the trajectory of the system. Since we consider
“mesoscopic” models that should be defined as coarse-grained
representations of real physical systems, it is useful to con-
sider how this requirement of complete information can be
reconciled with a coarse graining operation.

Note first that these results can be generalized to some
situations where incomplete information is available. To see
this, let F represent a family (a set) of cycles, and let

n̂F (X ) =
∑
C∈F

n̂C (X ) (26)

be the total number of occurrences in trajectory X of all
cycles C from that family F . Reversing all cycles in F yields
the family FR, with the number of occurrences n̂R

F defined
analogously. (We assume that if C ∈ F then CR /∈ F .)

If all members of F have the same affinity AF then it
is obvious that (5) still holds (with n̂C, n̂R

C ,AC replaced by
n̂F , n̂R

F ,AF ). If all members of F are also nonrevisiting, then
(6)–(9) hold too. [This can be seen by constructing a modified
sequence S[X ] in which the symbol C represents a completion
of any member of AF and CR represents completion of any
member of the family FR. Then (23) holds and the analysis
follows.]

A simple example of such a family is obtained by including
repeated forward and backward steps within the cycle. For ex-
ample, consider the family containing ABCA, ABCBCA, and
all similar cycles obtained by repeatedly inserting instances
of BC before the final A. All these cycles obviously have the
same affinity and they are nonrevisiting, so (5)–(9) still hold
for the joint distribution of (n̂F , n̂R

F ). [To connect the results
here with the framework of [18,19], it is necessary to consider
larger families, which include cycles that are constructed from
a main (outer) cycle, and also include nontrivial subcycles;
one should also extend the definition of a time-reversed cycle
appropriately, so that only the main cycle is reversed, leaving
the subcycles invariant. Such complex families are not our
main concern in this work.]

Families of cycles with equal affinity also arise naturally
in physical situations, especially where coarse graining is
considered. For example, suppose that a given state comes
in two variants (perhaps B, B′) which differ in a way that is
irrelevant for the nonequilibrium driving force that controls
the cycle affinity. Figure 3 illustrates how this might appear in
a simple model: there are two cycles that proceed via B, B′ but
have the same affinity (because the driving force is blind to the
distinction between the states). Since these two cycles have
the same affinity, they can be grouped into a family F and (5)–
(9) still hold for the combined counts. Moreover, the family
could be extended by cycles that contain arbitrary numbers of
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FIG. 3. A network where B and B′ form a pair of substates. If
the physical driving mechanism does not distinguish between these
substates, variations of the cycle C visiting either B or B′ all have the
same affinity and can be lumped together in a single family of cycles.

forward and backward jumps between B and B′, which would
become relevant when the transition rates between these to
states are much faster than all other rates.

In this example, it is notable that the model may be coarse
grained exactly by combining the states B, B′ into a single
mesostate. As such, the example illustrates that the results pre-
sented here are consistent between different levels of coarse
graining. In fact, it is generally sufficient to observe the system
on a coarse-grained level, as long the coarse graining does
not mix cycles with different affinities. This mitigates the
difficulty noted above, that the full trajectory of a system must
be observed in order to apply our results.

B. Relation to fluctuation theorems

We have emphasized the connection between the results
(6)–(9) and fluctuation theorems [1–5]. As such, our deriva-
tions place BG’s result (4) [16] in this context (under the
restriction to nonrevisiting cycles). The central result that
enables this analysis is (23), which can be regarded as an
instance of the “master fluctuation theorem” of Ref. [5], em-
ploying our partial time reversal (20) as conjugate dynamics.

Nonetheless, the results (7) and (9) differ from usual fluc-
tuation theorems, as they involve the total count of cycle
completions in either direction, as well as the net flux around
a cycle; see also results for the traffic or frenesy [32,35].

To connect to the more familiar case, note from (9) that
P̃τ (K, J ) = eJAC P̃τ (K,−J ) and hence (summing both sides
over K):

P̃τ (J )

P̃τ (−J )
= eJAC , (27)

similar to (7). This result is reminiscent of the fluctuation
theorem for currents by Andrieux and Gaspard [4], but there
are several important differences.

In particular, (27) concerns counting observables for cycle
completions: recall that nC and nR

C are the numbers of oc-
currences of specific sequences of states (for example, C =
ABCA and CR = ACBA) and JC is the difference between
these numbers. On the other hand, the result of [4] con-
cerns numbers of transitions between states (for example, one
might consider a current defined as the difference between the
numbers of C → A transitions and A → C transitions). From

these numbers of transitions, one defines cycle currents by an
indirect method that involves a decomposition of steady-state
current distributions in a basis that comes from Schnakenberg
network theory [21].

We emphasize that the cycle currents in [4] are distinct ob-
jects from the counting observables for cycle completions that
we consider here. For example, consider the model of Fig. 1:
if we take ABCA and ACDA as the fundamental cycles in the
sense of [4] (following the Schnakenberg formalism), then the
trajectory ABCDA would contribute +1 to each of the two
cycle currents [4]. However, the trajectory does not complete
either of these cycles in the exact sequence given, so there are
no cycle completions in the sense considered here (following
[16]). As a result of the indirect relationship between cycle
currents and numbers of transitions, the fluctuation theorem
of [4] appears as a symmetry of the joint distribution of all
cycle currents. Moreover, the Schnakenberg theory applies
to steady-state currents, which means that the result of [4]
concerns the large-time limit of the current distribution. The
result of [4] is a deep (and abstract) statement about the action
of time reversal on trajectories, and its implications for large
deviations as τ → ∞. On the other hand, it does not generally
imply a fluctuation theorem for the (marginal) distributions of
currents associated with individual cycles [36–39].

By contrast, (27) is a much simpler result—it applies for all
τ , for individual cycles. The reason is that the cycle current is
counted in a more direct way, by following the trajectory of
the system throughout each instance of the cycle. Since the
initial and final states of the cycle are always equal, replacing
an instance of C by CR in trajectory X has an effect on P(X )
that is simple, and does not affect other parts of the trajectory.

For the very special case of a unicyclic network—and
considering the family of cycles that include multiple forward
and backward steps, as above—the fluctuation theorem of [4]
follows from (23), in the long-time limit; see also [33,34].
For multicyclic networks, the two results are distinct. Given
that fluctuations of cycle-counting observables contain new
information, it may be that these results—including BG’s—
may prove useful for thermodynamic inference, following
[40,41]. For that purpose, it is likely that inference based on
families of cycles is more practical than counting instances of
a specific cycle; for example, counting cycles within a family
will typically result in larger observed numbers, improving the
statistics.

V. LARGE DEVIATIONS AS τ → ∞
Given the connection to fluctuation theorems [4], and that

the original result of [16] employed a large-time limit, it is
useful to consider how cycle-counting observables behave as
τ → ∞. One may expect by ergodicity that the cycle comple-
tion rate n̂C/τ converges to its steady state average as τ → ∞,
which would be consistent with (4) and (5). Large deviation
theory provides a precise way to analyze this limit, and shows
that this expectation is correct. The relevant large-deviation
methods can be found in [29–31,42,43]; we outline the theory
here.

Define empirical time averages k̄ = K̂C/τ and j̄ = ĴC/τ :
these are random (trajectory-dependent) quantities. Their joint
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probability density behaves for long times as

Pτ (k̄, j̄ ) ≈ exp[−τ I (k̄, j̄ )], (28)

where I is the rate function, which is non-negative. Such
formulas are called large deviation principles: they show that
the typical values of k̄, j̄ occur with probability 1 (hence
I = 0), while other values have probabilities that become
exponentially small as τ → ∞. They have been analysed for
a different type of cycle counts in [19].

The rate function may be characterized by the Gärtner-Ellis
theorem as

I (k̄, j̄ ) = sup
s,λ

[sk̄ + λj̄ − �(s, λ)], (29)

where

�(s, λ) = lim
τ→∞

1

τ
log 〈exp(sK̂ + λĴ )〉 (30)

is the scaled cumulant generating function (SCGF). Also,
Varadhan’s lemma states that

�(s, λ) = sup
k̄,j̄

[sk̄ + λj̄ − I (k̄, j̄ )]. (31)

The marginal distribution for k̄ obeys

Pτ (k̄) ≈ exp[−τ I1(k̄)] (32)

with I1(k̄) = inf j̄ I (k̄, j̄ ), by the contraction principle.
A characterization of � will be given below, as the largest

eigenvalue of a matrix. That analysis also ensures that the
technical conditions required for (28) are satisfied, under our
assumptions. Before that, we explore how (9) manifests itself
in large deviations.

A. Large deviations for nonrevisiting cycles

For nonrevisiting cycles, we note that for large K, J then
(9) gives

1

τ
log Pτ (k̄, j̄ ) ≈ 1

τ
log Pτ (k̄) − I2(j̄ , k̄,A), (33)

where A is the cycle affinity and (by Stirling’s approximation)

I2(j̄ , k̄,A) = k̄ log[cosh(A/2)] − j̄A
2

+ k̄ + j̄

2
log (k̄ + j̄ )

+ k̄ − j̄

2
log (k̄ − j̄ ). (34)

Then (28) implies that the rate function is

I (k̄, j̄ ) = I1(k̄) + I2(j̄ , k̄,A). (35)

The function I2 is closely related to the rate function for the
time-averaged current j̄ of a biased random walk, which is
related in turn to the binomial structure of (9).

Now define g(λ,A) = k̄−1 supj̄ [λj̄ − I2(j̄ , k̄,A)] and ob-
serve that

g(λ,A) = log
cosh(λ + A/2)

cosh(A/2)
. (36)

(It is important that this object does not depend on k̄: while
this is not obvious from its definition, it follows from the rela-
tionship of I2 to a random walk.) Also define �1(s) = �(s, 0)
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FIG. 4. SCGF �(s, λ) (color coded) for the current and
traffic of the cycle C = ABCA in Fig. 1. Panels (a) and
(b) differ in the choice of rates, but the affinity AC = 3 is
fixed. Lines of constant value of s + g are shown in solid
white. They prescribe the overall shape of the SCGF, includ-
ing the symmetry with respect to λ = −AC/2 (dashed white
line) corresponding to the fluctuation symmetry (27). Parameters:
(a) w(A → B) = w(B → C) = w(C → A) = 0.5, w(C → A) =
w(D → A) = 2, w(B → A) = w(A → C) = 0.5e−2, w(C → B) =
0.5e, w(D → C) = w(A → D) = 2e2; (b) w(A → B) = w(B →
C) = w(C → A) = 1, w(C → D) = w(D → A) = w(A → D) =
0.1, w(B → A) = w(C → B) = w(A → C) = e−1, w(D → C) =
0.1e2.

as the SCGF for k̄. Then by (31) the (joint) SCGF � has the
simple form

�(s, λ) = �1[s + g(λ,A)]. (37)

[The right-hand side is the function �1 evaluated at the point
s + g(λ,A).] The function g is symmetric with respect to λ =
−A/2. This symmetry gets inherited by the SCGF �(s, λ),
where it reflects the fluctuation relation (27).

The expression (37) is simple in that the function g depends
on system parameters only through the affinity A, while the
effects of all other properties of the system are encoded in a
single function �1. Similarly in (9), the conditional distribu-
tion of J (given K) is binomial and depends only on A, but the
distribution P̃τ (K ) depends in a nontrivial way on all system
parameters. In this sense, (37) is the consequence for large
deviations of the detailed result (9) for finite times.

Figure 4 illustrates (37) in the simple example of Fig. 1,
for the cycle C = ABCA. The numerical computation of the
SCGFs was performed using the method described in Ap-
pendix C 2. Contours of the SCGF are the lines s = g(λ,A):
we show results for two sets of system parameters, which lead
to the same value of A; hence the contour lines are the same
in both cases, although the corresponding values of � differ
by an order of magnitude. Hence, the fact that these figures
appear similar (despite the different model parameters) shows
that the theoretical result (37) does indeed apply. This is a
direct consequence (at the level of large deviations) of the bi-
nomial distribution of (9), which is the key result from which
the other fluctuation properties are derived, in this work.

B. Large deviations for words and cycles

This section outlines a general method for analysis of large
deviations of cycle counts. This establishes that (28) does in-
deed hold, and provides a method for computation of SCGFs.
Similar methods are used for analysis of word-counting in
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DNA sequence analysis [26] and in the statistics of repeated
measurements [44]; see also [19].

Similar SCGFs to (30) appear when considering large de-
viations of the number of transitions between discrete states
of Markov models; for example, one might define n̂2 as the
number of transitions A → B and n̂R

2 as the number of tran-
sitions B → A. Then consider (30) with K̂, Ĵ replaced by
K̂2 = n̂2 + n̂R

2 and Ĵ2 = n̂2 − n̂R
2 respectively. The resulting

SCGF can be obtained by established methods [29–31,42,43]
as the largest eigenvalue of a particular matrix that is called
the tilted generator.

However, the established methodology is not applicable in
the current setting because n̂C is not obtained by counting
transitions between pairs of states (nor by considering state
occupancies); it requires that we count occurrences of specific
words. The solution is to expand the state space of the original
system to obtain an extended system in which each state is a
word of length m. We illustrate this with the case m = 3. Sup-
pose that the (original) system is in state C and the previous
two states visited were A, B, in that order. Then the state of the
extended system is the three-letter word ABC. If the original
process now makes a transition to A then the extended system
makes a transition to BCA. (After the transition, the state is A
and the previous two states were B, C.) This example is useful
because this transition ABC → BCA in the extended system
corresponds exactly with a completed cycle in the original
system. In other words, the problem of word counting in the
original model is reduced to a problem of counting transitions
between states of the extended model. Since the extended
model is still Markovian, established methods can then be
used to compute the statistics of the relevant transitions; see
below.

As a technical remark: this construction provides a map-
ping between trajectories of the original and extended
systems, so that cycle counts of the original system can be in-
ferred from the extended one. However, the initial m − 1 states
of a trajectory of the extended system are not fully determined
by a trajectory of the original system. This issue can cause
some ambiguity in cycle counts; but the problem can easily
be rectified to obtain a one-to-one mapping of trajectories.
Since the behavior of the first few states will not affect the
large-deviation analysis, we do not discuss this aspect.

To define more precisely the extended system, focus on a
specific cycle and take m = mC . Each state of the extended
system is an m-letter word (for example, ABC or BCA),
we denote these words by u, v, . . . . The transition rates of
the extended system are denoted by W (u → v). The rate
W (u → v) is nonzero only if the first m − 1 letters of word
u are the same as the first m − 1 letters of v. In this case
W (u → v) = w(uf → vf ) where uf is the final letter of word
u, and similarly vf (recall that w indicates a transition rate
of the original system). One sees that construction of this ex-
tended system is a straightforward exercise, although it can be
tedious because the number of states grows quickly with the
word length and the number of states in the original system.
For practical purposes, a milder extension of the state space
is sufficient to establish specific results for cycle counts; see
Appendix C 2.

Now write uC for the first mC letters of C and vC for its
last mC letters. (In the example C = ABCA then uC = ABC

and vC = BCA.) Then completion of cycle C corresponds to a
transition uC → vC in the extended system, that is,

n̂C (X ) = NuC→vC (X ), (38)

where Nu→v (X ) is the number of transitions u → v in trajec-
tory X of the extended system. In the same way,

n̂R
C (X ) = NuR

C→vR
C

(X ), (39)

where uR
C indicates uCR , the first mC letters of CR, and similarly

vR
C .

The extended system is itself Markovian, so standard meth-
ods can be used to analyze its large deviations. In particular,
a method for counting transitions N (u → v) between states
is well established [29–31,42,43], we give an outline, with
details in Appendix C 1. The master equation of the extended
system takes the standard form

∂

∂t
P(u, t ) =

∑
v( �=u)

[P(v, t )W (v → u) − P(u, t )W (u → v)].

(40)
Now define a matrix W with off-diagonal elements [W 0]vu =
W (u → v) and diagonal elements [W 0]uu = −∑

v W (u →
v). Then the master equation is ∂t P = W 0P, where P is in-
terpreted as a vector with elements P(u). The SCGF can be
obtained as the largest eigenvalue of the (“tilted”) matrix

W (s, λ) = W 0 + V (s, λ), (41)

where V (s, λ) has only two elements that are nonzero:

[V (s, λ)]vC,uC = (es+λ − 1)[W 0]vC ,uC ,

[V (s, λ)]vR
C,uR

C
= (es−λ − 1)[W 0]vR

C ,uR
C
. (42)

To establish that (28) and (30) hold, a few technical condi-
tions are required on W (s, λ). Note that the extended process
is Markov with a finite state space. In this case it is sufficient
for it to have a unique steady state, which must hold if the
original system is irreducible, as assumed above. Hence one
has a large deviation result of the form (28).

Note that this construction is fully general, there was no
assumption of nonrevisiting cycles. If one does assume that
C is nonrevisiting, the largest eigenvalue of W (s, λ) must
be of the form (37). An explicit derivation of this result is
deferred to future work, which might also consider how large-
deviation properties can be computed from the representation
of the cycle-counting problem as a kind of renewal process via
(B11), and what generalizations of the fluctuation theorems
are possible for revisiting cycles.

VI. CONCLUSION

We have analysed the joint distribution of cycle counts for
forward and backward instances of a cycle C in a discrete
Markov process, as commonly used for analysis of nonequi-
librium systems. The distribution is naturally characterized
in terms of the cycle current J and the total count K . For
nonrevisiting cycles (which are those of primary physical
relevance), the central result is (9), which shows that the
conditional distribution of J given K is binomial and the
only relevant parameter is the affinity. This shows that the
conditional distribution of J is universal, with the affinity as its
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only parameter, while the distribution of K is free and depends
on all system details.

For practical purposes, we point to (5) as a finite-time
generalization of (4), which might be useful as a way to infer
affinities, as proposed in [16]. The counting of instances of
cycle families rather than individual cycles, as discussed in
Sec. IV A, might also help to improve this method.

We have also explained how large deviation theory can be
applied to cycle counts. In particular, they do obey a large-
deviation principle, whose properties can be computed from
the extended system described here, by solving an eigenvalue
problem.

These results suggest that further interesting structure may
be present in distributions of cycle counts, either by analysis
of the extended system, or by considering joint distributions of
counts across more than one cycle. We look forward to future
work in this direction.
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APPENDIX A: DERIVATION OF (13) AND (17)

For completeness, we derive (13) and (17), starting from
(10). First, note that for any trajectory X starting at time t and
ending at time τ , the analog of the path weight (10) can be
written as

P[X ] = p(x0, t )

[
M−1∏
i=0

w(xi → xi+1)e−r(xi )
i

]

× e−r(XM )(τ−tM ), (A1)

where 
i = ti+1 − ti is the sojourn time in state xi and p(x0, t )
is the probability distribution of the initial state (at time t). The
states (x0, x1, . . . , xM ) and times (t1, . . . , tM ) are indexed from
time t ; note also t0 = t . This distribution P[X ] is normalized
in the sense that

1 =
∞∑

M=0

∑
x0...xM

∫ τ

0
dt1

∫ τ

t1

dt2· · ·
∫ τ

tM−1

dtMP[X ]. (A2)

Using this distribution, and given a cycle C, we compute
the probability PC (t, τ )δt of the following event: the trajec-
tory has tmC < τ (from which it follows that M � mC); also
(x0, x1, . . . , xmC ) = (C1, C2, . . . , CmC , C1), and t1 ∈ [t, t + δt].
We use (A1) and sum over those xk with k > mC , and integrate
all the 
i, to obtain [at leading order in δt]:

PC (t, τ )δt = p(C1, t )w(C1 → C2)δt
mC∏
j=2

w(C j → C j+1)

×
∫

d
2 . . . d
mC�

(
τ − t −

mC∑
j=2


 j

)

× e− ∑mC
j=2 r(C j )
 j . (A3)

time t0 t1 t2 t3 t4 τ

A B C AD B A C B A B C A
. . .

A A A A AC CCRO
tarr1 tdep

1
0 τtarr2 tarr3 tarr4tdep

2 tdep
3 tdep

4 tdep
5

tarr5

WW
time t

0 t t t τ

Trajectory X

Reduced trajectory Y

B

FIG. 5. A trajectory X of the four-state system in Fig. 1, and the
corresponding reduced trajectory Y . The reduced trajectory keeps
track of the arrival and departure times for state A, and on whether
excursions from A are instances of C or CR or some other cycle
(indicated as O). The initial and final parts of the trajectory consist
of generic words (indicated by W). This reduced trajectory has
SY = (C,O, CR, C).

Here � is the Heaviside (step) function; the 
 j are integrated
over [0,∞); we used that the integral for 
0 runs over [t, t +
δt], which yields the factor δt . Equation (A3) coincides with
(13) if we identify

Ffin(τ − t, C) =
∫

d
2 . . . d
mC�

(
τ − t −

mC∑
j=2


 j

)

×
mC∏
j=2

[
r(C j )e

−r(C j )
 j
]
. (A4)

To interpret this result, we identify 
tot = ∑mC
j=2 
 j as the

sum of mC − 1 exponential random variables with means
r(C2)−1, . . . , r(CmC )−1. As discussed in the main text, the
result (A4) is simply the probability that this 
tot is less than
τ − t . For any given mC , the integrals can be performed, but
we retain here the integral form, which shows the structure of
the result. In particular, it is clear from (A4) that (17) holds,
because CR contains the same states as C (only the order is
reversed), and the factor Ffin(τ − t, C) from (A4) is invariant
under permutation of the states C2, . . . , CmC within the cycle
C.

APPENDIX B: CONNECTION TO RENEWAL THEORY

1. Alternative derivation of (9) by renewal theory

The results (6)–(9) for nonrevisiting cycles can also be
proven using a methodology similar to renewal processes.
We include this analysis for completeness, and because the
results provide additional information on the statistics of cycle
completions, that may be useful for future work.

Suppose that the cycle C of interest starts in state A. Any
trajectory X can be decomposed into several pieces as in
Fig. 5: an initial transient before the first visit to A, the time
periods spent in A, the complete cycles between visits to A,
and a final period between the last visit to A and the end of
the trajectory at time τ . Moreover, for any cycle C, one can
classify the complete cycles as instances of either C, or CR, or
some other cycle.

Hence, any trajectory X can be associated to a reduced
trajectory Y , which is is characterized by the sequences of
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arrival and departure times to and from A and the sequence
of cycle types, for example,

SY = (C,O, C, CR,O, . . . ), (B1)

where O denotes any cycle other than C, CR. (Separate oc-
currences of O may indicate different cycles.) It is assumed
that the cycle begins and ends with generic words that are
indicated by W in Fig. 5, these are not included in SY . If the
trajectory starts or ends in A then one or both of the Ws will
have zero length. Compared with (18), this SY is different in
that it includes a separate element for every departure from A,
not only those departures that lead to cycles C or CR. Similarly,
we use tdep

i and t arr
i in this section to indicate the times of (all)

departures and arrivals from and to A.
The mapping from X to the reduced trajectory Y is many-

to-one because the times for transitions inside the cycles are
not preserved, and nor are the sequences of states inside the
generic cycles and words O,W . In the following, we con-
sider the probabilities of the reduced trajectories Y , which are
obtained by integrating over all possible trajectories X that
reduce to Y . One sees that n̂C (X ) is the number of occurrences
of C in SY (and similarly for CR), so the full statistics of
n̂C, n̂R

C can be computed from the statistics of the reduced
trajectories Y .

The probabilities of the reduced trajectories have several
useful properties, which are summarized here, with extra de-
tail in Appendix B 2. First, the times between each arrival in
A and the next departure are all independent, they are expo-
nentially distributed with mean r(A)−1. Second, on departure
from A at time tdep, the subsequent behavior is Markovian (in-
dependent of the previous history), as also occurs in renewal
processes. The probability that any departure from A leads to
a complete cycle C is [similar to (13)]

Pren
C (τ − tdep) = w(A → C2)

r(A)
pseq(C)Ffin(τ − tdep, C). (B2)

Also, given that such a cycle is completed, the time tarr for
the next arrival in A (which is the end time of the cycle) has
cumulative distribution function

P (tarr < tdep + 
t | C) = Ffin(
t, C)

Ffin(τ − tdep, C)
. (B3)

Hence, given that the system departs from A at time tdep,
the probability density that it completes an instance of cycle C
and returns to A at time 
t later is

fC (
t ) = w(A → C2)

r(A)
pseq(C)

∂

∂ (
t )
Ffin(
t, C). (B4)

Using (17) and (3), the corresponding quantity for CR is

fCR (
t ) = e−AC fC (
t ). (B5)

Following similar arguments, a formula is available for
the probability of any reduced trajectory. This is given in
Appendix B 2.

Notwithstanding that derivation, an important fact is al-
ready apparent from (B5): Given any reduced trajectory Y ,

one may obtain a new trajectory Y ′ by replacing any instance
of C in SY by CR (keeping all other aspects of the trajectory
fixed). The resulting trajectory probabilities are related as

P (Y ′) = P (Y )e−AC . (B6)

[See also Appendix B 2, and note that this is analogous to
(23).]

Recalling from (8) that K̂ is the total number of instances
of C and CR, one may define a set � containing 2K̂ (reduced)
trajectories, formed by all possible replacements of C by CR,
and vice versa. Then the conditional probability of trajectory
Y within this set is

P (Y |�) = e−AC n̂R
C (Y )

(1 + e−AC )K�
, (B7)

where K� is the value of K̂ for all trajectories in �. These tra-
jectories have different values of Ĵ; the number of trajectories
with any given value is a binomial coefficient. Hence [using
(8)] the conditional distribution of Ĵ is

P(J|�) =
(

K�
1
2 (K� + J )

)
exp(JA/2)

[2 cosh(A/2)]K�
. (B8)

Finally, the distribution P̃τ (K, J ) of (9) can be obtained
by conditional probability as P̃τ (K, J ) = ∑

�|K P(J|�)P(�)
where the sum (which might alternatively be expressed as
an integral) is over all sets � with K� = K , and P(�) is
the probability that a random trajectory is in the set �. This
yields (9).

2. Probabilities of reduced trajectories

We derive the probability of a reduced trajectory Y , whose
definition is illustrated in Fig. 5. On each visit to state A,
the system loses all memory of its previous history: this is
a renewal. It follows that the probability of trajectory Y is
given by a product of terms, one from each of its components.
Denote the number of visits to A by N , this is a random
quantity but we do not write any hats, to lighten the notation.
Hence Y is specified by N arrival times and N departure
times, and the N − 1 elements of SY . If the trajectory starts
in A then we take t arr

1 = 0 and if it ends in A then tdep
N = τ .

The initial condition of the system is given by a distribution
pini over its states (it is not assumed that pini corresponds to
the steady state).

The first contribution to the trajectory probability comes
from the transient period before the first visit to A, it is a
probability density for t arr

1 , which we write as fbeg(t arr
1 ). This

probability has two contributions, the first is pini(A)δ(t arr
1 )

because the system may start in A. The second is the prob-
ability density that the system first reaches A at time t arr

1 . This
distribution can be computed if necessary, for the purposes of
this work it is sufficient that fbeg(t arr

1 ) exists, but the specific
form is not required.

The next contribution comes from the visits to A. After
each arrival, the system stays in A for a time tdep − tarr whose
probability density is

fA(tdep − tarr ) = r(A)e−(tdep−tarr )r(A). (B9)

064137-10



CYCLE COUNTS AND AFFINITIES IN STOCHASTIC … PHYSICAL REVIEW E 104, 064137 (2021)

The next contribution comes from completed cycles. On leav-
ing A at time tdep, the probability to complete a cycle C and
return a time 
t later is fC (
t |tdep) as given in (B4). A
similar expression holds for cycle CR; see (B5). One must also
consider the probability density to return to A by a different
cycle (neither C or CR) after time 
t , which is denoted by
fO(
t |tdep). The precise form of this function is not needed
for the current purpose, only that it is well defined (similar to
fbeg). Still, if one considers very long trajectories, a system
that departs from A must eventually return to it, from which
one deduces the normalization constraint

∫ ∞

0
dt[ fC (t ) + fCR (t ) + fO(t )] = 1. (B10)

Finally one must consider the contribution to the trajectory
probability from the final component, between the last depar-
ture from A and time τ . This is denoted by pend(τ − tdep

N ).
The form of this contribution depends on whether the system
ends the trajectory in state A (so τ = tdep

N ) or not. In the latter
case, pend(t ) is the probability that a system departing from
state A does not return to it within time t . In the case τ = tdep

N ,
pend has a contribution r(A)−1δ(t ), and this factor combines
with the fA contributions to the trajectory probability to ensure
that the distribution of times spent in A is correctly accounted
for.

Combining all these ingredients, the probability density for
the reduced trajectory Y is

P (Y ) = fbeg
(
t arr
1

)[ N∏
i=1

fA(tdep
i − t arr

i )

]
fend

(
τ − tdep

N
)

×
N−1∏
i=1

f(SY )i

(
t arr
i+1 − tdep

i

)
. (B11)

Here f(SY )i is one of fC, fCR , fO, according to which kind of
cycle appears in the ith element of SY .

From this final result one may directly check (B6), because
the only change on replacing an instance of C in Y by CR is to
exchange a factor of fC (t arr

i+1 − tdep
i ) for fCR (t arr

i+1 − tdep
i ). Using

this with (B5) yields (B6).

APPENDIX C: LARGE DEVIATION COMPUTATION

1. SCGF for large deviations for cycle counts

We outline the derivation of the SCGF from (30) as the
largest eigenvalue of the matrix W (s, λ) in (41). We also
explain why this SCGF cannot be derived by applying a
“standard” tilting method to the original system. Following,
for example, [42,45], we generalize the probability P(u, t )
from (40) by defining P(u, nC, nR

C , t ) as the probability for the
extended system to be in state u at time t , having made nC
completions of cycle C and nR

C completions of CR. It is crucial
that this P obeys its own master equation:

∂

∂t
P
(
u, nC, nR

C , t
) =

∑
v( �=u)

P
(
v, nC, nR

C , t
)
W (v → u) −

∑
v( �=u)

P
(
u, nC, nR

C , t
)
W (u → v)

+ [
P
(
uC, nC − 1, nR

C , t
) − P

(
uC, nC, nR

C , t
)]

W (uC → vC )δu,vC

+ [
P
(
uC, nC, nR

C − 1, t
) − P

(
uC, nC, nR

C , t
)]

W
(
uR
C → vR

C
)
δu,vR

C
, (C1)

where the second and third lines account for the fact that
transitions uC → vC and uR

C → vR
C correspond to cycle com-

pletion events, in which the value of either nC or nR
C changes

[recall Eq. (38)]. Now define

P̃(u, s, λ, t ) =
∑

nC ,nR
C

P
(
u, nC, nR

C , t
)
e(s+λ)nC+(s−λ)nR

C (C2)

(the sums run from 0 to ∞). Note that P is a normalized prob-
ability distribution over (u, nC, nR

C ) but P̃ is not normalized.
Then by (C1) one has

∂

∂t
P̃(u, s, λ, t ) =

∑
v

[W (s, λ)]u,vP̃(v, s, λ, t ), (C3)

where the matrix W (s, λ) is defined in (41). This equation
corresponds to ∂t P̃ = Wu,v (s, λ)P̃ from which one sees that
the long-time behavior of P̃ is dominated by the largest eigen-
value of W (s, λ), that is, P̃(u, s, λ, t ) 
 P̃∞(u, s, λ)et�(s,λ) for
large times, where �(s, λ) is the largest eigenvalue. Summing
over u, one may establish that the SCGF (30) coincides with
this �, as in [42,45]. To see that this method requires the
extended system, note that (C1) describes a Markovian dy-
namics for the evolution of (u, nC, nR

C ), where u is the state of
the extended system. By contrast, if one considers the original

system (whose state is x), the evolution of (x, nC, nR
C ) is not

Markovian: the probability of an event where nC increases
depends on the history of recently visited states, and not only
on the current state x. (Specifically, nC can increase only if
the current state is CmC and the previous mC − 1 states were
C1, . . . , CmC−1.) As a result, the recipe given here—which
connects SCGFs to eigenvalues—is applicable only at the
level of the extended system. In fact, the evolution of the state
(x, nC, nR

C ) is an example of an mth-order Markov process (we
refer to [26] for applications of such models to word counting
in discrete time, and to [46] for a discussion of large deviations
in mth-order Markov processes).

2. Practical calculation of large deviations for cycle counts

As discussed in Sec. V B, the SCGF � for cycle counts can
be characterized as the largest eigenvalue of a matrix, which
is a tilted generator for a Markov process on an extended
state space. The size of this state space grows quickly with
the model complexity, which makes explicit computations
tedious. We explain here that a milder extension to the state
space is already sufficient to obtain the SCGF (at least for
nonrevisiting cycles).
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FIG. 6. Transitions in the extended state space for counting com-
pletions of the cycles C and CR for the network of Fig. 1. Transitions
within the original state space � (circled states) are shown in black.
Additional states (boxed) are the partial completions of cycles C
(solid) and CR (dashed). Yellow arrows indicate attempted comple-
tions of cycles. These attempts may fail (via the transitions shown in
red) or lead to a successful completion of a cycle (via the transitions
shown in green).

This (extended) state space contains all the elements of the
original space �, along with states corresponding to progres-
sive partial completions C̃2, . . . , C̃m of any cycle of interest
(with length m). As an example, we consider the cycles C =
ABCA and CR = ACBA, in which case the state space is
extended by the states C̃2 = AB, C̃3 = ABC, and C̃R

2 = AC,
C̃R

3 = ACB. A network representation of a Markov process
on this extended space is shown in Fig. 6. Note that this
extended state space grows only linearly with the length of
the cycle of interest, as opposed to the exponential growth of
the corresponding m-word space.

We order the three subspaces of the extended state space as
(�, C̃2, . . . , C̃m, C̃R

2 , . . . , C̃R
m ) and accordingly construct a rate

matrix of the block form

W 0 =
⎛
⎝ W� W�C W�CR

WC� WC 0
WCR� 0 WCR

⎞
⎠. (C4)

We use the notation [W 0]νμ ≡ W (μ → ν) to label off-
diagonal elements with column μ and row ν of the full matrix
W 0 in the extended state space.

The block W� describes transitions within �, that do
not mark the start of an attempted cycle, i.e., W (x → y) =
w(x → y) for all x, y ∈ �, except for W (C1 → C2) = 0 and
W (CR

1 → CR
2 ) = 0. These transitions are marked in black in

Fig. 6. [It is understood that w(C → C) = 0 in the formulas
of this section, because transitions take place only between
distinct states.]

The blocks WC� and WCR� have one nonzero entry each,
marking the start of an attempted cycle. They have the rates
W (C̃1 → C̃2) = w(C1 → C2) and W (CR

1 → C̃R
2 ) = w(CR

1 →
CR

2 ). Figure 6 shows the relevant transitions for example sys-
tem as yellow arrows leaving A.

The blocks WC and WCR convey the successful continua-
tion of the attempted cycle. Their nonzero rates are W (C̃i →
C̃i+1) = w(Ci → Ci+1) and W (C̃R

i → C̃R
i+1) = w(CR

i → CR
i+1)

for 2 � i < m, corresponding to the other yellow arrows in
Fig. 6.

The blocks W�C and W�CR convey transitions that mark
the end of an (attempted) cycle. These are mostly unsuc-
cessful terminations of an attempted cycle (shown in red
in Fig. 6), except for a single transition for each cycle
that closes it correctly (shown in green). The transition
rates are W (C̃i → y) = w(Ci → y) for 2 � i � m and y ∈
�, except for W (C̃i → Ci+1) = 0 when i < m; and likewise
for CR.

Finally, the diagonal elements of the transition matrix are
set to [W 0]νν = −∑

μ �=ν[W 0]μν . The SCGF is obtained as
the largest eigenvalue of the tilted matrix W (s, λ) = W 0 +
V (s, λ), analogously to Eq. (41), where we count success-
ful transitions from C̃m to Cm+1 or from C̃R

m to CR
m+1 by

setting

[V (s, λ)]Cm+1,C̃m
= (es+λ − 1)[W 0]Cm+1,C̃m

,

[V (s, λ)]CR
m+1,C̃R

m
= (es−λ − 1)[W 0]CR

m+1,C̃R
m
, (C5)

and all other entries of [V (s, λ)]νμ to zero.

For the particular example of Fig. 6, writing wxy ≡ w(x → y) and rx ≡ r(x), we obtain the tilted matrix (omitting zero
elements):

W (s, λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−rA wBA wCA wDA wBA wCAes+λ wCA wBAes−λ

−rB wCB wCB

wBC −rC wDC wBC

wAD wCD −rD wCD wCD

wAB −rB

wBC −rC

wAC −rC

wCB −rB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C6)

If s, λ = 0, this is a stochastic matrix; its columns sum to zero. Rows and columns correspond to the extended state space

(A, B, C, D, AB, ABC, AC, ACB). (C7)

The SCGFs in Fig. 4 were obtained by finding the largest eigenvalue of this matrix (for various s, λ).
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