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Earth’s climate can be understood as a dynamical system that changes due to external forcing and internal
couplings. Essential climate variables, such as surface air temperature, describe this dynamics. Our current
interglacial, the Holocene (11 700 yr ago to today), has been characterized by small variations in global
mean temperature prior to anthropogenic warming. However, the mechanisms and spatiotemporal patterns of
fluctuations around this mean, called temperature variability, are poorly understood despite their socioeconomic
relevance for climate change mitigation and adaptation. Here we examine discrepancies between temperature
variability from model simulations and paleoclimate reconstructions by categorizing the scaling behavior of
local and global surface air temperature on the timescale of years to centuries. To this end, we contrast power
spectral densities (PSD) and their power-law scaling using simulated and observation-based temperature series
of the last 6000 yr. We further introduce the spectral gain to disentangle the externally forced and internally
generated variability as a function of timescale. It is based on our estimate of the joint PSD of radiative
forcing, which exhibits a scale break around the period of 7 yr. We find that local temperature series from
paleoclimate reconstructions show a different scaling behavior than simulated ones, with a tendency towards
stronger persistence (i.e., correlation between successive values within a time series) on periods of 10 to 200 yr.
Conversely, the PSD and spectral gain of global mean temperature are consistent across data sets. Our results
point to the limitation of climate models to fully represent local temperature statistics over decades to centuries.
By highlighting the key characteristics of temperature variability, we pave a way to better constrain possible
changes in temperature variability with global warming and assess future climate risks.
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I. INTRODUCTION

The variability of surface air temperature is present on
all spatial and temporal scales, from synoptic and seasonal
changes to long-term variations on periods of years to multi-
millennia. On the one hand, it arises from internal processes,
such as the El Niño-Southern Oscillation (ENSO) [1]. On
the other hand, the temperature varies due to external forc-
ing, such as the greenhouse effect [2,3]. Understanding the
internally generated and externally forced variability has been
suggested to be at least as necessary for evaluating climate
risks for society and ecosystems as projecting the global
mean temperature [4]. Available instrumental observations are
limited to a small time span, leading to challenges in quan-
tifying temperature variability. Paleoclimate reconstructions
extend the characterization of temperature variability and can
be compared to global circulation models (GCMs) [5–7].
However, discrepancies between model and paleoclimate data
remain to be resolved, especially on the local level and on
periods between years and centuries [8–12].

Characterizing local temperature variability is crucial for
predicting extremes [6], not only to minimize short-term
damage but also to design long-term strategies, including ur-
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ban planning and food cultivation [13]. Variability of global
temperature on periods above years is relevant to the un-
derstanding of long-term changes [14] as well as climate
sensitivity [15]. Assessing the temporal correlation struc-
ture of temperature series by means of scaling behavior and
persistence is particularly important for distinguishing exter-
nally forced trends from natural changes [16]. It could affect
the confidence in future projections and attribution studies
[17,18]. Therefore, one of the main topics to be investigated
here is the characteristics of local and global temperature vari-
ability on periods of years to centuries from model simulations
and observation-based data of the last millennia.

To determine how the variability of a temperature series
is distributed with timescales τ , we make use of the power
spectral density (PSD) S(τ ), known as spectrum. It can be
obtained from the Fourier transform of the autocorrelation
function (see Appendix A) [19,20]. The spectrum was shown
to often follow a power law

S(τ ) ∼ τβ, (1)

with spectral exponent β and period τ [21,23–27], especially
on decadal-to-centennial scales [22,28,29]. We refer to this
behavior (1) as temporal scaling since the temperature signal
has no preferred timescale and is statistically similar across
periods τ . The exact determination of the start and end points
of a scaling interval is not part of this study.
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FIG. 1. Characteristic timescales relevant to surface air tempera-
ture variability of climatic drivers (dark blue) and climate subsystems
(yellow) [32–34]. The weather and long-term climate is character-
ized by β > 1 for local and global mean temperature. On interannual
to millennial timescales the statistical properties of temperature fluc-
tuations remain to be determined, especially at the local scale. The
TSI bar highlights the dominant variations in recent total solar irra-
diance observations.

Long-range memory stochastic processes are suitable
to describe temperature signals with temporal scaling
[25,26,30]. Among those, fractional Gaussian noise (fGn) is
a stationary process and exhibits a spectral exponent β ∈
(−1, 1) on sufficiently long periods (see Appendix B). Frac-
tional Brownian motion (fBm) is a nonstationary process that
shows β ∈ (1, 3). The scaling exponent β relates to the decay
of the autocovariance function (Appendix B) and indicates
how strongly the values within a time series are correlated
(or anticorrelated). It is therefore regarded as a measure of the
strength of temporal persistence (or antipersistence) [26,31].

Particular scaling behavior with β ≈ 2 [23,25] is typical
for the weather regime (hours to weeks) and can be explained
by atmospheric turbulence [35,36]. In the long-term climate,
regional and global mean temperatures show similar behavior
(β > 1) [24,25,29] due to the presence of nonlinear processes,
such as the temperature-albedo feedback [37]. On timescales
between years to millennia, the temperature is constantly in-
fluenced by the interaction of all climate subsystems and by
volcanic, solar, as well as CO2 forcing (Fig. 1). Estimates
of the spatially dependent scaling behavior of local temper-
ature on these timescales differ [22,25]. On the global scale,
many studies find β ≈ 1 [28,29]. However, Lovejoy et al. has
identified a change from the so-called macroweather regime
(β ≈ 0.8 on periods of 10 days to 40 yr) to the climate regime
(β ≈ 1.8 on periods from 40 yr to 80 000 yr) [25].

In this manner, previous works find ambiguity in the in-
terpretation of local and global temperature scaling, and it
remains to be determined whether simulations and reconstruc-
tions qualitatively agree in scaling behavior β < 1 or β > 1.
The so-called “1/ f noise” (β = 1) corresponds to a process
with power spectral density proportional to the period. For

β > 1, the relative contribution∫ f ′

f ′/2 S( f ) df∫ 2 f ′
f ′ S( f ) df

= 1 − 2β−1

21−β − 1
= 2β−1 (2)

to the variance is larger from slow timescales compared to
faster ones for all frequency intervals f ′/2 to 2 f ′ within
a scaling interval [38]. With increasing β > 1, the fBM is
said to exhibit “nonlinear pseudotrends” [30] (Appendix B).
Thus, for understanding climate variability and for modeling
purposes, the systematic estimate of the scaling exponent
β allows to assess the behavior of fluctuation levels across
timescales [26]. Moreover, the differentiation between forced
and unforced changes poses a challenge to understanding
temperature variability [39,40]. Beyond the analysis of Haar
fluctuations of a few forcing reconstructions [41–43], spectral
analysis of climatic drivers and their frequency-dependent
linkage to the temperature response remains incomplete.

We investigate the timescale dependency of local and
global surface air temperature variability by analyzing
power spectral densities from a few hours to a thousand
years, thereby extending and improving on earlier work
[24,25,29,44]. We use model simulations and observation-
based data, which we introduce in Sec. II. To estimate the PSD
and determine its power-law scaling on periods of 10 to 200
yr, we use state-of-the-art methods described in Sec. III. This
allows us to contrast regional and global spectra (Sec. IV A),
spatial patterns (Sec. IV B), and the agreement of simulated
and observation-based estimates (Sec. III C). Along with that,
we discuss the joint PSD from various radiative forcings,
which allows us to calculate the spectral gain and study the
externally forced variability in Sec. III D. Based on our re-
construction of the PSD of surface air temperature for the last
millennia, we evaluate the consistency of spectral character-
istics across the data sets considered. In Sec. V we elaborate
on the stronger persistence of temperature on local than global
level as well as remaining discrepancies. Finally, we discuss
how our findings could help improve climate model simula-
tions and understand Earth’s climate dynamics.

II. DATA

We investigate the timescale-dependent distribution of
surface air temperature variability using model simulations,
observation-based data, and radiative forcing reconstructions.
The model simulations include ten transient runs from GCM
experiments [45]. The observation-based data consists of
reanalysis data, instrumental measurements, and the paleo-
climate reconstructions from the Past Global Changes 2k
(PAGES2k) network [46]. We use 12 reconstructions of cli-
matic drivers, including solar, volcanic, orbital, and CO2

forcing. All temperature and radiative forcing signals are spe-
cific to the Mid- and Late-Holocene (the last 6000 yr), with a
focus on the Common Era (0 to 2000 CE). The supplemental
tables S1–S3 [47] summarize their key specifications.

A. Model simulations

Each of the ten GCM runs considered features a tran-
sient, albeit different forcing and a comparable spatiotemporal
resolution. The CESM-LME 1 [48] and MPI-M LM [49] ex-
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periments serve as representative runs of the last millennium.
We analyze them at two temporal resolutions (one month,
six hours) to capture both the high- and low-frequency vari-
ability within our available computing capacities (see Fig. S7
[47]). CESM 1 past 2k [50] is included as a slightly newer
run for the Common Era. To cover the Mid-Holocene, we
use simulations from the IPSL [51] (denoted IPSL-p6k) and
ECHAM5/MPI-OM [52] (denoted ECH5/MPIOM-p6k) of
the last 6000 yr. From the TraCE-21k [53] simulation, we also
consider only the last 6000 yr to retain comparability and to
avoid potential biases due to significant shifts in the mean state
of climate. The Mid-Holocene runs were temporally averaged
to a bimonthly resolution to reduce computational costs. To
test for the influence of human-induced climate change on
our results, we include the HadCM3 LM1 simulation [12],
covering the period from 850 to 1850 CE. Furthermore, we
compare our results to the pre-industrial (PI) control runs from
CESM-LME 1 and MPI-M LM, as well as the TraCE-21k-
ORB run, which is solely forced by orbital changes.

B. Observation-based data

In addition to the simulations, we analyze the monthly
resolved HadCRUT4 (Hadley Centre/Climatic Research Unit
Temperature) instrumental records, ranging from 1850 to
2019 [54]. However, most of the grid-box time series are not
available as continuous measurements as required for spectral
analysis. Therefore, we retain only those 104 grid boxes with
coverage greater than 150 yr after interpolating gaps of up to
two months. While the Northern Hemisphere is comparatively
well covered up to 72.5◦N, only nine grid boxes remain for
the Southern Hemisphere. Therefore, this selection comes at
the expense of spatial resolution but offers a higher spectral
resolution on longer timescales. To further explore the poten-
tial effect of these spatiotemporal constraints, we include the
ERA5 (European Centre for Medium-Range Weather Fore-
casts Reanalysis 5th generation) temperature reanalysis for
the years 1979 to 2019 [55]. Along with CESM-LME 1 and
MPI-M LM, we analyze the ERA5 data at both six-hourly and
monthly resolution for the same reasons as mentioned earlier.

In addition to direct temperature observations and reanaly-
sis, we analyze paleoclimate data. Paleoclimate records hold
preserved biological, chemical, and physical tracers (“prox-
ies”) of past climate. The number of temperature records
from paleoclimate data with subcentennial resolution is lim-
ited. Recent progress has been made by improved calibration
and pseudoproxy methods within the PAGES2k network
[56]. Therefore, we base our analysis on their newest global
multiproxy database for temperature reconstructions of the
Common Era [46]. It gathers 692 records from trees, ice, sed-
iment, corals, speleothems, and documentary evidence with
a resolution between weeks and centuries. The records are
spread over 648 locations, including all continental regions
and major ocean basins.

For investigating the variability of global mean surface
temperature, we use the seven spatially weighted statistical re-
constructions for the last 2000 yr provided by PAGES2k [46].
To estimate the mean of local spectra, we choose records from
the PAGES2k database according to their resolution (�80 yr),
their number of data points (�20), their coverage (�20 yr), as

TABLE I. Requirements on irregularly sampled time series x(t )
for analyzing power-law scaling on timescales τ ∈ [τ1, τ2]. We apply
this scheme for τ1 = 10 and τ2 = 200 yr in Secs. IV B and IV C.

Parameter Value

Number of data points (N) � 50
Mean temporal resolution [〈ti+1 − ti〉] �τ1

Coverage (tN − t1) �3τ2

Length of hiatuses [max(ti+1 − ti)] �5τ1

well as their maximum hiatuses (�160 yr). To reliably deduce
the scaling of the PSD from individual records, we select the
records according to our scales of interest (Table I), similar
to [26,57]. Ice core records were excluded from our analysis
since they require additional consideration of signal-to-noise
ratios at the subcentennial timescales [58,59].

C. Radiative forcing

External forcing contributes significantly to temperature
variability and is an essential part of reliable climate projec-
tions [40,60,61]. We study its spectral properties using forcing
reconstructions, widely implemented in GCM experiments
and coordinated within the Palaeoclimate Model Intercom-
parison Project (PMIP3/PMIP4) [62,63]. This includes five
solar [64–68], one CO2 [63], and two volcanic [60,69] forcing
reconstructions as well as Berger’s numerical solution for
orbital forcing [70]. Furthermore, we calculate diurnal insola-
tion changes from the hour angle of the sun [71]. We also use a
more recently published volcanic [72] and high-resolution so-
lar forcing [73] reconstruction as well as CO2 measurements
[74]. We neglect land-use forcing [75] which is much lower
in amplitude and variability than the other forcings considered
here.

All forcing reconstructions are rescaled to radiative
forcing equivalents, which express their respective change
in the Earth’s radiation balance in Watts per square
meter (Wm−2). We apply the widely used formula
5.35 ln([CO2]/278ppm) Wm−2 to rescale CO2 concentrations
[CO2], given in parts per million (ppm) [76]. The stratospheric
aerosol optical depth (AOD) from volcanic eruptions is
rescaled by (−20)−1 Wm−2/AOD [77]; however, the optimal
conversion factor is still a matter of debate [78]. Additional
uncertainties arise from the wide spread of reconstructions for
volcanic and solar forcing. To account for this and the choice
of conversion factor, we simulate the joint PSD of radiative
forcing by a Monte Carlo approach described in Appendix E.
Here “joint” indicates that the PSD of radiative forcing is cal-
culated by linear summation of the mean PSD from different
types of climatic drivers, rescaled to their radiative forcing
equivalents.

III. METHODS

Spectral analysis is the primary tool used here for studying
the timescale-dependent variability and scaling of temperature
series. To minimize uncertainties in the spectral analysis of
proxy records, we use state-of-the-art approaches for irregu-
larly sampled time series [79]. Statistical estimators further
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test for the agreement between simulations and paleoclimate
data. We apply linear response theory to derive the spectral
gain and investigate the forced temperature response.

A. Spectral analysis

Power spectral analysis requires the assumption that the
underlying time series can be described as a weakly stationary,
stochastic process with time-independent mean and autoco-
variance [80]. We therefore linearly detrend all time series
as it is standard for temperature analysis [9,26,81,82]. The
agreement of the PSD from disjoint time intervals in Fig. S13
[47] provides evidence that stationarity is sufficiently fulfilled.
We use the multitaper method with three windows [83,84]
and chi-square distributed uncertainties to compute the PSD.
The two lowest frequencies were omitted to reduce biases of
the multitaper method [24]. For visual purposes, we apply
a logarithmic Gaussian smoothing filter of constant width
(0.005 decibels) [85]. Mean spectra were calculated by inter-
polation to the lowest resolution, binning into equally spaced
log-frequency intervals, and taking the average with equal
weights [24]. This requires the statistical independence of the
averaged values [43]. The spectral exponent β is calculated by
linear regression to the logarithm of (1) on periods between
τ1 = 10 and τ2 = 200 yr after binning the PSD into equally
spaced log-frequency intervals to more uniformly weight the
estimate and avoid low-frequency biases [24,26,29,86]. In the
case of seven proxy records with an insufficient resolution, the
scaling is estimated on their corresponding spectral resolution,
but always at least between 20 and 200 yr (Fig. S4 [47]).
The uncertainty of the spectral exponent, �β, is given by the
standard error of the linear regression model �βlm, except for
irregularly temperature series.

B. Uncertainties for irregular temperature series

Spectral analysis of proxy records, which are typically not
sampled in regular time steps, is more prone to errors than
that of regular time series. We aim to minimize biases by
accounting for the number of data points, temporal resolution,
total coverage, and hiatuses’ length when selecting the records
(Table I). We find that the mean temporal resolution of a proxy
record approximates well the optimal interpolation time step.
Nevertheless, the interpolation introduces uncertainties which
are not captured by �βlm. Similar to Laepple et al. [79], we
quantify this additional uncertainty �βint in four steps: (1) For
each record with spectral exponent β, we simulate N = 100
surrogate time series with annual resolution and a power-law
scaling βn ≈ β and n ∈ [1, N]. (2) We form the surrogate’s
block average over the proxy record’s irregular time steps
and obtain N surrogate time series at record resolution. (3)
We interpolate the surrogate time series, calculate the multi-
taper spectrum, and extract the scaling exponent βn,lm from
linear regression in the same way as for the proxy record
(Fig. S8 [47]). (4) We calculate the mean deviation �βint =
1
N

∑N
n=1 |βn,lm − βn| of the ensemble. The uncertainty of the

individual fits �βn,lm is negligible compared to the mean
deviation �βint. We obtain the uncertainty of the record’s
spectral exponent from both, the uncertainty of the initial fit

�βlm and due to interpolation �βint via quadratic summation:
�β =

√
(�βlm)2 + (�βint )2.

C. Statistical analysis of spectral exponents

We quantify the agreement of simulated and reconstructed
β-values using percent agreement, categorical agreement, and
Kappa statistics. Beforehand, we extract the simulated tem-
perature at the proxy record location by bilinear interpolation
of neighboring grid boxes to achieve the best possible com-
parability between record and simulation. Percent agreement
p0 gives the percentage of locations at which the confidence
range β ± �β from simulation and reconstruction overlap.
The agreement by category, here referred to as categorical
agreement pc, is calculated with the help of ν = 0.32, the
mean uncertainty of β from all proxy records considered.
We then assign the three categories low (β < 1 − ν), high
(1 + ν � β), and intermediate (1 − ν � β < 1 + ν) to the
spectral exponent β. The intermediate regime prevents in-
correct assignment. To verify the reliability of categorical
agreement, we calculate the kappa statistics

κ = (pc − pe)/(1 − pe) (3)

with expected percent agreement pe by category [87]. The
latter can be obtained from pe = 1

N2

∑3
c=1 nc,mnc,p where c is

the category, N the number of locations and n the number of
times that models (m) and proxy records (p) have predicted
category c. The κ-coefficient quantifies the reliability from no
agreement beyond chance (κ = 0) to full agreement (κ = 1).
Negative κ indicates agreement that is beyond change, for
example, due to systematic biases.

D. Spectral gain

We investigate how climatic drivers influence the global
mean temperature at period τ by calculating the spectral gain

G2(τ ) = ST (τ )

SF (τ )
. (4)

Here ST (τ ) is the PSD of the global mean temperature and
SF (τ ) the PSD of radiative forcing (see also Appendix C). The
gain requires the assumption that the global mean temperature
can be well approximated as a linear function of the forcing
[27,88,89] and that different types of radiative forcing add
linearly [90–93]. To this end, we focus on timescales between
years and centuries when additivity is a valid assumption and
nonlinearities in the global mean temperature are sufficiently
small [42,43]. The main practical problem that confronts us
is that the gain might be subject to a sampling bias due to
our data sets choice. Therefore, we perform a Monte Carlo
simulation of the PSD of radiative forcing and the global
mean temperature, as well as the spectral gain as described
in Appendix E.

IV. RESULTS AND DISCUSSION

A. Global mean and mean of local spectra

In order to study the timescale dependency of global mean
temperature, we present its power spectral density in Fig. 2(b).
It shows the characteristic background continuum, spectral
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FIG. 2. (a) Mean power spectral densities (PSD) of local temperature from model simulations and observation-based data on periods from
hours to 1000 yr for the Holocene. (b) PSD of global mean temperature. The dashed lines with slope β and arbitrary y-intercept in the log-log
graph indicate the scaling behavior for visual comparison. The ensemble means (black solid lines) were formed using equal weights across the
model group M0 (see Table S1 [47]).

peaks, and higher harmonics associated with the diurnal and
annual cycle. Overall, the PSDs tend to agree between the
data sets, albeit with some differences on the interannual
scale and when compared to the Trace21k ORB run. The
Trace21k-ORB run is solely forced by orbital changes and
therefore shows less variability than the ensemble mean.
The broad spectral peak on interannual periods reveals an
artificially amplified ENSO in the shared MPI-M LM and
ECHAM5/MPI-OM ocean component [94]. For a better
visibility, PI control runs are separately shown in the supple-
mentary Fig. S6 [47]. Overall, the PSD largely agrees among
different data sets, especially towards shorter timescales.

We find a power-law scaling of β ≈ 1 on timescales longer
than 10 yr in line with previous results [25,26,28]. The PSD
decreases more strongly towards shorter periods, which is
characteristic of the weather regime [25,36]. Similar to Nilsen
et al. [26], we find no evidence for significant changes in
scaling behavior around the centennial scale. One limitation of
previous work that found scale breaks is that the spectra were
estimated across nonstationary shifts in climate, such as the
deglaciation [29], and with a change in proxies and archives
[24].

We present the area-weighted mean spectra of the local
(grid box) temperature in Fig. 2(a). Compared to the global
mean in Fig. 2(b), the power increases and the spectral slope
decreases, in line with [81]. The spectra agree on periods
below 10 yr, except for the artificially amplified ENSO signal
mentioned earlier. Moreover, we find a narrow peak at 13 yr,
associated with an unrealistic variability in the northern North

Atlantic of the TraCE-21k run, similar to [95,96]. Remark-
ably, the decadal-to-centennial variability of the reconstructed
temperature is increased by one to two orders of magnitude
compared to the simulations. The spectral exponent is smaller
for models (β < 1) compared to paleoclimate data (β ≈ 1).

This finding verifies that models show less regional tem-
perature variability and that the mismatch increases towards
longer timescales. The results are robust to sampling from
the PAGES2k database and the influence of anthropogenic
climate change (Fig. S10 [47]). One shortcoming of forming
the area-weighted mean PSD is that the uncertainty quantifi-
cation requires the assumption of independent spatial degrees
of freedom of the temperature field. Due to the presence of
spatial correlations, an estimate of the effective spatial degrees
of freedom and their dependence on the underlying timescale
would be needed to resolve this limitation [97].

B. Spatial patterns of persistence

To further investigate the mismatch on local scaling prop-
erties, we compare the spatial dependence of temperature
persistence from simulations and paleoclimate data in Fig. 3.
The simulations largely exhibit small-magnitude scaling ex-
ponents (−1 < β < 1), whereas proxy records were found to
also show β > 1. In this manner, the magnitude of local tem-
perature fluctuations from model simulations often shows no
dependence on the decadal-to-centennial timescale. However,
approximately half of the proxy records show a variance that
grows on increasingly long periods (see also Fig. S11 [47]).
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FIG. 3. Local temperature persistence on timescales from τ1 = 10 to τ2 = 200 yr across multiple climate simulations and selected proxy
records from the PAGES2k database. Colors from blue to red indicate the scaling behavior ranging from β = −1 to β = 3. Symbols indicate
the scaling of proxy records from different natural archives. The background of each panel shows the β-values fitted to the PSD of the local
grid box temperature from simulations. Zonal mean values (dashed curves) are given next to the map, with means (solid curves) over latitude
intervals (with breaks at −60, −30, 0, 30, and 60◦ N) and gray shaded confidence intervals. The spatial coverage of proxy records is not
sufficient for robust mean estimates, which is why only simulation data are shown here.

From both simulations and paleoclimate data, we can
strengthen the argument by Fredriksen et al. [81] that there
is no latitudinal dependence of β (Fig. 3), in contrast to pre-
vious studies, suggesting a possible linkage to the strength of
the seasonal cycle [24]. Inspecting the simulations’ β-values
(background of Fig. 3), we find a small land-sea contrast.
Strongest scaling occurs in the Southern Oceans in line with
previous findings [81]. Ocean-sea ice interactions with char-
acteristic timescales of the order of centuries and a generally

increased internal variability over the oceans might explain
these results.

We find generally lower values for the slope β in the
ENSO and Indo-Pacific region. This could be attributed to the
fact that (quasi-)oscillatory signals, such as active modes of
internal variability, are reflected in the PSD as broad peaks and
hence cannot be described by a scaling law. On the other hand,
this finding is stronger in PI control runs compared to fully
forced runs [Figs. 3(c)–3(f)]. Thus, residual effects of the re-
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FIG. 4. Percentage agreement p0, categorical agreement pc and
interrater reliability κ of local temperature persistence from simula-
tions and paleoclimate data. The measures were calculated from a
set of bilinearly interpolated simulation records and the proxy record
at 23 different locations. Missing orange bars indicate no agreement
beyond chance and, therefore, zero interrater reliability (κ = 0).

cent global warming trend might play an additional role [98].
A systematic bias becomes clear from the spatially almost
uniform β-values of Trace21k-ORB [Fig. 3(h)]. In line with
Fig. 2, we explain this by the lack of forcing mechanisms on
interannual to multidecadal timescales in the aforementioned
simulation.

Marine and lake sediments, as well as the archived
documents, follow the general trend of increased β-values
compared to simulations. Tree ring records agree well with
most simulations in North America and Siberia, but not
necessarily at the coast of Australia and northern Europe.
Discrepancies such as those in southern South America could
reflect the proxies’ strength in representing local conditions,
for example, topography. However, noise sources in the cli-
mate signal recording and preservation, such as bioturbation,
can influence proxy records. Further separating the signal
content from noise sources in paleoclimate reconstructions
can help refine our findings [99,100].

C. Statistical agreement of temperature persistence

We further investigate the question of temperature scal-
ing by a statistical analysis of β-values from simulations
and paleoclimate reconstructions. It is based on the detailed
uncertainty quantification outlined in Sec. III B. Our results
show that reconstructions and simulations agree in less than
30% of locations within the scope of uncertainties (Fig. 4).
To single out the scaling behavior of temperature signals,
we study the agreement by category. We find approximately
25% of agreement within the categories β < 1 − ν (low) and

β > 1 + ν (high). Although widely accepted [101], categor-
ical and percentage agreement suffer from the limitation to
ignore any agreement by chance. Therefore, we investigate
the κ-statistics (orange bar in Fig. 4) and verify that there is no
agreement beyond chance (κ = 0) for almost all models. Only
MPI-M LM and HadCM3 LM1 show any, if poor agreement
(κ ≈ 0.1), whereas Trace21k-ORB shows even lower agree-
ment than expected by chance (κ < 0) due to its systematic
bias.

The disagreement could be attributed to both paleocli-
mate data and simulations. A systematic bias could arise, for
example, through the recent, nonstationary global warming
trend. Therefore, we repeat our analysis with all time series
cut at 1850. In particular, anthropogenic warming slightly
increases long-term temperature variability and thus scaling
behavior, but not significantly (Figs. S6, S9, and S10 [47]).
Further uncertainties could arise from our choice of statistical
estimator for the scaling exponent β. Maximum likelihood
estimation (MLE) should generally be preferred over linear
regression (LR) because of its mathematical soundness and
skillfulness [102]. We find that MLE is indeed more accurate
for regular time series with β > 0 (Fig. S14 [47]). However,
LR allows for estimation of β < 1, unlike MLE which as-
sumes β > 1 [102]. In addition, for the characteristics of our
empirical data, the differences between the two methods are
not significant for β > 0 (Fig. S15 [47]). Therefore, linear
regression represents the preferred estimator for our analy-
sis. Regardless of the chosen estimator, we observe a slight
tendency towards increased scaling exponents for irregularly
sampled data (Fig. S15 [47]), similar to Lucke et al. [100].
Our uncertainty quantification carefully accounts for these
potential errors due to irregular sampling and interpolation by
simulating their influence using surrogates (Fig. S8 [47]).

We do not expect other systematic biases for the paleocli-
mate data since we base our results on multiple archives and
proxies, and no systematic spatial pattern is discernible (Fig.
S11 [47]). In particular, the cross-correlations between the 23
proxy data sets are weakly positive (0.02 on average with 95%
quantiles of −0.17 to 0.21). The assumption of spatial inde-
pendence necessary for robust statistical analysis (Fig. S16
[47]) therefore appears fully satisfied. The models’ resolu-
tions are another possible element of uncertainty that impacts
variability over a wide range of timescales [103–105]. We
here facilitate intermodel comparison by using state-of-the-art
GCMs with comparable spatial and temporal resolutions, but
computational costs precluded higher resolutions. The latter
might be necessary to improve the representation of decadal
variability and response to external forcing. In particular, the
increased scaling exponents (β > 1) from paleoclimate data
could indicate that nonlinear processes from an interactive
carbon cycle and dynamical ice sheets might not be suffi-
ciently represented in models.

D. The forced temperature response

Climatic drivers are not constant in time and thus affect the
surface air temperature on multiple timescales. To investigate
the forced temperature response, we present spectra for the
main climatic drivers in Fig. 5. The PSD of orbital forcing
consists of the diurnal and annual cycle as well as a back-
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FIG. 5. Power spectral densities from radiative forcings. Details
on the reconstructions considered here are summarized in Table S2
and Fig. S5 [47].

ground continuum on longer timescales. Higher harmonics
on monthly timescales were omitted. We calculate the mean
volcanic, solar, and CO2 spectra using an equally weighted
average of spectra from multiple data sets (Fig. S5 [47]). The
CO2 forcing follows the orbital forcing. The PSD of solar
forcing again contains more power and has a pronounced peak
around the 11 yr solar cycle. Multiple theories and paleo-
climate reconstructions suggest the increased variability on
centennial to millennial periods due to the long-term behavior
of solar activity [106].

Volcanic forcing dominates interannual to centennial scales
and undergoes a scale break around the period of 7 yr, esti-
mated using the goodness of fit [102]. Above decadal scales,
it follows a white noise spectrum with constant variance.
However, the intermittency of volcanic eruptions might have
led to biases in the spectral characteristics [42]. We verify our
results using an analytical approach described in Appendix
D. Remarkably, the derived PSD of an ideal, intermittent
time series with Poisson distributed return times explains our
findings. We further demonstrate the scale break by a Monte
Carlo simulation of the joint PSD of radiative forcing in
Fig. 6(a). This finding raises the question of how the spectrum
with a scale break translates into the continuous spectrum in
Fig. 2(b).

We address this question by calculating the spectral gain
(4) on periods between years and centuries in Fig. 6(b).
Here observation-based data include HadCRUT4, ERA5, and
PAGES2k again. To account for the model artifacts explained
above, we calculate the gain from the model simulation group
M0 and together with group M+ (see Table S1 [47]). We find
that the spectral gain is similar from observation-based data
and the model simulation group M0, which is the one without
artificially amplified ENSO. This suggests that both follow
a similar distribution of timescale-dependent variability, as
already indicated by Fig. 2(b). Large parts of the gain show
constant behavior, which is most pronounced in M0. In a
simplified way, the gain might be approximated by an ideal
linear amplifier or damper of the forcing with comparable
internal variability on all timescales. However, we also find a
dip around decadal scales, which is strongest in the gain from

FIG. 6. Monte Carlo simulation of PSD (a) and spectral gain
(b) using temperature and forcing reconstructions as well as model
simulations. Shaded confidence intervals lie between the 5% and
95% quantiles. We consider only models from the groups M0 and
M+ (Table S1 [47]) to exclude model artifacts and to represent the
historical temperature response in the best possible way. Notably, M+
contains those simulations with amplified ENSO [94]. (b) Dashed
lines indicate the mean variance ratio 〈ST 〉/〈SF 〉.

measurements. Inspecting Fig. 6(a), this can be explained
by forming the ratio between a spectrum with a scale break
(β > 1 → β ≈ 0) and one with moderate scaling (β ≈ 1).

From this standpoint, internal variability slightly grows
on periods from years to centuries when slow processes in
the oceans, vegetation, land surface, and cryosphere become
increasingly active (Fig. 1). While the model simulations fol-
low this general pattern, they may not represent its amplitude
correctly, for example, due to the lack of feedback mecha-
nisms. In addition, a too high model diffusivity could cause
the suppression of low-frequency variability in model simu-
lations due to a faster energy dissipation over temporal scales
[8]. The PAGES2k multiproxy reconstruction, stemming from
palaeoclimate data, possibly underestimates internal variabil-
ity on interannual scales. However, the mean variance ratios in
Fig. 5(b) of the model estimates agree with those from obser-
vations in the global mean. This leaves us with a conundrum:
the global mean temperature based on model simulations and
observations is mostly consistent in its variability, scaling,
and response to forcing. Notwithstanding, locally, the models
show a much lower variance on longer timescales and dif-
ferent scaling behavior than reconstructions. Thus, it appears
that the statistics of local fluctuations need to be optimized in
models but without significantly altering global properties. To
this end, the study of unforced (“spontaneous”) oscillations
[107] and abrupt transitions [108,109] in the climate system
is one promising approach to improve the representation of
local variation. Furthermore, higher-resolved ocean and at-
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mosphere models with additional mechanisms such as ice
sheet dynamics and an interactive carbon cycle might increase
long-range dependence and persistence of local temperature
in the future.

V. CONCLUSION

In summary, we have investigated the question of temper-
ature variability on the timescale of years to centuries. To
this end, we have presented power spectral densities for both
local and global surface air temperature from simulation and
observation-based data of the last millennia. On this basis, we
concluded that locally there is a stronger scaling and increased
variance in reconstructions as compared to simulations. Using
statistical analysis, we found that local temperature series
extracted from simulations and paleoclimate reconstructions
show different scaling behavior, with proxy records hinting at
a stronger persistence. Furthermore, we have largely extended
the spectral analysis of climatic drivers by estimating the
joint PSD from CO2, solar, volcanic, and orbital forcing using
Monte Carlo simulation. Hereby, we discovered a scale break
at the period of approximately 7 yr. Moreover, we have pre-
sented the spectral gain, describing the timescale-dependent
forced temperature response. We found that it is mostly con-
sistent across data sets and indicates an increasing internal
variability on timescales of decades to centuries.

Our analysis of the spectral gain was limited to global
average values and those timescales where linearity can be
reasonably assumed [42,43,110]. Nonlinearities are inherent
to the climate system, for example, due to the temperature-
albedo feedback. Thus, it will be necessary to examine their
possible effects on multiple spatiotemporal scales to further
extend this work. Studying nonlinearities could also shine new
light on the mechanisms of scaling in Earth’s climate, which
are not yet fully understood and might be linked to nonlinear-
ities as well [6]. Furthermore, we have focused on the current
interglacial, the Holocene. This is because climate variability
has been demonstrated to depend on the mean climate state
[82]. Furthermore, major shifts in climate could potentially
violate the basic assumption of weak stationarity for spec-
tral analysis. Thus, the conclusions laid out here cannot be
readily applied to other climate states, such as glacial periods,
which is an issue for future studies. Clearly, understanding
the dependence of temperature variability on global warming
demands additional work.

Ideally, our findings should be replicated by employ-
ing models with increased internal variability on longer
timescales and paleoclimate data that provides improved
spatiotemporal resolution. In particular, investigating the re-
lationship between spatial and temporal disagreement is a key
task for future analyses. Optimized analysis of noise sources
and spectral analysis of (pseudo-)proxy records could help
to expand the data basis of proxy records with decadal res-
olution [59,111,112]. Regarding climate models, an improved
representation of processes that increase Earth’s long-term
memory, such as an interactive carbon cycle and dynamical
ice sheets, might strengthen the long-range dependence and
persistence of surface air temperature. A better understand-
ing of unforced low-frequency oscillations as well as abrupt
changes will be necessary to improve the representation of

local fluctuations and could further help to understand nonlin-
ear feedback and possible bifurcations in the climate system.
Future studies could also continue to explore how internally
generated and externally forced variability compares on dif-
ferent spatial scales. Research on the interrelation between
internal and forced changes, as well as local, regional, and
global variability, might prove important and could be con-
ducted using single-forcing experiments from ensembles of
model simulations.

Managing climate risks requires a detailed understanding
of temperature variability. Locally and on timescales between
years and centuries, there is an urgency to address discrep-
ancies to make further progress in climate modeling. In this
study, we have singled out the key characteristics of temper-
ature variability and showed that the timescale dependency
of local temperature variations from observation-based data
and model simulations differs. Our results have demonstrated
that the scaling behavior and spectral gain are easy-to-use yet
effective and promising tools for investigating variability in
Earth’s dynamic climate.

Code to reproduce all figures is available at [113].
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APPENDIX A: RELATION BETWEEN POWER SPECTRAL
DENSITY AND VARIANCE

The power spectral density of a weakly stationary, stochas-
tic process is given by the Fourier transform of the autocorre-
lation S( f ) = F{R(h)} with frequency f and lag h = t2 − t1
between two points in time [19,20]. For zero lag and zero
mean, the integral of the PSD corresponds to the variance
of the signal [80]. Instead of frequency, we use the period
τ = 1/ f to express the PSD and spectral gain. The integration
of expression (1) is divergent for β < 1 and f → ∞ which re-
quires a high-frequency cutoff, such as described by Lovejoy
et al. [38]. In case of temperature time series considered here,
this is naturally defined by the temporal resolution, setting the
maximum frequency.
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APPENDIX B: AUTOCOVARIANCE OF LONG-RANGE
MEMORY PROCESSES

Fractional Brownian motion (fBm) and fractional Gaussian
noise (fGn) are fully described by their correlation properties
[30,114], summarized below. The autocovariance function of
fBm B(t ) reads

γ (t ′, t ) = 〈B(t ′)B(t )〉 = Vβ

2
(|t |β−1 + |t ′|β−1 − |t ′ − t |β−1)

∝ 1 +
∣∣∣∣ t ′

t

∣∣∣∣
β−1

−
∣∣∣∣1 − t ′

t

∣∣∣∣
β−1

(B1)

for 1 < β < 3. Vβ is a positive constant factor related to
〈(B(t ′) − B(t ))2〉 = Vβ |t ′ − t |β−1. By definition, fGn is the
series of stationary increments B(t ′) − B(t ) and shows spec-
tral exponent −1 < β ′ = β − 2 < 1 for f � 1/π�t with
�t = t ′ − t . Its autocovariance

γ (h) = 〈[B(t + 1 + h) − B(t + h)][B(t + 1) − B(t )]〉

= Vβ

2
|h − 1|β ′+1 − 2|h|β ′+1 + |h + 1|β ′+1 (B2)

depends only on the lag h ∈ Z, where we set �t = 1 without
loss of generality. The fGn has a power spectrum of the form
[115]

S( f ) ∝ sin2(π�t f )

|2π�t f |β ′+2
, (B3)

with the slowly varying factor

sin2(π�t f ) −−−−−−→
f / fmax→ 0

(π�t )2 f 2, fmax = 1/π�t .

(B4)
Considering positive frequencies f > 0, the spectrum (B3)
can be approximated by the power law S( f ) ∼ 1/ f β ′

if f �
fmax. For f � fmax, however, the fGn has a similar spectral
shape to fBm [114]. We account for this by considering
sufficiently long periods. To give an example, 100.58 yr−1 �
fmax � 102.7 yr−1 corresponds to 6 h ��t � 1 mo.

For all |t ′/t |  1, the covariances (B1) keep growing
for β > 2 (persistence) and stay bounded for β < 2 (an-
tipersistence). As a result, Eq. (B1) involves “nonlinear
pseudo-trends” [30] for B(t ′) conditioned on B(t ), which
diverge for β > 2 and converge for β < 2. According to
Eq. (B2), fGn is persistent for β ′ > 0 and antipersistent for
β ′ < 0. Ordinary Brownian motion corresponds to β = 2 and
white noise to β ′ = 0. The sequence of partial sums of the
autocovariance function diverges for fGn with β ′ > 0 and
fBm with β > 2. The process is nonsummable and said to
possess long-range memory.

APPENDIX C: SPECTRAL GAIN FOR LINEAR SYSTEMS

In a time-invariant linear system, the output

y(t ) =
∫ ∞

−∞
h(u)x(t − u) du (C1)

is given by the input time series x(t ) and the impulse response
function h(u) [80]. The Fourier transform H ( f ) = F{h(u)} =
G( f )eiφ( f ) gives the frequency response function, also called
the transfer function. G( f ) and φ( f ) are the gain and phase,

respectively. The integral (C1) corresponds to a product in fre-
quency space F{y(t )} = H ( f )F{x(t )}. This relates the PSD
of the output Sy( f ) to the one of the input Sx( f ) via

Sy( f ) = |H ( f )|2Sx( f ) = G2( f )Sx( f ). (C2)

APPENDIX D: ANALYTICAL SOLUTION TO THE PSD OF
INTERMITTENT VOLCANIC FORCING

We investigate the power spectral density of intermittent
volcanic forcing by approximating the eruption time series in
a simplified way as a stochastic signal X (t ) = δ(t − ti ). This
function is zero at all times except ti, when an event of unique
amplitude occurs. We denote Ti = ti − ti−1 the time intervals
between two events. We use the fact that the PSD cannot be
calculated only from the covariance, but also from the Laplace
transform S(X, f ) = 2 limε→0〈|L(X (t ), ε

2 − 2π i f )|2〉 [116].
Based on this approach, the power spectral density

S( f ) = μT
1 − |ρ( f )|2
|1 − ρ( f )|2 , f > 0 (D1)

becomes a function of the Fourier transform of the prob-
ability density function ρ( f ) = F{ρ(T )} and the inverse
mean interval between two events μT = 〈T 〉−1 [116,117].
An exponentially decaying probability distribution ρ(T ) =
μT exp(−μT T )(T ) for volcanic forcing is suggested [118],
and we have checked this for the data sets considered. The
Fourier transform reads ρ( f ) = μT (μT + 2π i f )−1 such that
1 − |ρ( f )|2 = |1 − ρ( f )|2. As a consequence, the PSD (D1)
takes a constant value. We can observe this white noise be-
havior in Figs. 5 and 6(a) on timescales longer than a few
years, which is on the order of characteristic return times
for eruptions. Below these timescales, the variability consid-
erably drops. This analytical result provides an independent
verification of the PSD for volcanic forcing and its scale
break.

APPENDIX E: MONTE CARLO SAMPLING OF THE
SPECTRAL GAIN

We simulate the spectral gain (4), as well as the PSD of
global mean temperature and the joint PSD of radiative forc-
ing using a Monte Carlo approach with N = 1000 realizations
to account for sampling biases. The PSD of global mean tem-
perature is sampled for three groups: the observation-based
data, the model simulations from group M0, and those from
M0 together with M+ (Table S1 [47]). Here only models
from the groups M0 and M+ are considered to exclude model
artifacts and to represent the historical temperature response
in the best possible way.

We sample the simulation-based PSD from the average
PSD of the simulations using uniformly distributed ran-
dom weights. To obtain the observation-based PSD, we
use the global mean temperature from HadCRUT4, ERA5,
and a 7000-member reconstruction ensemble provided by
PAGES2k [46]. This ensemble allows us to sample the PSD
by randomly selecting one ensemble member and form the
mean of its spectrum with that of the ERA5 and HadCRUT4
temperature. The joint PSD of radiative forcing is calculated
from all forcing reconstructions considered in this work ex-
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cept the Fröhlich et al. solar forcing, which has too low
temporal resolution above interannual scales (Table S3 and
Fig. S5 [47]). We assume the PSD of CO2 and orbital forcing
as fixed since its spectral power is comparatively low on mul-
tidecadal scales. We sample the PSD of solar forcing by using
uniformly distributed weights when forming the average PSD
of all solar reconstructions. Similarly, the PSD of volcanic
forcing is obtained. In addition, we randomly vary the con-
version factor between (−18)−1 and (−25)−1 Wm−2/AOD
[78]. The joint PSD of radiative forcing is calculated by linear

summation of the PSD from CO2, orbital, solar, and volcanic
forcing.

Using this sampling scheme, our Monte Carlo produces
two outcomes: First, we compute the PSD of global mean tem-
perature and the joint PSD of radiative forcing by simulating
an ensemble of N realizations for both forcing and response.
Second, we sample the spectral gain directly from the quotient
(4) in each of the N realizations. In both cases, the average
of the generated N-member ensemble and its 5% and 95%
quantiles constitute the result of our Monte Carlo simulation.
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