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Microemulsions in the driven Widom-Rowlinson lattice gas
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An investigation of the two-dimensional Widom-Rowlinson lattice gas under an applied drive uncovered a
remarkable nonequilibrium steady state in which uniform stripes (reminiscent of an equilibrium lamellar phase)
form perpendicular to the drive direction [R. Dickman and R. K. P. Zia, Phys. Rev. E 97, 062126 (2018)]. Here
we study this model at low particle densities in two and three dimensions, where we find a disordered phase
with a characteristic length scale (a “microemulsion”) along the drive direction. We develop a continuum theory
of this disordered phase to derive a coarse-grained field-theoretic action for the nonequilibrium dynamics. The
action has the form of two coupled driven diffusive systems with different characteristic velocities, generated
by an interplay between the particle repulsion and the drive. We then show how fluctuation corrections in the
field theory may generate the characteristic features of the microemulsion phase, including a peak in the static
structure factor corresponding to the characteristic length scale. This work lays the foundation for understanding
the stripe phenomenon more generally.
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I. INTRODUCTION AND BACKGROUND

Modulated or spatially patterned phases abound in and out
of equilibrium: Block copolymers, magnetic thin films, type-I
superconductor films in applied magnetic fields, cholesteric
liquid crystals [1], and lipid mixtures may all exhibit ther-
modynamically stable, patterned equilibrium phases [2].
Similarly, driven granular systems [3], Rayleigh-Bénard con-
vection rolls [4], and other out-of-equilibrium systems exhibit
spatially-modulated, dynamical steady states [5], as well. In
these systems, when an equilibrium, free-energy-based treat-
ment is appropriate, one may often define a coarse-grained
scalar order parameter ψ (r) which, in the ordered phase,
has some spatial modulation with a characteristic wave num-
ber q∗ = 2π/λ∗ describing the pattern size λ∗. A common
ordered phase consists of stripes (or slabs, in 3D) with
ψ (r) ∝ cos(q∗x) for describing a structure periodic in some x̂
direction.

In the disordered phase, with 〈ψ〉 = 0 on average, the char-
acteristic pattern size may also show up as a peak in the static
structure factor at q∗. Such a peak is observed in scattering
intensity distributions of oil-and-water mixtures, which may
be treated with a phenomenological free energy of the kind
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considered here [6]. We therefore refer to the “structured”
disordered phase as a microemulsion. Such a phase is charac-
terized by clustering at a particular length scale λ∗, but without
any long-range, ordered patterning. Such phases may contain
droplets or have a bicontinuous, disordered structure. The
presence of a characteristic q∗ > 0 in the disordered phase
also strongly modifies the phase behavior, as the thermal
fluctuations of the order parameter ψ occur predominantly in
a nonzero momentum “shell” |q| = q∗.

For the systems admitting an equilibrium treatment, the
origin of the special scale q∗ may come from some competing
interactions, such as a coupling of a lipid membrane compo-
sition to the membrane curvature [7] or be set by particular
boundary conditions [4]. Once the scale q∗ has been iden-
tified, such systems near the pattern-formation transition are
described by a phenomenological, coarse-grained free energy,
first analyzed by Brazovskii and coworkers [8,9]. In this work,
we explore a system where the scale q∗ develops unexpectedly
and no coarse-grained free energy is a priori available due to
the explicitly out-of-equilibrium state of the system: The pat-
terns develop in a phase-separating binary mixture of particles
with purely repulsive interactions under an applied drive [10].
We will show that the origin of q∗ is subtle in this case, and
results from an interplay between the repulsive interactions
and the applied drive.

Strongly driven physical systems exhibit a range of out-of-
equilibrium, pattern-forming phenomena. For example, laning
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or striped behavior is known to occur in a wide range of
systems, including vibrated granular mixtures with varying
friction coefficients [11], driven polymer blends [12], and
binary plasmas [13]. In most of these systems, the stripes
form parallel to the drive direction. Moreover, the size of the
stripes is typically set by either the microscopic constituents
of the model, or by the system size [14]. Otherwise, non-
trivial spatial modulations appear to emerge in systems with
long-range particle-hole exchanges [15]. By contrast, with
only local dynamics, our model exhibits ordering at scales
between the lattice spacing � and the system size L, admitting
a coarse-grained, hydrodynamic description.

Here we study a stripe formation phenomenon in a lattice
gas model under a steady applied drive. We find nonequi-
librium steady states with similar characteristics as the
equilibrium phases described by the Landau-Brazovskii free
energy for modulated phases. In particular, there is a phase
transition between an ordered modulated (striped) phase at
high particle density ρ̄ and a disordered “microemulsion”
phase at low densities in which the static structure factor has a
characteristic peak. We develop a coarse-grained field theory
for this process and show how our model captures two impor-
tant limiting cases: The phase-separating binary mixture and
a driven diffusive lattice gas. Similarly, many model systems
also exhibit striped patterns when driven far from equilibrium.
Examples include the venerable Ising system [16] and the 3-
state Blume-Emery-Griffiths model [17,18], especially when
cast in the lattice gas language [19–24]. Subjected to a direct
or a random drive [10,25–30], as well as various boundary
conditions, these systems display stripes oriented parallel or
perpendicular to the drive [31–35].

Granular [36] and colloidal systems [37] under an oscil-
latory drive can also form jammed clusters with the stripes
running perpendicular to the drive direction. The dynamic
instabilities observed in the sheared granular systems are rem-
iniscent of the phenomenon described here [38,39]. However,
the stripes of granular particles typically coarsen over time,
with the cluster sizes eventually approaching the system size.
Conversely, our model shows stable structures at a charac-
teristic scale λ∗ at the longest timescales available in our
simulations [108 Monte Carlo steps (MCS), as discussed in
the next section]. Moreover, fully phase-separated states are
observed to break up until the clusters reach the characteristic
size.

We consider the Widom-Rowlinson lattice gas with two
species [40], A and B. The particles hop on a square or a
simple cubic lattice, subjected to excluded-volume interac-
tions. A and B particles cannot occupy nearest-neighbor sites,
modeling a repulsive interaction between species.1 The orig-
inal, off-lattice version of this model with purely repulsive

1Whether driven or not, this system on a one-dimensional periodic
lattice can be mapped (1-1) onto a ring with just one particle species
hopping from one site to a nearest-neighboring vacant site, with
or without bias. Known as simple exclusion processes (SEPs) or
asymmetric SEPs (ASEPs), the single species systems have been
extensively studied [41–45]. (For a recent review, see, e.g., Ref. [46].)
In particular, the stationary distribution is always uniform and the
static properties are trivially drive-independent. As for the mapping,

FIG. 1. Snapshots of steady states of the driven Widom-
Rowlinson lattice gas (DWRLG) for a L × L system with L = 400
with equal mixtures of blue and orange particles. At high densities
(ρ̄ = 0.7), the mixture phase separates either completely without a
drive (δ = 0) or into uniform stripes with a drive (δ = 0.5). At lower
densities (ρ̄ = 0.5), the particles remain mixed. In the presence of a
drive, in the direction given by the red arrow, the disordered phase
has a characteristic length scale as can be observed from the static
structure factors Sψ (q) (the insets). Note that the δ = 0 case has a
single peak at the origin, while the δ = 0.5 case has two maxima
away from the origin along the drive direction.

interactions may be mapped to a single-component gas with
attractive interactions and exhibiting a vapor-liquid transition
[47]. In the two-species case, the analog of the vapor-liquid
transition is a phase separation of the two species when
their density ρ̄ (for equal proportions of the two species,
ρ̄A = ρ̄B = ρ̄/2) is larger than a critical value ρ̄∗. At low
densities ρ̄, the particles remain mixed on average. These
ordered and disordered equilibrium phases are shown in the
left panels of Figs. 1 and 2 for two- and three-dimensional
systems, respectively. A key quantity that characterizes the
ordering process (into periodic structures) is the difference
between the coarse-grained (local) particle densities ψ (r, t ) =
ρA(r, t ) − ρB(r, t ). We will study what happens to this density
when the particles are “driven” uniformly, i.e., particle-hole
exchanges in one direction are biased, as if the particles are
placed in a uniform gravitational field. The effects of the drive
are dramatic, as shown in the right panels of Figs. 1 and 2. At
low ρ̄, we find a disordered phase with a characteristic peak in
the static structure factor Sψ (q) (associated with the “charge
field” ψ) along the drive direction (a “microemulsion”) and at

note that every allowed configuration of the Widom-Rowlinson lat-
tice gas can be transformed into one in SEP/ASEP—by deleting a
single vacancy from any cluster of holes lying between an A and a
B particle, and then relabeling all the B particles as A’s (say). It is
straightforward to verify that, under this map, the rules for how one
configuration changes to another are exactly preserved. Simulation
data are entirely consistent with this picture.
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FIG. 2. Snapshots of steady states of the DWRLG for a L × L ×
L system with L = 100 with equal mixtures of blue and orange parti-
cles. At high densities (ρ̄ = 0.5), the binary mixture phase separates
either completely without a drive (δ = 0) or into slabs with a drive
(δ = 0.5). The drive direction, x̂, is shown with a red arrow. At
lower densities (ρ̄ = 0.33), the particles remain mixed. The static
structure factors Sψ (q) for the disordered phases are shown as a
function of q = (q‖, q⊥), where we average over the two directions
perpendicular to the drive. Note the two maxima in the drive direction
(inset in bottom right).

high ρ̄ we find an ordered phase of stripes (or slabs in 3D),
reminiscent of a smectic liquid crystal.

To understand the structure of these phases, we begin with
a free energy for the equilibrium case with no drive. It has
been shown that without the drive, the lattice gas phase separa-
tion is in the Ising universality class [40] (with the underlying
system being a diluted Ising one). As the number of particles
remains fixed, we expect the charge field ψ to behave as a
conserved “magnetization,” with the following coarse-grained
free energy F :

F =
∫

dr dr′ψ (r′)G−1(r − r′)ψ (r) +
∫

dr VI [ψ (r)], (1)

where G(r − r′) is the Green’s function and VI [ψ (r)] are
the higher-order interaction terms. For Ising systems, we ex-
pect that the relevant interaction is VI [ψ (r)] = uψ4 and the
(Fourier-transformed, inverse) Green’s function is the usual
G−1(q) = τ + Cq2, with constants C > 0 and τ . Ignoring
fluctuations, τ ∝ ρ̄∗ − ρ̄ is our control parameter with τ > 0
for the disordered phase (bottom left of Figs. 1 and 2) and
τ < 0 for the phase separated phase (top left of Figs. 1 and 2).
The particle conservation law would show up in the equation
of motion for ψ , which must be of the conserved (model B
[48]) form given by

∂tψ (r, t ) = D∇2 δF
δψ

+ ξ (r, t ), (2)

with ξ (r, t ) a Gaussian, conserved noise with correlations sat-
isfying the fluctuation-dissipation theorem: 〈ξ (r, t )ξ (r′, t )〉 =
−2kBT D∇2δ(r − r′)δ(t − t ′), with D a diffusion constant, kB

the Boltzmann constant, and T the temperature. The mobility
D and temperature T depend on the specific microscopic
lattice rules, as well as the coarse-graining procedure. The
important point to make here is that, without a drive, there
is nothing to set the preferred scale q∗. The disordered phase
(τ > 0) has a structure factor (i.e., the Fourier-transform of
the equal-time two point correlation) Sψ (q) ∝ (τ + Cq2)−1

peaked at the origin q = |q| = 0. We verify this in our sim-
ulations in the bottom left panels of Figs. 1 and 2 for two and
three dimensions, respectively. In the ordered phase (τ < 0),
the binary mixture eventually fully phase separates. We can
also see this in our simulations in the top left panels of
Figs. 1 and 2.

In the presence of a drive, novel features emerge. In par-
ticular, our model exhibits behavior reminiscent of systems
with modulated phases in equilibrium, with some important
differences. A modulated phase at equilibrium would have
Sψ (q) with a maximum at a nonzero wave number: Sψ (q) ∝
[τ + κ (|q| − q∗)2]−1, with q∗ = 2π/λ∗ and λ∗ the charac-
teristic wavelength of the spatial modulation. In a scattering
experiment, we would expect a large contribution at this wave
number for any direction q̂. Conversely, in our model, the
applied drive breaks the rotational symmetry of our system
and the static structure factor Sψ (q) only has peaks along
the drive direction, with Sψ (q) ∝ [τ + κ⊥|q⊥|2 + κ‖(|q‖| −
q∗

‖ )2]−1, where q‖ = q · x̂‖ is the component of the wave vec-
tor parallel to and q⊥ the component perpendicular to the
drive direction x̂‖. Here we use simulations and a coarse-
grained field-theoretic approach to see how such a peculiar
“microemulsion” phase may develop.

Another important limit worth mentioning is the out-of-
equilibrium, low particle density ρ̄ limit at nonzero drive.
Here, we expect the interspecies repulsive interactions to be
negligible and the lattice gas should reduce to the low den-
sity phase of a noninteracting driven diffusive system (DDS)
[49–51]. The excluded volume condition, however, should
still be relevant and appears as an interaction “along the drive”
(see the term proportional to g below). The local particle
density ρ ≡ ρ(r, t ) = ρA(r, t ) + ρB(r, t ) would obey, in the
frame moving with the mean particle velocity induced by the
drive δ, the Langevin equation

∂tρ = D[c∂2
‖ + ∇2

⊥]ρ + g∂‖[ρ2] + ξρ (r, t ), (3)

where ξρ (r, t ) is a conserved noise satisfying
〈ξρ (r, t )ξρ (r′, t ′)〉 = −2D(c̃∂2

‖ + ∇2
⊥)δ(r − r′)δ(t − t ′), and

c, c̃ are coefficients reflecting the anisotropy in the diffusion
and noise, respectively. Detailed balance is violated and a
renormalization group analysis leads to anomalous diffusion
(only in the direction of the drive) for d � 2 [49,50]. We shall
see that Eq. (3) represents the coarse-grained dynamics of our
model in the important limiting case of low particle density
and no repulsive interaction between particle species. As in
DDS, Eq. (3) embodies a discontinuity singularity in the static
structure factor S(q), induced by detailed balance violation
and the drive (see, e.g., Ref. [51]). Note, however, that it has
no characteristic peak of the kind shown in Figs. 1 and 2 (see
insets in bottom right panels) [52,53]. Moreover, it is known
that single-species systems with attractive interactions do
not form modulated phases, either. If any spatial structures
emerge (e.g., stripes of high and low densities), they are
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FIG. 3. Update rules for the DWRLG shown on a segment of a
square lattice. Orange (σ = 1) and blue (σ = −1) particles can hop
in one of eight directions with the indicated probabilities. A particle
hops to the target site as long as it is unoccupied and is not a nearest
neighbor of a particle of the opposite type. Some prohibited hops (red
x’s) are shown for a blue particle. The generalization to the cubic
lattice is straightforward: there are then 6 nearest-neighbors and 12
next-nearest-neighbor sites to which particles can hop.

invariably aligned parallel to the drive [25,26,51]. Thus, the
behavior analyzed in the two species model presented here is
remarkable and unintuitive, especially in light of the limiting,
well-studied cases described above.

The remainder of this paper is organized as follows: In
the next section we define the model. Then, in Sec. III, we
present simulation results on the disordered phase, including
static structure factor calculations and the characteristic wave
vector q∗

‖ along the drive direction as a function of the drive δ.
In Sec. IV, we derive a field theory corresponding to the lattice
gas rules and show that, at the mean-field (Gaussian) level, it
predicts some features of the disordered phase, yet missing
the most prominent properties. Fluctuation corrections are
discussed in Sec. V, and we show that a simple perturbative
approach is able to capture, if only qualitatively, the essential
behavior exhibited by our driven lattice gas. We conclude in
Sec. VI and offer some directions for future investigation.

II. MODEL

We consider a lattice gas with two particle species, A (or-
ange) and B (blue), that occupy sites x = �(i, j) on a square
lattice or x = �(i, j, k) on a cubic lattice (with i, j, k integers),
with � the lattice spacing and L the length of the lattice. The
space of allowed configurations is defined by the restrictions
that (1) all particles occupy distinct sites, and (2) A-B nearest-
neighbor pairs are prohibited, as shown in Fig. 3. We impose
periodic boundary conditions in all directions. It is convenient
to introduce spin variables σx = 0,±1 at each site, defined as
follows:

σx =

⎧⎪⎨
⎪⎩

1, x is occupied by A,

−1, x is occupied by B,

0, x is empty.

(4)

The number of A particles NA and number of B particles NB

remain fixed, as do the average densities, ρ̄A,B = NA,B�d/Ld .
The hopping rules are those in Ref. [10] with a = 1/4: At

each time step, we pick a random particle at location x and
move it to a nearest-neighbor (NN) or next-nearest-neighbor
(NNN) site x + x with the following probabilities:

ωx→x+x = 1

Nn

⎧⎪⎨
⎪⎩

1 + δ, x · x̂‖ > 0,

1 − δ, x · x̂‖ < 0,

1, x · x̂‖ = 0,

(5)

where 0 � δ � 1 is the drive strength, x̂‖ is the drive direction,
and Nn is the number of NN and NNN sites. (Nn = 8 and 18
the square and simple cubic lattices, respectively.) The particle
displacement is accepted subject to the restrictions mentioned
above. Note that the rules are completely symmetric for the
two species, so there is an “Ising-like” symmetry σx → −σx
(so long as we keep the number of particles of each type the
same, with NA = NB). After each such update, time advances
by 1/N , where N = NA + NB is the total number of particles.
We define one MCS as having completed N such attempts and
will label MCS by n = 1, 2, ..., NMCS. In our simulations, the
runs involve typically NMCS up to 5 × 107, with the longest
runs going up to 108 MCS. Measurements are taken typically
after discarding the initial 4 × 106 MCS so that the system has
arrived at a (reasonable) stationary state.

In equilibrium (no drive, δ = 0), the model exhibits a
phase transition at a critical density ρ̄∗ = 0.617(1) and ρ̄∗ =
0.3543(1) in two and three dimensions, respectively [40]. The
transition is in the Ising universality class and describes the
usual demixing transition of a binary mixture at sufficiently
high densities. Examples of the disordered and ordered phases
are shown in the left columns of Figs. 1 and 2. One may
track the transition via the structure factor associated with the

FIG. 4. Structure factor peak position q∗
‖ for two- and three-

dimensional systems in the microemulsion phase. Note that the peak
varies linearly with the drive δ for small drives: q∗

‖ ∝ δ. The error bars
indicate 2π/L which sets the k-space resolution (L = 400 for 2D and
L = 100 for 3D). This linear variation of q∗

‖ with δ in the disordered
phase is consistent with our field-theoretic analysis. Typical system
snapshots are shown for the square lattice on the right panels for
ρ̄ = 0.5 and the indicated drive values δ.
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“charge” order parameter field ψ (r):

Sψ (q) = 1

Ld

∑
x,r

〈σxσx+r〉eiq·r = 〈|σ (q)|2〉
Ld

, (6)

where σ (q) is the Fourier-transformed particle configuration
σx and Ld the volume of the square (d = 2) or cubic (d = 3)
lattice. For a phase with a characteristic length, we expect to
find peaks in Sψ (q). We will analyze the formation of this
“microemulsion peak” using simulation and a field-theoretic
approach.

III. MICROEMULSIONS IN SIMULATIONS

We begin with simulation results that give the basic phe-
nomenology of this system. We have simulated both two- and
three-dimensional systems, but since it is easier to go to larger
system sizes in two dimensions, this will be our primary focus.
We will also primarily focus on the behavior of the system

below the transition point (ρ̄ < ρ̄∗) where we find a disor-
dered “microemulsion” phase. As discussed in the previous
section, although we do not have the distinct stripe order at
low densities, the small fluctuating domains of particles in the
system are characterized by a distinct length scale along the
drive direction. This manifests as a peak in the structure factor
Sψ (q) at q = (q∗

‖, 0). As one approaches the critical density
ρ̄ → ρ̄∗, this peak value begins to diverge with the system
size, as we develop the uniform stripe order seen in the top
right panels of Figs. 1 and 2. For ρ̄ < ρ̄∗, the position of the
peak q∗

‖ in the drive direction grows linearly with the drive δ

in both two and three dimensions, as shown in Fig. 4. This is
also reflected in the coarser texture of the microphase pattern
for smaller δ, evident in the configuration snapshots.

In the previous work on this model [10], the conjectured
simplest form of the static structure factor Sψ ≡ Sψ (q), con-
sistent with a dominant contribution at a nonzero q = (q∗

‖, 0),
reads

Sψ [q = (q‖, q⊥)] = ν‖q2
‖ + ν⊥|q⊥|2 + . . .

τ‖q2
‖ + τ⊥|q⊥|2 + q2

‖(|q‖| − q∗
‖ )2 + γ×q2

‖|q⊥|2 + γ⊥|q⊥|4 + . . .
, (7)

with ellipses indicating corrections in higher powers of the
momentum q. The new interesting feature here is the cubic
term, −2q∗

‖|q‖|3, in the denominator, which is responsible for
the peak in the structure factor. The cubic term is unexpected
from a mean field analysis and a naive continuum limit of the
model, which yields only even powers of q‖ and no drive-
dependence in any of the terms.2 The cubic term also yields a
linear kink in the static structure factor near the origin along
the drive direction, as evidenced in Figs. 5 and 6, where we fit
the conjectured form in Eq. (7) to simulation data for q⊥ = 0.
Note how well the form reproduces the features at small q‖. In
two dimensions, we have verified that the kinked form is not a
finite-size effect by checking that the form does not change as
we vary the lattice size: L = 100, 200, 400. Also, as far as can
be estimated from simulations, the peak exists for any δ > 0.
Our objective, then, is to explore how such a structure factor
form may come about from a field-theoretic analysis of this
model.

The static structure factors in two and three dimensions as
a function of q, both parallel and perpendicular to the drive,
are shown in Fig. 5, as measured from simulations. It is worth
noting that the static structure factors exhibit a characteristic
jump discontinuity near the origin, captured by our conjec-
tured form in Eq. (7) by setting ν‖/τ‖ �= ν⊥/τ⊥. We also see
that the structure factors monotonically decrease along the
direction q⊥ perpendicular to the drive for q‖ = 0. Along
this direction, the structure factor is well-approximated by a
simple Ornstein-Zernike form, corresponding to the q‖ = 0
case in Eq. (7).

2Also, the two-point correlation function must obey an underlying
parity symmetry, which constrains it to be symmetric under q‖ →
−q‖. The drive breaks this symmetry, but this feature can only appear
at the level of three-point (or larger) correlation functions.

Before moving on, let us consider the static structure factor
Sρ (q) for the density field ρ ≡ ρA + ρB in two dimensions.
This also has an interesting structure when the drive δ is
applied, as can be seen in Fig. 7. Note how there is a kinked
structure near q‖ = 0 that is of the opposite sign as Sψ (q) in
Fig. 6. As shown in Fig. 7, the kinked increase at q‖ = 0 grows
with increasing drive δ but starts to decrease for the largest
drives. We will show that the kink near the origin likely comes
from the fluctuation corrections in the field-theoretic descrip-
tion, just as for the charge fields. We should remark that Sρ (q)
does not appear to exhibit any discernible signatures of the
characteristic wave number q∗

‖ . On closer examination, how-
ever, we can detect a shoulder in the δ = 0.5 data, at roughly
2q∗

‖ . We suspect that, especially for the small δ systems, the
enhancement manifest in Sρ is mostly shrouded by the much
larger effect near q‖ = 0 here. These properties are only true
at small ρ̄. In the high density, ordered phase (with ρ̄ > ρ̄∗),
Sρ (q) displays a peak at q = (q‖ = 2q∗

‖, q⊥ = 0), because
high density stripes of A and B particles alternate, separated
by low density regions (of many vacancies) [10].

Of course, the static structure factors Sψ,ρ (q) display only
part of the interesting behavior we observe. The dynamic
structure factors Sψ,ρ (r, n) for the charge and density fields
are also important, as they directly capture not only the
diffusive properties of the particles, but also the advection.
Specifically, we measure the unequal time correlations given
by

Sψ (r, n) = 1

Ld

∑
x,t

〈σx(t )σx+r(t + n)〉, (8)

Sρ (r, n) = 1

Ld

∑
x,t

[〈|σx(t )||σx+r(t + n)|〉 − ρ̄2], (9)

with σx(t ) the spin configuration at time step t and lattice
site x [see Eq. (4)], and ρ̄ the average particle density in
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FIG. 5. Static structure factor Sψ (q) measured from simulations
for a drive δ = 0.8 in the low-density phase. Panel (a) shows the
two-dimensional case, with ρ̄ = 0.5 (L2 sites with L = 400). Panel
(b) shows the three-dimensional case, with ρ̄ = 0.33 (L3 sites with
L = 100). Note the jump discontinuity at the origin, characteristic
of a driven diffusive system. The black dashed lines show the limit-
ing forms of Sψ (q) for q = (q‖, q⊥ = 0) and q = (q‖ = 0, q⊥). The
q = (q‖ = 0, q⊥) direction has a smooth, featureless, monotonically
decreasing shape for the structure factor, while the other direc-
tion q = (q‖, q⊥ = 0) has a peak at a nonzero characteristic wave
number q∗

‖ .

the system (total number of A and B particles divided by
the total number of lattice sites). The angular brackets 〈. . .〉
denote an average over many simulation runs. The results
for the low density phase in two dimensions are shown in
Fig. 8.

Note that the charge and density dynamic structure factors
have very different behaviors: The peaks of the charge field
structure factor Sψ (r, n) broaden more slowly and move more
rapidly compared to the density field structure factor Sρ (r, n).
This is consistent with a larger characteristic velocity and a
smaller diffusivity for the charge field. Moreover, the shape
of these structure factors is approximately Gaussian. We shall
justify this particular form and derive these properties in the
following section when we explore the field-theoretic formu-
lation of this model.

FIG. 6. Static structure factor at different values of the drive δ

for the charge field ψ = ρA − ρB as a function of q‖ for |q⊥| =
0 in two-dimensional (a) and three-dimensional (b) systems with
L = 400 and L = 100, respectively. In both cases, we are below the
phase separation transition and have total particle densities ρ̄ = 0.5
in panel (a) and ρ̄ = 0.33 in panel (b). The dotted lines are fits to
the form given by Eq. (7) (with three fitting parameters ν‖, τ‖, and
q∗

‖). Because this form is only appropriate for small q where the
details of the lattice structure are not important, we fit for data points
between 0 < q‖ � 0.8. Note that the structure factor develops a peak
at a nonzero q‖ when δ > 0. The inset in panel (a) has the same axes
as the main plot and shows the structure factor shape near the origin
where one finds a linear kink.

IV. COARSE-GRAINED FIELD-THEORETIC MODEL

To understand how these unusual properties arise from
being driven, even if only qualitatively, we will attempt an
approach based on coarse-graining our discrete lattice system
to a continuum field-theory. Starting with a set of stochastic
update rules, such as those described by Eq. (5), it is straight-
forward to derive a master equation for the evolution of the
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FIG. 7. Static structure factor Sρ (q) [with q = (q‖, q⊥)] of the
density field ρ = ρA + ρB, as a function of q‖, with q⊥ = 0, mea-
sured in simulations for drives δ as indicated. Sρ is calculated using
a two-dimensional system with L2 = 4002 lattice sites at an average
particle density of ρ̄ = 0.5 (equal fractions of A and B particles).
The inset, which has the same axes as the main plot, shows a detail
of the small-q‖ region. Sρ has a cusped, sharp increase near q‖ = 0,
consistent with a logarithmic divergence. Unlike in the case of the
charge structure factors Sψ shown in Fig. 6(a), we do not find a peak
at a nonzero q‖ here.

probability P({σx}, t ) of observing a particular lattice configu-
ration {σx} at time t . From here, there are standard procedures
for converting that description into one based on a Langevin
equation for coarse-grained density fields ρA,B(x, t ). A com-
mon approach employs the Martin-Siggia-Rose-Janssen-de
Dominicis (MSRJD) formalism [54–56] which translates
these equations into a field-theoretic, “dynamical action” J
involving both the ρA,B’s and corresponding “response fields”
ρ̂A,B(x, t ). Following the general procedure for particle hop-
ping models [57], the dynamical action reads

J [ρA,B, ρ̂A,B] =
∑

α=A,B

∫
dt

{∑
x

ρ̂α∂tρα

+
∑
〈xy〉

W α
x→y[1 − eρ̂α (x)−ρ̂α (y)]

}
, (10)

where W α
x→y are the hopping rates from site x to y for particles

of type α = A, B [which can be gleaned from the ω’s in
Eq. (5)]. These W ’s encode both the hopping and the exclusion
rules and must vanish for any prohibited hops (see Fig. 3).
We sum over all pairs of NN and NNN sites 〈xy〉. From here,
the average over many stochastic realizations of the particle
system may be computed for any functional of the densities
O({ρA,B}) (“observables”) using the action J via

〈O({ρA,B})〉 = 1

Z

∫
DρA,B Dρ̂A,BO({ρA,B})e−J , (11)

with Z providing normalization. Also, note that the Euler-
Lagrange equations associated with extremizing J (with an
appropriate interpretation of the response fields ρ̂A,B) lead us
to Langevin equations for the densities ρA,B(x, t ). As these
are more easily grasped intuitively, we will present the field
theoretic formulation in such terms [see Eqs. (12) below].

FIG. 8. Dynamic (real-space) structure factors [defined in
Eqs. (8) and (9)] calculated from a two-dimensional simulation with
equal fractions of A and B particles with ρ̄ = 0.1 and δ = 0.3 (system
size L = 50). The factors are evaluated along the drive direction
r = (x‖, 0). The charge field structure factor Sψ (r, n) (lower panel)
propagates more rapidly and spreads more slowly than the density
field structure factor, Sρ (r, n) (upper panel). Both have Gaussian
shapes. These properties can be understood within a field-theoretic
framework.

A second method (Doi-Peliti [58,59]) of deriving a coarse-
grained description of the dynamics and the dynamical action
J involves reformulating the master equation for P({σx}, t )
using a Fock space where the probability distribution P is
encoded in a multi-particle state. Then, using a coherent state
path integral representation of the master equation, one is able
to derive a dynamical action of the same form as Eq. (10).
In principle, these two methods yield equivalent field theories
[57], but the mapping is nontrivial. Also, a special difficulty
in our case is that both the excluded volume constraint and
the A, B particle next-nearest-neighbor exclusion rule are not
easily incorporated. One possibility, introduced by van Wij-
land [60], is to apply the exclusion rules at the level of the
master equation, which is exact but difficult to interpret when
we coarse-grain. A review can be found in, e.g., Ref. [61].
This procedure is quite involved and some details are provided
in Appendix A for the interested reader.

Encouragingly, after taking the continuum limit and ex-
panding around small density fluctuations, both the Doi-Peliti
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and MSRJD methods yield the same structure for the field the-
ory, with minor variations in the dependencies of the coupling
constants on the microscopic parameters ρ̄A,B and δ. In the
following we use results from the Doi-Peliti approach using
van Wijland’s method for excluded volume interactions.

In the paradigm of this coarse-grained continuum descrip-
tion, we assume the density fields ρα and their corresponding
response fields ρ̂α are slowly varying in space and time
(r, t). To construct a perturbation theory and compare to our
simulation results, we transform to more convenient fields
(i.e., ones which diagonalize the quadratic part in J : the
total density ρ ≡ ρA + ρB and the “charge” order parameter
ψ ≡ ρA − ρB). We have to expand the fields ρ and ψ around
some uniform concentrations ρ̄ and ψ̄ which, along with the
drive δ, are our control parameters in the simulations. With
the replacements ρ = ρ̄ + φ+ and ψ = ψ̄ + φ−, we find that,
to leading order in the fluctuations φ± and the averages, the
Langevin equations read

∂tφ+ = D+∇2φ+ − v+∂‖φ+ − u+ψ̄∂‖φ−

+ g+
2

∂‖(φ2
+) − g−

2
∂‖(φ2

−) + ξ+,

∂tφ− = D−∇2φ− − v−∂‖φ−

+ u−ψ̄∂‖φ+ + g0∂‖(φ−φ+) + ξ−, (12)

where the coefficients of all the terms carry appropriate units
of space (the lattice spacing �) and time (MCS) which will be
suppressed. With this understanding, we find (the leading con-
stants and lowest-order corrections in powers of ρ̄ and ψ̄ for)
the diffusions D± ≈ 3/8 and the velocities v± = v̄ ± vd/2
with average v̄ = (v+ + v−)/2 ≈ δ(3 − 22ρ̄ )/4 and the dif-
ference vd = v+ − v− ≈ −5ρ̄δ/2. The other velocities, u+ ≈
7δ/4 and u− ≈ 3δ/4, do not appear in this study, as we focus
on neutral systems (ψ̄ = 0) only. While ∇2 = ∇2

⊥ + ∂2
‖ repre-

sents isotropic diffusion, there are DDS-like anisotropic, non-
linear couplings g− = √

2δ, g+ = 4
√

2δ, and g0 = 3
√

2δ all
proportional to the drive δ. As we shall see, these interaction
terms will generate anisotropy in the diffusion terms. We also
find conserved noises for both the charge and density, with
correlations given by: 〈ξ+ξ+〉 = −2N+ρ̄∇2δ(r − r′)δ(t − t ′)
and 〈ξ−ξ−〉 = −2N−ρ̄∇2δ(r − r′)δ(t − t ′), with N± ≈ 3/8.
When ψ̄ �= 0, there are nonzero cross-correlations, 〈ξ+ξ−〉 =
−2N+−ψ̄∇2δ(r − r′)δ(t − t ′), with N+− ≈ 3/8. While it is
of course possible to obtain more detailed expressions for
the coupling constants in terms of the microscopic control
parameters ρ̄, ψ̄ , and δ, they are not needed for our objective
of understanding the coarse-grained features of the dynamics
at small particle density ρ̄.

Note that when either of the two species vanishes, so that
ρ = ψ = ρA,B, both equations in Eq. (12) reduce to the DDS
Langevin equation in Eq. (3) with g = g0 = g+ − g− as the
derivative coupling. This is an important limiting case as we
would expect our model to reduce to the single-species DDS
when we remove the repulsive interactions between particle
species. The other important case is δ = 0, where we would
expect phase separation of the A and B particles at sufficiently
high densities. In this case, Eq. (12) reduces to a pair of
independent diffusion equations. To understand the system at
higher particle densities, higher-order terms in the fields φ±

need to be included. If we further assume the density fluctua-
tions φ+ relax faster than the charge φ− and integrate out the
former, the effective equation for the latter reduces to an Ising
system with conserved dynamics (model B). However, this is
a crude approximation and a more careful analysis would in-
volve accounting for both fields φ± and considering the action
at high particle densities ρ̄. Such a line of pursuit is beyond the
scope of this paper. Here we focus on the low-density phase,
and defer a detailed analysis of phase separation to future
work.

We now discuss the dynamic action associated with the
Langevin equations, Eqs. (12). To compare with simulation
results, we impose equal average densities (ψ̄ = 0) and find
that, up to cubic terms in the fields and leading order in spatial
derivatives, the action reads

J =
∫

dr dt

{∑
a=±

[φ̂a(∂t − Da∇2 + va∂‖)φa

+ ρ̄Naφ̂a∇2φ̂a] + g0φ−φ+∂‖φ̂− + g+
2

φ2
+∂‖φ̂+

− g−
2

φ2
−∂‖φ̂+

}
. (13)

In the disordered phase, ρ̄ < ρ̄∗, the diffusion constants D±
are both positive. A scaling analysis (taking r → �r) shows
that the scaling dimension of the drive couplings g0,± is 1 −
d/2, so that the upper critical dimension is dc = 2 for the ρ̄ <

ρ̄∗ regime, as it is for the single-species DDS at low densities
[50]. We therefore conclude that higher-derivative coupling
terms are irrelevant in the renormalization group sense.

Next, we set up a diagrammatic expansion using the
action of Eq. (13). There are two kinds of propagators gen-
erated by the quadratic terms in the fields φ± and φ̂±. In
the Fourier domain, we have the (bare) correlation functions
〈φ±(q, ω)φ±(q′, ω′)〉 ≡ C±(q, ω)δ(q + q′)δ(ω′ + ω) and the
response functions 〈φ̂±(q, ω)φ±(q′, ω′)〉 ≡ G±(q, ω)δ(q +
q′)δ(ω′ + ω). Using dotted and solid lines for the density
and charge fluctuations, respectively, we denote these by the
following:

± =
1

−i
[
ω − v±q‖

]
+ D±|q|2

± =
2N±ρ̄|q|2

ω − v±q‖
2 + [D±|q|2]2

, (14)

Both the numerators for C± and the denominators for G±, C±
have corrections in higher powers of |q|2, starting with |q|4.
In the disordered phase ρ̄ < ρ̄∗, the quartic momentum terms
are irrelevant. We will be interested in finding fluctuation
corrections that generate a peak in the structure factor, along
with a possible kink near the origin, which cannot exist in a
mean-field theory. The reason is simple: Any odd terms in q‖
are always imaginary and give contributions to the velocity
terms proportional to the drive δ. Therefore, they are always
removed by an appropriate choice of comoving frame for the
fields φ±. We can see this explicitly when we calculate the
static structure factors Sρ,ψ (q) directly from the correlation
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functions C±:

Sρ,ψ (q) =
∫ ∞

−∞

dω

2π

2 f (±)
N (q)

[ω − f (±)
v (q)]2 + [ f (±)

D (q)]2

= f (±)
N (q)

| f (±)
D (q)| . (15)

In this expression, we have included the higher-order
corrections for C± appearing in the velocity [ f (±)

v (q) ≡
v±q‖ + C(±)

v |q|2q‖ + . . .], the noise [ f (±)
N (q) ≡ N±ρ̄|q|2 +

C(±)
N ρ̄|q|4 + . . .], and the diffusion [ f (±)

D (q) ≡ D±|q|2 +
C(±)

D |q|4 + C×
D q2

‖q2
⊥ + . . .]. Here, C(±)

D ≈ 3/16 and C×
D ≈

3/8, to leading order in ρ̄. We see that f (±)
v (q) does not

contribute to the static structure factors, so that odd powers
of q never appear. Terms like |q‖|3 in Eq. (7) must be sought
from the fluctuation corrections induced by the interaction
terms (cubic and higher-order in the fields) in the action J
[Eq. (13)].

Before analyzing fluctuation corrections, it is worth com-
paring the results of this field-theoretic approach to simulation
data for low densities and small drive, where we expect good
agreement with the “bare” correlation functions in Eq. (14).
Specifically, after inverting back to (r, t), they correspond to
Gaussians for Sψ,ρ (r, t ). In particular, along the drive direc-
tion [r = (x‖, 0)], we find

Sρ,ψ [r, t] = N±ρ̄

4πD2±t
exp

[
− (x‖ − v±t )2

4D±t

]
, (16)

with the plus (minus) signs for the density (charge) case.
This form is consistent with the simulation results shown
in Fig. 8. Fitting these curves to drifting Gaussians, we
can extract simulation values for v±/δ and D±. These can
be compared with theoretical values, estimated beyond the
lowest order in ρ̄ by using the Doi-Peliti approach (see
Appendix A): v±/δ = e−3ρ̄[(1 − ρ̄ )(1 + 2eρ̄/2) ∓ 2ρ̄(2 +
3eρ̄/2)]/4 and D± = e−3ρ̄ (1 + 2eρ̄/2 ± ρ̄(3 + 5eρ̄/2))/8. The
comparison is shown in Fig. 9 with v+/δ, D+ indicated by
dashed red lines and v−/δ, D−, by solid blue. Given that we
relied on only the lowest possible order in the field-theoretic
approach, it is remarkable how well the predictions fare,
especially at small ρ̄. Note that at larger densities ρ̄ that
approach the phase transition, our mean-field results predict a
vanishing D−, which is not observed in the simulation results
[see Fig. 9(b)]. We thus expect the perturbation theory for the
fluctuation corrections developed in the next section to break
down near the phase transition, where other techniques (e.g.,
the renormalization group) have to be employed.

We end this section with some comments on the aspects of
our driven lattice gas which may be understood in terms of
a “bare” theory. The velocities of the two fields are different,
with that of the density-field being lower: v+ < v−. Though
the theoretical value seems to vanish at some special ρ̄, it is
unclear if this point is of any physical significance. We should
remind ourselves that this is the velocity of the fluctuations
and not the density itself. Such is a common experience in
traffic, where local jams (fluctuations of higher density) are
often observed to travel “backwards” from the direction of the
drive. The two diffusion coefficients D± also differ in general.

FIG. 9. Velocities v± (a) and diffusivities D± (b) associated with
the dynamic structure factors for the charge (−) and density (+)
fields, obtained by fitting the forms in Eq. (14) to simulation data
for two-dimensional systems (L = 50, equal fractions of A and B
particles) with total particle density ρ̄. The lines (red dashed and solid
blue) show the theoretical results using the Doi-Peliti approach. We
calculate these quantities for different values of the drive δ and show
that the simulation results are consistent with the mean-field theory
prediction that v± are proportional to δ while D± are independent of
the drive δ.

Though D+ > 0 for all values of ρ̄, D− vanishes at some
point, as mentioned above. Ordinarily (in both equilibrium
systems and DDS), this is a signal of criticality and onset of
phase separation. However, a vanishing coefficient of q2 can-
not describe the transition into stripes observed. Instead, there
must be a divergence of Sρ (q) at |q‖| = 2q∗

‖ (to accompany
the divergence of Sψ at |q‖| = q∗

‖). Nevertheless, for densities
far below criticality, this theory does capture the drifting and
diffusive behavior of both kinds of fluctuations.

Note that the difference in velocities vd = v+ − v− being
nonzero is a key feature of the model. As a result, it is not
possible to choose a comoving frame in which both densities
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suffer no drift. In technical terms, we cannot eliminate both
drift terms from the Langevin equations for φ±, Eq. (12),
so that one of them must be involved when we consider the
fluctuation corrections. The presence of a drift term is not only
a major difference between the field-theoretic formulation for
our model and that for DDS [52,53], but also appears to be the
key ingredient for the emergence of spatial structures periodic
along the drive.

To summarize, mean-field theory (i.e., the quadratic part of
J ) provides us with static structure factors of the form

Sρ,ψ (q) = N±ρ̄|q|2
D±|q|2 + C(±)

D |q|4 + C×
D q2

‖q2
⊥

, (17)

which is clearly inadequate for generating the characteristic
“microemulsion” peaks in Sψ when δ > 0. These peaks can
only arise from the fluctuation corrections (with vd �= 0 play-
ing a key role), which will be our focus in the next section.

V. FLUCTUATION CORRECTIONS

Corrections due to fluctuations can be developed using a
perturbative approach, starting with the quadratic terms in
the action J [i.e., a “free” field theory, with the correlation
functions in Eq. (14)]. In this work, we restrict our attention
to how these two-point functions are modified by the cubic

terms in J , i.e., those with g0,± ∝ δ: for g−, for

g0, and for g+, with the arrows indicating the response

fields φ̂± on which we place the derivative ∂‖. Further, we will
focus on finding corrections to just the static structure factors
for d = 2. Thus, we will concentrate only on the self-energies
�± ≡ �±(q, ω) (which will correct the propagators for the
density and charge fields, respectively) and the corresponding
corrections to the noise correlations, η± ≡ η±(q, ω). These
enter into the fluctuation-corrected causal propagators Ḡ± ≡
Ḡ±(q, ω) via Dyson’s equation:

Ḡ−1
± = G−1

± − �±

= −i(ω − v±q‖ + Im �±) + D±|q|2 − Re �± (18)

and the corrected noise correlations via

N̄±(q, ω) = N±|q|2 + η±(q, ω). (19)

These corrections contribute to the static structure factors
through the following expression:

Sρ,ψ (q) =
∫

dω

π

[

× N±|q|2 + η±
(ω − v±q‖ + Im �±)2 + (D±|q|2 − Re �±)2

]
.

(20)

Note that if we ignore the ω dependence in � and η, then
the integration over ω eliminates v±q‖ − Im �± and has the

same effect as evaluating the corrections in the comoving
frame ω = v±q‖ while keeping only Re �±. In the analysis
presented below, we will avoid such an uncontrollable approx-
imation and compute the integral numerically instead. The
details of this calculation are quite involved and are deferred
to Appendix B for the interested reader. In this section, we will
provide a brief overview of the various ingredients and steps,
ending with the results and a discussion of their implications.

In two dimensions, we can generally expect (logarithmic)
divergence at both the UV and IR ends. As we plan to compare
our results to simulation data on a finite lattice, we will simply
impose an UV cutoff, �, and evaluate at nonzero wave num-
bers [specifically, q‖ ∼ O(1/L)]. In fact, since both densities
are conserved, Sρ,ψ (q = 0) are fixed [10].

Turning first to the self-energy �− ≡ �−(q, ω) for the
charge field, we see that the lowest order corrections (i.e., with
one loop, ∝δ2) are, in terms of diagrams, given by

Σ−(q, ω) = + (21)

=
∫

dωk dk
{
g0g−... + g2

0...
}
. (22)

The key feature of the loop integration is the mixing of the
propagators for the charge and density fields [dashed and solid
lines in Eq. (21)] which prevents us from eliminating the
linear drift terms v±k‖ in both propagators simultaneously. In
the usual single-species DDS case, for example, a Galilean
transformation into a co-moving frame removes the linear
drift term. This is not possible here as the charge and density
fields have different characteristic velocities v±. Indeed, as
will be shown below, vd ≡ v+ − v− plays the key role for
characterizing the periodic structures. A similar phenomenon
occurs in a model for drifting crystals treated in Ref. [62],
which also has two scalar fields with different drift velocities.

Substituting in the propagators from Eq. (14) and evalu-
ating the integrals, we find, to leading order in the average
density ρ̄,

�− ≈ g0
ρ̄N̄vd q‖
16πD̄3

{[
2(g− − g0)q‖

qc
− i(g− + g0)

2

]

× ln

[
(4�)2

2i(v̄q‖ − ω)/D̄ + q2
c + |q|2

]
+ i(g− + g0)

}
,

(23)

where

qc ≡ vd

2D̄
(24)

is a crossover wave number that will be prominent in our dis-
cussions below. From this complex expression, it is instructive
to study the real and imaginary parts of �− (with real q and
ω) separately, as they enter into the diffusive and drift parts
of Eq. (20), respectively. As discussed above, Re �− plays a
more significant role for Sψ and it reads

Re �− = N̄ ρ̄g0

32πD̄2

{
(g− − g0)q2

‖ ln

[
(4�)4

[2(v̄q‖ − ω)/D̄]2 + (q2
c + |q|2)2

]
− 2(g− + g0)qcq‖ tan−1

[
2(v̄q‖ − ω)/D̄

q2
c + |q|2

]}
. (25)
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The first term in the curly braces, proportional to q2
‖, would

renormalize the diffusivity D− in the drive direction. It in-
troduces a DDS-like anisotropy and leads to a potential
discontinuity in the static structure factor at q = 0. The
second term, with coefficient qcq‖ ∝ vd q‖, has no DDS ana-
log. Of course, an integration over ω is needed to obtain
the static Sψ (q). But, as noted above, we can find a rough
estimate of its effect by evaluating this term in the comov-
ing frame (by setting ω = v−q‖ in this case). The result is
∝ qcq‖ tan−1[qcq‖/(q2

c + |q|2)], confirming that it is necessar-
ily even in q‖. Yet, it provides the signal of a crossover: For
small q‖, it starts as q2

‖, but it behaves as |q‖| for values around
qc (where the tan−1 is slowly varying). This is the property
that offers the possibility of a maximum in Sψ , as we shall
see. By contrast, the imaginary part, Im �−, does not affect
Sψ qualitatively and the result may be found Appendix B.

Turning to the correction to the noise in N̄−(q, ω) =
N−ρ̄|q|2 + η−, we see that the relevant diagram is

(26)

with the result

η− ≈ g2
0

N̄2ρ̄2

8πD̄3
q2

‖ ln

[
(4�)4

[2(v̄q‖ − ω)/D̄]2 + (q2
c + |q|2)2

]
.

(27)

As may be expected, η− is real and, being proportional to
q2

‖, introduces an anisotropy in the noise correlations. Note
that every correction vanishes with q‖ so that Sψ (q‖ = 0, q⊥)
suffers no modifications (at least at this lowest order). In other
words, there are no changes for the structure factors perpen-
dicular to the drive. This is a feature our model shares with
the single-species DDS, leading to a discontinuity singularity
at q = 0.

When all these corrections are inserted into Eq. (20) and
the ω integration performed numerically, we find that the
modification to the structure factor is positive, as illustrated
by the δ �= 0 curves for Sψ (q‖, q⊥ = 0) in Fig. 10(a). Thus,
we recover the DDS-like discontinuity observed in simula-
tions (see Fig. 5): Sψ (q‖ → 0, q⊥ = 0) > Sψ (q‖ = 0, q⊥ →
0). More crucially, as we examine Sψ (q‖, q⊥ = 0) at larger
q‖, we find that the effectively |q‖| behavior in the fluctuation
corrections creates a peak at a nontrivial q∗

‖ > 0. However,
the theoretical result does not have a |q‖|-like kink at the
origin, but crosses over to a smooth q2

‖. This “rounding off”
is especially evident for the δ = 0.6 case [inset of Fig. 10(a)].
By contrast, there is no hint of such smoothing in the data,
Fig. 6(a) (although this feature may reveal itself in larger
systems). Turning to the peak position, our theory finds q∗

‖ ≈
0.398|qc| ≈ 1.26ρ̄|δ|. Note that it is proportional to the drive
magnitude |δ| and the particle density ρ̄. To compare this
expression with data, we obtain a linear fit to the red points
in Fig. 4 (2D) for small |δ| and found q∗

‖ ≈ 0.64|δ| (red line).
Since the data are from a system with ρ̄ = 0.5, the theoretical
value would be q∗

‖ ≈ 0.63|δ|, which is in surprisingly good
agreement with simulation results. Of course, this good agree-
ment may be coincidental, as only the lowest orders in ρ̄ and
δ have been kept in the field theoretic treatment.

FIG. 10. Static structure factors for (a) the charge fields Sψ (q)
and (b) the particle density Sρ (q) [evaluated in two dimensions along
the drive direction q = (q‖, q⊥ = 0)] for different values of the drive
δ and a fixed ρ̄ = 0.2, as calculated from the one loop corrections
to the propagator and the noise correlations. Note the qualitative
agreement between these structure factor forms and the ones found
in simulations in Figs. 6(a) and 7.

Finally, we consider the corrections to the static structure
factors for the density fields, Sρ (q). Again, we defer the
details of the calculation to Appendix B and present only
some highlights here. The graphs for the self-energy and noise
corrections are similar to those above:

Σ+ = + (28)

η+ = + (29)

and provide us with

�+ =
∫

dωkdk {g0g−... + g2
+...},

η+ =
∫

dωkdk {g2
+... + g2

−...}.
The results are

�+ = ρ̄q2
‖

16π

{
g0g−

N−
D2−

ln

[
(4�)2e−iπ/2

2(v−q‖ − ω)/D− − i|q|2
]

− g2
+

N+
D2+

ln

[
(4�)2

2i(v+q‖ − ω)/D+ + |q|2
]}

(30)
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and

η+ = ρ̄2q2
‖

32π

∑
α=±

{
g2

αN2
α

D3
α

× ln

[
(4�)4

[2(vαq‖ − ω)/Dα]2 + |q|4
]}

. (31)

It is instructive to compare these corrections to the ones
for the charge fields, �− and η−. In the latter, the small ω,
q behavior is regulated by qc (i.e., the velocity difference
vd ). By contrast, we find logarithmic divergences in the IR
regime for �+ and η+. When inserted in Eq. (20) and the
integration carried out, these generate the cusp-like structures
in Sρ as q‖ → 0. In Fig. 10(b), we illustrate Sρ (q‖, 0) for var-
ious drives. Quantitatively, there is little agreement between
these Sρ’s and the simulation values in Fig. 6(b). Nevertheless,
we call attention to two important qualitative features: One
is that, when driven, the fluctuations modify the small q‖
behavior considerably. Instead of a kink with a positive slope
[downwards as q‖ → 0, in Fig. 6(a)] for the Sψ ’s, the data here
show a cusp3 with a large negative slope (upwards), which
is especially prominent in the δ = 0.02 case. This feature
is certainly displayed in the theoretical Sρ’s. Indeed, it is
straightforward to uncover an IR divergence associated with
the integrals regularized by q‖ �= 0. In this case, we expect a
singularity of the form of ln q‖ in Sρ . To probe this property
further, we plot Sρ (q‖, 0) vs. ln q‖, as illustrated in Fig. 11, for
both the data [Fig. 11(a)] and theoretical results [Fig. 11(b)].
Surprisingly, for small q‖, both display a behavior linear in
ln q‖! We caution that such a behavior should not be extrapo-
lated naively. It is likely that more subtle physics comes into
play at larger scales and that higher order corrections will be
important.

Note that these divergences (ln q‖ in d = 2) are reminiscent
of the behavior of the single species driven diffusive system
in the disordered phase. There, the static structure factors
are regular in the IR limit, while the singularities appears in
dynamics, as anomalous diffusion for d � dc = 2 [49,50]. We
believe it is the presence of two different drift velocities in
our model (which prevents us from studying the system in
a comoving frame) which allows the dynamic singularities to
induce the ones in static quantities. It would be interesting, but
beyond the scope of this paper, to find such connection and to
explore how anomalous diffusion manifests in the DWRLG.

Before ending this section, note that the Sρ’s [in Fig. 6(b)
or Fig. 10(b)] do not display peaks like the ones in the
charge Sψ ’s. Yet, as the overall density approaches the crit-
ical value and stripes form, Sψ (q∗

‖, 0) will diverge and so
must Sρ (2q∗

‖, 0). Thus, peaks in the latter must develop. We
believe that, for the values of ρ̄ and δ shown here, such
peaks are shrouded by the logarithmic divergence near the
origin. Indeed, for the largest drives illustrated, there is a
detectable shoulder in the theoretical Sρ [red curve for δ = 0.6
in Fig. 10(b)] and the hint of one in the data [purple curve

3We have reasons (see below) to believe that Sρ diverges as ln q, so
that the slope will diverge as q → 0. Thus, we use the term “cusp”
instead of “kink” here.

FIG. 11. Static structure factors Sρ (q) at small q‖ for simulation
data in panel (a) [from systems with L2 = 4002 lattice sites at an av-
erage particle density of ρ̄ = 0.5, as in Fig. 7] and the field-theoretic
results in panel (b) [obtained via numerical integration of Eq. (20)
for ρ̄ = 0.2, as in Fig. 10(b)]. Note the qualitative agreement between
these results: The linear behavior of Sρ with ln q‖ at small ln q‖ values
for nonzero drive δ > 0 in both panels (a) and (b) is indicative of a
logarithmic divergence, predicted by the field theory, which vanishes
when δ = 0, where we find a horizontal line (light blue lines and
points). The straight dashed black lines in panel (a) are a guide to the
eye to illustrate the linear behavior for small ln q‖.

for δ = 0.5 in Fig. 7]. We see that the leading order correc-
tions considered here reproduce the qualitative features of the
structure factors for both the charge and density fields. In this
sense, we believe that the approach developed here is a sound
first step towards a quantitatively successful theory. The next
steps would take into account the renormalization of all of the
relevant couplings in Eq. (13). Although beyond the scope of
the current work, pursuing a systematic analysis is a worthy
goal. When completed, we are confident that the surprising
properties of the DWRLG can be understood.

VI. SUMMARY AND OUTLOOK

Exploiting Monte Carlo and field-theoretic techniques,
we analyzed a strongly driven lattice gas with two species
(A, B)—the Widom Rowlinson model. Restricting ourselves
to systems with equal numbers of each species, there are
only two control parameters: the overall particle density, ρ̄,
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and the drive, δ. As the system settles into nonequilibrium
steady states, many unexpected properties emerge. As both
control parameters increase, the homogeneous phase gives
way to phase-separation, with order stripes (slabs in 3D)
perpendicular to the drive. The precursor of this transition
appears as a “patterned” disordered phase, characterized by
a nontrivial wavelength associated with the drive direction.
Specifically, the static structure factor Sψ (q‖, 0) (for the dif-
ference in local densities: ψ = ρA − ρB) has a peak at q∗

‖ > 0.
As q‖ → 0 and we move away from the peak, Sψ decreases,
ending with a kink singularity (nonzero slope) at the origin.
The other structure factor Sρ (for the sum: ρ = ρA + ρB) dis-
plays no similar peak (far from the transition), but increases
sharply as q‖ → 0 so that the singularity at the origin is cusp-
like (diverging as ln q‖, approximately). Following standard
methods of stochastic field theory, we derived a continuum,
coarse-grained description. At the Gaussian level, the dynamic
correlation functions provide good agreement with the drift
velocities of fluctuations. However, the Gaussian field theory
fails to produce the novel properties of the static Sρ,ψ . Taking
into account corrections at the one-loop level (i.e., keeping the
lowest nontrivial orders in ρ̄ and δ), the field theory captures
the essentials of these features (peaks in Sψ , cusps in Sρ).
However, it compares poorly with data quantitatively.

The driven Widom Rowlinson lattice gas differs from the
well-known driven Ising case in one key feature. In the latter,
the drive produces a single drifting v associated with the local
density field. By contrast, due to the excluded volume inter-
actions (between A and B), the drive in the DWRLG induces
two different drift velocities (for ρ,ψ). The peak in Sψ can be
traced to the ratio of this velocity difference and the average
diffusivity: vd/D̄. For deeper reasons we have yet to find,
this aspect also appears to allow the dynamic singularities
associated with anomalous diffusion [49,50] (logarithmic in
d = 2) to emerge in the static Sρ . In this sense, there are many
interesting directions to explore in the future, including a com-
prehensive analysis of the renormalization of the couplings of
the theory.

We are aware of many puzzling features in this system
which our simple theory cannot accommodate. The high
density ρ̄ behavior, in particular, is not accessible to the
perturbative approach developed here. Interesting examples
at these higher densities include the development of a peak
in Sρ for larger ρ̄ and δ, so that Sρ (2q∗

‖, 0) diverges at the
critical ρ̄∗ [to accompany the divergence of Sψ (q∗

‖, 0)], and the
merging of stripes at densities above ρ̄∗ [10] (i.e., decreasing
q∗

‖). We are studying possible ways to improve the theoretical
treatment along these lines. Clearly, it would be ideal if a
full-scale renormalization group analysis can be carried out
to describe the critical behavior observed in Ref. [10]. On
the simulations front, improved studies with larger systems
are underway so that various exponents, as well as the likely
presence of anisotropic scaling, can be better measured. There
is also much of interest in system at densities larger than
criticality. In the previous study [10], interfaces are found
to display Edwards-Wilkinson-like behavior [63]. How can
such behavior be understood, as these interfaces are drifting
due to the drive and not part of a system in thermal equilib-
rium? Apart from understanding how (and at what densities)
configurations with N stripes can evolve into N − 1 stripes,

we may consider the extreme high density limit. There, the
system consists of just two regions with particles of A or
B only (separated by thin lines of vacancies) and a handful
of holes drifting through. These “drifters” interact with the
interfaces, of course. Other than that, their travels through the
“bulk” regions must be identical to the ordinary single-species
DDS. Their interactions with the interfaces drive the latter, in a
manner reminiscent of the Eden model of growing interfaces
[64]. Simulation studies can be readily carried out, but our
hope is that some theoretical progress is also possible in what
appears to be a “minimal” system.

Beyond the particular system studied here, we should
explore the vast, and likely novel, territory associated with
“nonneutral” systems (ρ̄A �= ρ̄B). There is also the question
of whether the presence of an underlying lattice plays a cru-
cial role. For answers, we may explore molecular dynamics
simulations in a continuum, modeling colloidal particles with
repulsive interactions suspended in a solvent and driven with
an applied force. The hope is that connections between such
computational and theoretical work can be established with
physical experimental realizations.
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APPENDIX A: DOI-PELITI FORMALISM

The probability distribution P({σx}, t ) of observing particle
configuration {σx} at time t is conveniently represented by
introducing a vector |P〉 defined as

|P〉 =
∑
{σx}

P({σx}, t )|{σx}〉, (A1)

where |{σx}〉 is the lattice state in the occupation number
representation. Then, the master equation may be represented
via a Schrödinger-like equation which reads

∂t |P〉 = −L|P〉, (A2)

where the Liouville operator L (or pseudo-Hamiltonian) will
depend on the rates given by Eq. (5). To construct the operator
L, we introduce creation and annihilation operators a†

x and ax,
respectively. These increase or decrease by one the occupation
number of the A species at site x and satisfy the commuta-
tion relations [ax, a†

y] = δx,y. We also need an equivalent set
[bx, b†

y] = δx,y for the B species, both of which will commute
with the A species operators. By applying the creation oper-
ators to the state |0〉 with no particles (the vacuum), we may
place as many particles as we wish at any of the lattice sites
x. This is a problem, however, as our model is constrained by
the excluded volume and particle repulsion rules, which must
somehow be taken into account.
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To incorporate both the excluded volume and the nearest-
neighbor exclusion rule, we follow van Wijland [60] and in-
troduce delta function operators δn̂A,B

x ,m (where m = 0, 1, 2, . . .

and n̂A,B
x = a†

xax, b†
xbx) which have the particle states |{σx}〉

as eigenvectors with eigenvalues δnA,B
x ,m, where nA,B

x is the

number of A or B particles at site x. It is now straightforward
to write down the operator L as the delta function operators
can guarantee that any hopping transition that violates the
excluded volume or nearest-neighbor exclusion rules will van-
ish. The operator reads

L = 1

8τ

∑
x,ε=±1

{
(1 + εδ)(a†

x−ε�‖ − a†
x)ax−ε�‖δn̂A

x−ε�‖ ,1δn̂B
x+ε�‖ ,0δn̂B

x+�⊥ ,0δn̂B
x−�⊥ ,0 + (a†

x−ε�⊥ − a†
x)ax−ε�⊥δn̂A

x−ε�⊥ ,1δn̂B
x+ε�⊥ ,0δn̂B

x+�‖ ,0δn̂B
x−�‖ ,0

+
∑
ε̄=±1

(1 + δ)(a†
x−ε�‖−ε̄�⊥ − a†

x)ax−ε�‖−ε̄�⊥δn̂A
x−ε�‖−ε̄�⊥ ,1δn̂B

x+ε�‖ ,0δn̂B
x+ε̄�⊥ ,0

}
δn̂B

x ,0δn̂A
x ,0 + (a, A) ↔ (b, B), (A3)

where τ is the lattice update time step, �‖ = �x̂ is the lattice spacing in the drive direction and �⊥ = �ŷ is the lattice spacing in
the perpendicular direction. Note that we get another set of the same terms for the B particle motion which can be generated by
replacing a and A with b and B, respectively. Note that Eq. (A2) with the Liouville operator given in Eq. (A3) represents the
microscopic lattice dynamics exactly. The rates ωx→x+x in Eq. (5) are incorporated directly in Eq. (A3), where we specialize
here to the square lattice for which Nn = 8 is the number of NN and NNN sites.

To obtain the densities within the Doi-Peliti formalism, one first introduces coherent states |φA〉, which are eigenstates of
the annihilation operators: ax|φA〉 = φA

x |φA〉 (with a similar relation for species B), where φA
x is a complex eigenvalue. The time

evolution in Eq. (A2) can then be represented as a path integral over coherent state field configurations φA,B
x using standard

techniques [65]. The coherent states may be related to the particle densities ρA,B
x at lattice site x via a Cole-Hopf transformation

[φA,B
x ]∗ = eρ̂A,B

x and φA,B
x = e−ρ̂A,B

x ρA,B
x , where ρ̂A,B

x is the conjugate or response field to the densities ρA,B
x at site x. One then

generates an action J ≡ J [ρ̂A,B
x , ρA,B

x ] that facilitates the computation of averages over stochastic trajectories of any functionals
O[ρA,B

x ] just as in Eq. (11) in the main text. If we write the local densities as ρA,B
x = ρ̄A,B + ψA,B

x at each lattice site x, with ρ̄A,B

the average contribution (so that
∑

x ψA,B
x = 0), the Doi-Peliti action reads

J =
∫ t f

0
dt
∑

x

[
ψ̂A

x ∂tψ
A
x + ψ̂B

x ∂tψ
B
x + Hx

]
, (A4)

where ψ̂A,B
x are the response fields and Hx is a local pseudo-Hamiltonian density that encodes the particle exclusions and hopping

rates, derived from the analogous terms in the Liouville operator L in Eq. (A3) by taking the expectation value of L with respect
to the coherent states. This development is described in standard texts, e.g., Ref. [65].

To write down the density Hx explicitly for a two-dimensional lattice, it is convenient to introduce discrete derivative operators
of any function f (x) defined on the lattice sites x = (x, y): i, j f (x) ≡ f (x + i�‖ + j�⊥) − f (x), where �⊥,‖ are the lattice
spacing along and perpendicular to the drive. In terms of these discrete derivative operators, we have, dropping the x subscripts
for notational convenience (so that H ≡ Hx and ψA,B ≡ ψA,B

x , etc.),

H = e−2(ρ̄A+ψA )−4(ρ̄B+ψB )

8τ

∑
ε=±1

{
(1 − e−ε,0ψ̂

A
)(1 − εδ)[ρ̄A + (1 + ε,0)ψA]e−ε,0ψ

A−(−ε,0+0,−1+0,1 )ψB

+ (1 − e−0,ε ψ̂
A
)[ρ̄A + (1 + 0,ε )ψA]e−0,εψ

A−(0,−ε+−1,0+1,0 )ψB + e−2(ρ̄A+ψA )−3(ρ̄B+ψB )

8τ

∑
ε1,2=±1

(1 − e−ε1 ,ε2 ψ̂A
)

× (1 − ε1ε2δ)[ρ̄A + (1 + ε1,ε2 )ψA]e−ε1 ,ε2 ψA−[−ε1 ,0+0,−ε2 ]ψB + A ↔ B, (A5)

with the last term A ↔ B indicating that we need to add all the
previous terms with the two particle types switched. The terms
in Eq. (A5) have a certain logic: The first term corresponds to
hops along the x-axis, while the second term represents the y-
axis hops. Finally, the double summation over ε1,2 represents
the hops to the four NNN lattice sites. A similar formulation
is straightforward for the three-dimensional case, except there
are sixteen possible hopping locations.

This formulation, while derived exactly from the lattice
hopping rules, is inconvenient for understanding the coarse-
grained features of the system. We next need to move to

a continuous description and introduce the local, coarse-
grained particle densities ρA,B(r, t ). It will be here where the
method becomes approximate, necessitating careful checks
against simulation results. We begin with the Doi-Peliti action,
given by Eq. (A4), with the discrete pseudo-Hamiltonian in
Eq. (A5). We move to a continuous coordinate x → r and
assume the fluctuation fields ψA,B

x are slowly varying on the
scale of the lattice spacing �, so we may replace them (and the
corresponding response fields) with continuous fields ψA,B ≡
ψA,B(r, t ) at any time t in the evolution. Then, the discrete
derivative operators i, j defined above can be expanded in

064135-14



MICROEMULSIONS IN THE DRIVEN WIDOM-ROWLINSON … PHYSICAL REVIEW E 104, 064135 (2021)

gradients with respect to r. The expansion up to quadratic
terms in � is

i, j ≈ i�∂⊥ + j�∂‖ + �2i2

2
∂2
‖ + �2 j2

2
∂2
⊥ + i j�2∂‖∂⊥, (A6)

where i, j are the integers representing the square lattice loca-
tions x = �(i, j).

Equation (A6) is substituted into Eqs. (A4), (A5) and we
expand in powers of the fields and the lattice spacing �. We
then perform a field redefinition and introduce the charge
and density field fluctuations φ± ≡ φ±(r, t ), which are de-
fined via φ± = ψA ± ψB, with corresponding response fields
φ̂± = ψ̂A ± ψ̂B. Then, introducing the total particle density
ρ̄ = ρ̄A + ρ̄B, we find that Eq. (A4) reduces in the continuum
limit to the action given by Eq. (13) for the equal density case
ρ̄A = ρ̄B = ρ̄/2, with all of the coupling definitions stated in
the main text.

APPENDIX B: DETAILS OF FLUCTUATION
CORRECTIONS

In this Appendix we give a few other details of the com-
putation for the corrections to both the self-energy (�±)
and noise (η±) terms. For �− ≡ �−(q, ω), the two integrals,
shown diagrammatically in Eq. (21), are

�− =
∫

dωkdk
(2π )3

g0

[
k2
‖
2

+ k‖q‖

]

×
{

g−C−
[q

2
− k,

ω

2
− ωk

]
G+
[q

2
+ k,

ω

2
+ ωk

]
− g0C+

[q
2

− k,
ω

2
− ωk

]
G−
[q

2
+ k,

ω

2
+ ωk

]}
.

(B1)

The key feature here is the mixing of the propagators for the
charge and density fields [dashed and solid lines in Eq. (21)]
which prevents us from eliminating the linear drift terms
v±k‖ in both propagators simultaneously, unlike the case in
the single-species DDS. Substituting in the expressions in
Eq. (14), we evaluate the integral over ωk first. To simplify
calculations, we dropped the terms quartic in q (which would
have provided a UV cutoff � we introduce below). The result
is

�− ≈
∫

dk
(2π )2

N̄ ρ̄g0q‖
[
g−
( q‖

2 − k‖
)− g0

( q‖
2 + k‖

)]
2D̄2

( |q|2
4 + |k|2)− iD̄[ω − v̄q‖ + vd k‖]

(B2)

to leading order in the average density ρ̄. After integrating
k⊥ on the real line first, the remaining

∫
k‖ is naïvely linearly

divergent. However, by imposing the UV cutoff � = π/�, we
find the result in the main text:

�− ≈ ρ̄g0N̄vd q‖
32πD̄3

{[
q‖
qc

(g− − g0) − i(g− + g0)

]

× ln

[
16�2

2i(v̄q‖ − ω)/D̄ + q2
c + |q|2

]
+ i(g− + g0)

}
.

(B3)

Here, D̄ = (D+ + D−)/2 is the average diffusivity, v̄ =
(v+ + v−)/2 the average velocity, vd = −ρ̄δv the velocity
difference, qc = vd/2D̄ the crossover wave number, and N̄ =
(N− + N+)/2 is the noise correlation magnitude. The real
part, Re �−, is given in Sec. V. For completeness, we provide
the imaginary part here:

Im �−

= ρ̄g0N̄q‖
16πD̄2

{
(g0 − g−)q‖ tan−1

[
2(v̄q‖ − ω)

D̄(q2
c + |q|2)

]

− (g0 + g−)qc

2
ln

[
212D̄2�4e−4

[v̄q‖ − ω]2 + 16D̄2
[
q2

c + |q|2]2
]}

.

(B4)

Meanwhile, the single integral associated with the noise
correction for the charge field is

η− ≈ [N̄ ρ̄g0q‖]2

D̄

∫
dk

(2π )2

× |q|2 + 4|k|2

[ω − v̄q‖ − vd k‖]2 + [ D̄|q|2
2 + 2D̄|k|2]2 . (B5)

Similarly, after the ωk integration, we find the self-energy for
the density field, represented by Eq. (28), to be

�+ ≈ ρ̄q2
‖

2

∫
dk

(2π )2

×
{

N−g0g−
2D2−

[ |q|2
4 + |k|2]− iD−(ω − v−q‖)

− N+g2
+

2D2+
[ |q|2

4 + |k|2]− iD+(ω − v+q‖)

}
, (B6)

leading to the result in Eq. (30). For completeness, we display
its real and imaginary parts:

Re �+ ≈ ρ̄q2
‖

32π

⎧⎨
⎩N−g0g−

D2−
ln

⎡
⎣ 256�4[

2
D−

(v−q‖ − ω)
]2 + |q|4

⎤
⎦

− N+g2
+

D2+
ln

⎡
⎣ 256�4[

2
D+

(v+q‖ − ω)
]2 + |q|4

⎤
⎦
⎫⎬
⎭ (B7)

and

Im �+ ≈ ρ̄q2
‖

16π

{
N+g2

+
D2+

tan−1

[
2(v+q‖ − ω)

D+|q|2
]

− N−g0g−
D2−

tan−1

[
2(v−q‖ − ω)

D−|q|2
]}

. (B8)

Finally, the correction to the noise correlations, N̄+ =
N+ρ̄|q|2 + η+ [associated with Eq. (29)] is given by

η+ ≈ ρ̄2q2
‖

4

∫
dk

(2π )2

×
{∑

α=±

g2
αN2

α

[ |q|2
4 + |k|2]

(ω − vαk‖)2 Dα

4 + D3
α

[ |q|2
4 + |k|2]2

}
, (B9)

which leads to the result in Eq. (31).
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