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Phase diagrams of confined square lattice linked polygons
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The phase diagrams of two models of two confined and dense two-dimensional ring polymers are examined
numerically. The ring polymers are modeled by square lattice polygons in a square cavity and are placed to
be either unlinked or linked in the plane. The phase diagrams of the two models are found to be a function
of the placement of the ring polymers and include multicritical points where first-order and continuous phase
boundaries meet. We estimate numerically the critical exponents associated with the phase boundaries and the
multicritical points.
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I. INTRODUCTION

Entanglement is an important factor determining the phys-
ical properties of polymers and biopolymers [1–4]. Knotting
and linking of polymers are aspects of their entanglement and
have been studied extensively [5–7] in lattice models [3,8–
10], also in confining spaces [11], or when adsorbed [12], or
when the polymer is beyond the θ transition in the collapsed
or dense phase [13,14]. It is now known that knotting is
suppressed in a lattice polygon stretched in one direction, or
stretched by a force [15,16], but enhanced when the polygon
is compressed in a confining space [11]. It is also known
that other thermodynamic quantities, such as pressure, is a
function of knotting [17], while recent studies of compressed
lattice knots show that osmotic pressure for finite length poly-
mers is a function of knotting [18] (see Ref. [19] for results
for linear compressed lattice polymers).

In this paper we determine the phase diagrams of a model
of a pair of dense ring polymers in the plane and confined
to a cavity (a convex region). The model consists of two
square lattice polygons placed inside a confining square in
two topologically distinct ways. The splittable placement is
called the unlinked case, and the unsplittable placement the
linked case (see Fig. 1). In the square lattice the polygons
are compressed by the confining square and so are models of
dense ring polymers in two dimensions [20] (for example, ring
polymers adsorbed on a surface and freely fluctuating within
a cavity). We are primarily interested in the phase diagrams of
these topologically distinct placements as a function of the
chemical potentials of the monomers in the polymers. Our
numerical data show that the phase diagrams are dependent on
the topology of the two placements, as noted for cubic lattice
models of knotted and linked lattice polygons above. The
two-dimensional placements of the polygons also model two
ring polymers squeezed in a very narrow slab between a piston
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and a (repulsive) surface; see, for instance, Refs. [21,22]. In
three dimensions these models would, for example, describe
two vesicles (random surfaces homeomorphic to 2-spheres)
placed in two distinct ways and compressed in a cavity.

If the two polygons in Fig. 1 are labeled by 1 and 2, such
that the outer polygon in the linked case carries label 1, then
the partition functions of the two models are given by

UL(α, β ) =
∑
n1,n2

uL(n1, n2) eαn1 eβn2 , (1)

LL(α, β ) =
∑
n1,n2

�L(n1, n2) eαn1 eβn2 . (2)

Here, n1 and n2 are the lengths of polygons 1 and 2, re-
spectively, while the number of conformations (states) of two
unlinked and linked polygons in a confining square of side-
length L and area L2 lattice sites are denoted by uL(n1, n2)
and �L(n1, n2), respectively. The parameters (α, β ) are related
to the chemical potentials of the monomers (vertices) along
the polygons. If α � 0 and β � 0, then short polygons dom-
inate the partition functions. This corresponds to a phase of
short polygons exploring the area of the confining square, and
we call this the empty phase. If either α � 0 or β � 0, or
both, then the partition functions are dominated by one or
two long polygons filling the square, and the model is in a
dense phase.

If one considers our models as L × L systems with sites
either occupied or vacant subject to topological constraints (so
that the occupied sites form a pair of lattice polygons), then
the (canonical) free energies of the two models are defined by

fL(α, β ) = 1

L2
logUL(α, β ), and (3)

gL(α, β ) = 1

L2
logLL(α, β ). (4)

If the parameters (α, β ) are considered to be chemical po-
tentials of vertices along the polygons, then fL and gL are
the corresponding grand potentials of the models, and their
first- and second-order derivatives are the concentrations and
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FIG. 1. Lattice models of the unlinked and linked pairs of lattice
polygons in a confining square of side-length L.

variances of the concentrations, respectively. In this paper we
shall refer to fL and gL as free energies, but to their derivatives
as mean concentrations and variances (of the mean concentra-
tions). Notice that fL and gL are analytic functions of (α, β ),
and so phase boundaries will only exist in the L → ∞ limit. In
small finite systems, finite-size effects may be important, and
phase boundaries are normally seen as peaks in the variances
of concentrations, or as sharp changes in the concentrations.
In this paper we are able to choose L large enough that in some
cases free energies can be fitted to (nonanalytic) absolute
value functions, concentrations are approximately step func-
tions, and the variances of concentrations have sharp spikes
when crossing phase boundaries.

Our finite-size data show that the phase diagrams of these
models each include a multicritical point where three phase
boundaries meet. In the unlinked model the multicritical point
is the nexus of two continuous and one first-order phase
boundary, while in the linked model, it is the meeting point
of one continuous and two first-order phase boundaries, as
shown in Fig. 2. The locations of the multicritical points are
obtained by examining the polygon generating function P(t )

FIG. 2. The phase diagrams of the unlinked (left) and linked
(right) models as determined in this paper. In the unlinked model
the multicritical point is located at (αc, αc ), where αc = − log μ2 in
the L → ∞ limit (and μ2 is the growth constant of square lattice
polygons [23–25]). The location (αc, βc ) of the multicritical point
in the linked model is more difficult to determine, where again
α = − log μ2 in limit as L → ∞. The phase boundaries (λ1, λ2) in
the unlinked model, and λ in the linked model, are continuous transi-
tions, while the τ phase boundaries in both models are first-order
phase transitions. These phase boundaries separate empty phases
from dense phase, namely, a c1-dominated phase when the first
polygon (or the outer polygon in the linked model) is dense in the
confining square, or a c2-dominated phase when the second (or the
inner polygon in the linked model) is dense in the confining square.

FIG. 3. The BFACF elementary moves in the square lattice
[26,27]. On the left is the positive move (left to right), and the
negative move (right to left). On the right is the neutral move.

given by

P(t ) =
∞∑

n=0

pn tn, (5)

where pn is the number of square lattice polygons of length
n. The radius of convergence of P(t ) is tc = 1/μ2 [23–25]
(where μ2 is the growth constant of square lattice self-
avoiding walks), so that if L = ∞, then the two polygons
contributing to the partition function in Eq. (1) become in-
dependent and the locations of the critical lines λ1 and λ2 are
along vertical and horizontal lines with αc = βc = − log μ2.
Similarly, the location of the critical line λ in the linked
model is along the vertical line with αc = − log μ2 since for
β < − log μ2 the inner polygon is short and the outer polygon
can expand when α > − log μ2.

In this paper our aim is to examine the phase diagrams
in Fig. 2 numerically by simulating a 20 × 20 system using
Monte Carlo methods. Our data show that this finite size
system is large enough to enable us to determine the phase
diagram of the system with good accuracy, and to obtain
reasonable estimates of the critical exponents associated with
each phase boundary.

Sampling self-avoiding walks or polygons in a dense phase
is a notoriously difficult numerical problem [28] but for the
unlinked model a parallel implementation [29] of the GAS
algorithm [30] proved effective. In the linked model we in-
stead used the GARM [31] algorithm after the GAS algorithm
failed to converge. These algorithms were implemented with
BFACF elementary moves [26,27] (see Fig. 3) to approxi-
mately enumerate states in the models giving estimates of
uL(n1, n2) and �L(n1, n2) in Eqs. (1) and (2). Note that both
algorithms are in a class of approximate enumeration algo-
rithms derived from the Rosenbluth algorithm [32] and they
directly estimate uL(n1, n2) and �L(n1, n2) in Eqs. (1) and
(2). The GAS and GARM algorithms are designed to sample
from “flat distributions” over the state space of the models.
For more details, see Refs. [30,31], and also in particular
the PERM and flatPERM algorithms [33,34] on which these
are based. Convergence in the linked model was improved
dramatically by including the neutral (total length preserving)
move shown in Fig. 4, in addition to the standard BFACF
elementary moves. Additionally, we used a multiple Markov
Chain [28] implementation of the BFACF algorithm [26,27]
to sample metric and other properties of the polygons across
phase boundaries to further examine the nature of the transi-
tions shown in Fig. 2. We note that an alternative approach
to our numerical methods would be to enumerate pairs of
polygons directly in a confining square in the square lattice.
Such exact enumeration methods for self-avoiding walks and
polygons in confining squares are described and presented in
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FIG. 4. A neutral move on the pair of polygons in the linked
model consisting of a positive (+2) move on the inner polygon and
a negative (−2) move on the outer polygon. The overall length of
the two polygons remains unchanged, but they exchange edges to
increase and decrease their lengths, respectively.

Refs. [35,36] and will be effective for giving exact partition
functions in Eqs. (1) and (2). While our approach only gives
approximate estimates, our data will show that these estimates
are precise enough to determine accurately the phase diagrams
of the models.

In the next section we review the critical behavior in the
phase diagrams in Fig. 2, before we discuss our numerical
results, and examine the behavior of several observables in
these models.

II. CRITICALITY IN MODELS OF UNLINKED AND
LINKED DENSE POLYGONS

It is not known that the thermodynamic limits (in the L →
∞ limit) exist in our models (the methods of Refs. [37] and
[38] can be used to show that some models, similar to those
in Fig. 1, have thermodynamic limits). Assuming existence of
the thermodynamic limits, define

υ(α, β ) = lim
L→∞

fL(α, β ), and (6)

ω(α, β ) = lim
L→∞

gL(α, β ). (7)

These are the limiting free energies of the models, and we
use the theory in Ref. [39] to determine the nature of the
transitions along the critical lines in Fig. 2.

Along an axis in the phase diagram, parametrized by t and
crossing a critical curve at t = tc (see Fig. 5), the singular
part of υ(α, β ), denoted by υs(α, β ), is expected to exhibit
powerlaw behavior given by

υs(α, β ) ∼
{|t − tc|2−αs , if t → t−

c ,

|t − tc|2−α′
s , if t → t+

c ,
(8)

where αs and α′
s are critical exponents characteristic of the

transition. Similar expressions hold for the limiting free en-
ergy ω(α, β ) of the linked model.

The functions υ(α, β ) and ω(α, β ) are approximated by
fL(α, β ) and gL(α, β ) in Eq. (3) when L is finite. In this

FIG. 5. A schematic drawing of the transverse scaling axis cross-
ing a phase boundary when t = tc in the phase diagram of the
unlinked or linked models. The free energy υ(α, β ) is singular when
t = tc. If the transition is continuous, then there are critical exponents
(αs, α

′
s ) such that υ(α, β ) ∼ |t−tc|2−αs as t → t−

c and υ(α, β ) ∼
|t−tc|2−α′

s as t → t+
c .

case there are finite-size corrections to scaling which modify
Eq. (5) by introducing a finite-size crossover exponent φs. For
large L the finite-size corrections are small and are confined
to a region close to the critical point. In this case it may be
possible to extract critical exponents directly from numerical
data.

The phase diagrams in Fig. 2 include multicritical points
where curves of first-order and continuous transitions meet.
This is shown schematically in Fig. 6, where a curve of first-
order transitions (τ ) meets a curve of continuous transitions
(λ) at the tricritical point (αc, βc). Approaching the tricritical
point along the τ phase boundary, the singular part of υ(α, β )
scales as

υs(α, β ) ∼ |t − tc|2−αu , (9)

where t is the coordinate of a scaling axis along τ . Transverse
to the λ phase boundary at the multicritical point,

υs(α, β ) ∼ |s − sc|2−αt , (10)

where s is the coordinate of the transverse scaling axis. Since
υ(α, β ) is a function of two variables, consistency of these
scaling laws requires that there exists a crossover exponent φ

and scaling function F such that F (x) ∼ x2−αu and

υs(α, β ) ∼ |s − sc|2−αt F (|s − sc|−φ |t − tc|)
= |t − tc|2−αu (|s − sc|−(2−αt )/(2−αu ) |t − tc|)αu−2

× F (|s − sc|−φ |t − tc|)
= |t − tc|2−αu F1(|s − sc|−φ |t − tc|), (11)

where F (x) = x2−αu F1(x) and provided that the crossover
exponent is given by

φ = 2 − αt

2 − αu
. (12)

Similar expressions hold for w(α, β ) of the linked model, with
its exponents αu, αt , and crossover exponent φ.
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FIG. 6. A tricritical point where a critical curve of first-order
transitions (τ ) meets a line of continuous transitions (λ). Approach-
ing the tricritical point along τ the free energy scales as υ(α, β ) ∼
|t−tc|2−αu , where t is a coordinate along τ . Along a second axis
through the tricritical point and transverse to λ, the free energy scales
as υ(α, β ) ∼ |s−sc|2−αt , where s is a coordinate transverse to λ. The
scaling of υ(α, β ) close to the tricritical point is consistent provided
that their exists a crossover exponent φ relating to the exponents αu

and αt by φ = (2 − αt )/(2 − αu).

In our models the phase diagrams of both the unlinked
and linked models will be shown to include a multicritical
point, generalizing tricritical scaling as shown in Fig. 6 by the
introduction of additional crossover exponents relating scaling
along first-order and continuous phase boundaries. In Fig. 7
we show the case where two continuous phase boundaries
λ1 and λ2 meet a curve of first-order phase transitions τ in
a multicritical point. In this case there is crossover behavior
on either side of the τ phase boundary towards the λ1 and λ2

phase boundaries. On each side crossover exponents φ1 and
φ2 control crossover scaling. We shall show that the phase
boundary of the unlinked model has the geometry shown in
Fig. 7, albeit symmetric so that φ1 = φ2 (as shown in Fig. 2).
The phase diagram of the linked model, in contrast, has a
multicritical point where two curves τ1 and τ2 of first-order
phase transitions meet a curve λ of continuous transitions. In
this model the situation is similar to that shown in Fig. 7, but
now with scaling along parallel axes on each of the τ1 and
τ2 phase boundaries, and transverse to the λ phase boundary.
This gives crossover scaling between τ1 and λ with crossover
exponent φ1, and similarly between τ2 and λ with crossover
exponent φ2.

III. NUMERICAL RESULTS

Simulations on the unlinked model with L = 20 were
performed using the GAS algorithm [30] with BFACF ele-
mentary moves [26,27] (Fig. 3). A parallel implementation
(similar to the implementation of PERM in Ref. [29]) us-
ing 8 threads and shared data structures was run for 2000
started sequences (or tours) each of length 107 iterations.

FIG. 7. A multicritical point where a critical curve of first-order
transitions (τ ) meets two curves of continuous transitions (λ1 and λ2).
Approaching the multicritical point along τ the free energy scales
as υ(α, β ) ∼ |t−tc|2−αu , where t is a coordinate along τ . Along a
second axis through the multicritical point and transverse to λ1, the
free energy scales as υ(α, β ) ∼ |s−sc|2−αt , where s is a coordinate
transverse to λ1. The scaling of υ(α, β ) between τ and λ1 close to the
multicritical point is consistent provided that there exists a crossover
exponent φ1 relating the exponents αu and αt by φ1 = (2 − αt )/(2 −
αu). Similarly, transverse to λ2 the free energy scales as υ(α, β ) ∼
|r−rc|2−αt , where r is a coordinate transverse to λ2. This defines a
crossover exponent φ2 relating the exponents αu and αr by φ2 = (2 −
αr )/(2 − αu).

This amounts to a total of 1.6 × 1011 sampled configurations
(iterations). The simulation converged in reasonable time to
very stable estimates of uL(n1, n2) [see Eq. (1)]. The linked
model proved far more difficult and did not converge success-
fully, notably because the GAS algorithm failed to effectively
sample states with n1 < n2 (that is, a short outer polygon with
enclosed area filled with a long inner polygon as expected
in the c2-dominated phase). Using the GARM algorithm in-
stead, implemented with BFACF elementary moves and an
additional neutral move (see Fig. 4), proved effective, and
a parallel implementation with 12 parallel threads, sampling
along GARM sequences for a total of 12 × 4.03 × 105 tours,
converged in reasonable time (see Ref. [29]).

The GAS and GARM algorithms are approximate enumer-
ation algorithms producing estimates of the microcanonical
partitions uL(n1, n2) and �L(n1, n2) in Eqs. (1) and (2). This
gives estimates of the free energies fL and gL [Eqs. (3) and
(4)] and in the event that L is large enough, we obtain accu-
rate approximations to the limiting free energies ν(α, β ) and
ω(α, β ) in Eqs. (6) and (7). Our simulations show that L = 20
is sufficiently large, and that it will be challenging to perform
simulations for L > 20, in particular for the linked model.

A. The phase diagram of two unlinked confined square
lattice polygons

In Fig. 8(a) a density plot of fL(α, β ) for L = 20 is shown,
with the left bottom color low, and the right and top colors
high. The free energy shows clear signs of transitions, and
this is also confirmed by plotting other observables related
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FIG. 8. The free energy fL (α, β ) of the unlinked model for L = 20 (top left), and its first and second derivatives. Proceeding clockwise
from the top middle, the energies 〈c1〉 and 〈c2〉, the specific heats (variances) Var(c2) and Var(c1), and the covariance Cov(c1, c2) of c1 and c2.
The concentrations c1 and c2 are negatively correlated, and show sharp transitions along the main diagonal for α = β > αc. The location of
the multicritical point in the model is denoted by a bullet in panel (a).

to the first and second derivatives of fL(α, β ). The mean
concentrations of vertices in each polygon are related to the
mean lengths of the polygons by

〈c1〉 = 〈n1〉/L2 = d

dα
fL(α, β ). (13)

The concentration of the second polygon is similarly given
by 〈c2〉 = 〈n2〉/L2 = d

dβ
fL(α, β ). Density plots of 〈c1〉 and

〈c2〉 are shown in Figs. 8(b) and 8(c). These plots show rapid
change in the mean concentrations of one, or both, the poly-
gons when phase boundaries are crossed.

The variance of the concentration c1 is given by

Var(c1) = 1

L4
Var(n1) = 1

L2

∂2

∂α2
fL(α, β ) (14)

and in Fig. 8(e) a density plot of L2 Var(c1) is shown, and this
shows a phase boundary (where Var(c1) is large) separating
phases where 〈c1〉 is small from a phase where 〈c1〉 is large.
A similar plot of L2 Var(c2) is shown in Fig. 8(f) for the
concentration c2 of the second polygon. The covariance of c1

and c2 is given by

Cov(c1, c2) = 1

L4
(〈n1n2〉 − 〈n1〉〈n2〉)

= 1

L2

∂2

∂α ∂β
fL(α, β ), (15)

and L2 Cov(c1, c2) is plotted in Fig. 8(d). The covariance is
small negative in most of the plot, but spikes to large negative

along a phase boundary which runs along the diagonal with
points (α, β ) where α = β > αc and starting in a multicritical
point (αc, αc) since the phase diagram is symmetric under
exchange α ↔ β.

These results numerically confirm the phase diagram of the
unlinked model shown in Figs. 2 and 9. The multicritical point
(αc, αc) is located at the meeting point of three phase bound-
aries. The phase transition along the main diagonal, denoted
by τ , is a line of transitions starting in the multicritical point
running into the first quadrant. Up to numerical accuracy,
above and to the left of τ the free energy is only a function
of β, and to the right and below it, only a function of α. This
shows that τ is a first-order phase boundary separating a phase
where 〈c2〉 is large from a phase where 〈c1〉 is large. These are
the c2-dominated and c1-dominated phases, respectively.

Two additional phase boundaries are meeting at the mul-
ticritical point, namely, a line of transitions λ1 running
vertically into the multicritical point and a line of transitions
λ2 running horizontally into the multicritical point. The verti-
cal phase boundary separates a phase where both 〈c1〉 and 〈c2〉
are small (this is the empty phase) from a c1-dominated phase.
Similarly, the horizontal phase boundary separates the empty
phase from a c2-dominated phase.

Note that, since fL(α, β ) is an analytic function of (α, β ),
these phases and phase boundaries exist only in the L →
∞ limit. In our data the phase boundaries manifest them-
selves as peaks in the variances or sharp changes in the
mean concentrations. The location of the multicritical point
is obtained by observing that the radius of convergence of
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FIG. 9. Crossover exponents between τ and the λ1 and λ2 critical
curves around the multicritical point in the phase diagrams of the
unlinked models. This phase diagram is symmetric over the main
diagonal, so that the crossover exponents φ on either side have the
same value.

the polygon partition function P(t ) in Eq. (2) is tc = 1/μ2,
so that if L = ∞, then the two polygons contributing to
Eq. (3) become independent and the critical points are de-
termined by the polygon generating function. This gives
αc = βc = − log μ2 ≈ −0.97.

Critical scaling in the unlinked model

The τ phase boundary: In Fig. 10 the free energy, mean
concentrations and variances for L = 20 are plotted as a func-
tion of α from the point (0,5) along the line segment to (5,0).
The critical point (where the τ phase boundary is crossed)
corresponds to α = 2.5, and this is seen in the plot of the free
energy fL in Fig. 10(a). The phase transition along the τ phase
boundary is a first-order transition to numerical accuracy, as
the limiting free energy in Eq. (6) is accurately approximated
by fL for L = 20, and fL can be directly modeled by an

absolute value function. Indeed, using the five-parameter
model

υ(α, 5−α) = a0 + a1 |α − ac|2−αs + a2 (α − ac)2 (16)

a nonlinear fit (done using the NonlinearFit function in Maple
[40]) can be performed to obtain estimates of the exponent
2−αs. Ignoring the quadratic term (by putting a2 = 0) gives
the regression

υ(α, 5−α) ≈ 2.810 + 0.975 |α − 2.498|1.003. (17)

Repeating the fit with a2 as an additional parameter gives
instead

υ(α, 5−α) ≈ 2.810 + 0.976 |α − 2.499|1.006

+ 0.00153 (α − 2.499)2. (18)

Notice the very small coefficient of the quadratic term, show-
ing that the free energy is very closely approximated by the
absolute value term. These fits give the critical point at ac =
2.498 (compared to its exact value 2.5 by symmetry) and the
estimate of the exponent 2−αs = 2−α′

s ≈ 1.003 [see Eq. (5)].
These results show that, even in this finite-size model, with
L = 20, the free energy is well approximated by a nonanalytic
function, having a sharp transition at the critical point.

As in Fig. 5 one may now estimate the scaling exponent
associated with the τ phase boundary. Taking as error bar the
difference in the estimates in Eqs. (17) and (18),

2 − αs = 2 − α′
s = 1.003 ± 0.003. (19)

This is consistent with the transition across the τ phase bound-
ary being first order.

The λ1 and λ2 phase boundaries: Next, consider the tran-
sition across the λ1 phase boundary by calculating the free
energy along the line segment from (−5,−2) to (5,−2). The
results are plotted in Fig. 11 as a function of α. The graphs
in Fig. 11(b) of the concentrations 〈c1〉 and 〈c2〉 show that
the transition across the λ1 phase boundary does not have a
step-like increase, unlike the case for the τ phase boundary.
Since the λ1 phase boundary in Fig. 9 is a vertical line and
αc ≈ −0.97, the transition across λ1 is expected to occur at
αc, and our data are consistent with this. The critical exponent
associated with the transition is defined by Eq. (8), and since

FIG. 10. The free energy, mean concentrations and variances of the unlinked model as a function of α along the line crossing the τ phase
boundary between the points (0,5) to (5,0) in the phase diagram in Fig. 9. These data were calculated for L = 20, but shows that the free energy
is to numerical accuracy an absolute function, nonanalytic on the τ phase boundary. The mean concentrations 〈c1〉 and 〈c2〉 are approximately
step functions at the critical line, while the variances, plotted on a logarithm vertical scale, develop sharp spikes at the critical point, while
having very small values (less than 10−3) away from the critical point.
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FIG. 11. The free energy, mean concentrations, and variances of the unlinked model as a function of α along the line from the point
(−5,−2) to (5,−2) crossing λ1 in the phase diagram in Fig. 9. The free energy shows a transition at approximately αc ≈ − log μ2 ≈ −0.97,
and this seen in the behavior of the mean concentration 〈c1〉. Our analysis strongly suggests that this transition between the empty and the
c1-dominated phase is continuous. Notice that 〈c2〉 appears to be unchanged in the middle graph, but if the logarithm of variances are plotted,
then Var(c2) is singular at the critical point, going from constant into a steady decline. Since our model is symmetric in {c1, c2}, these graphs
will be unchanged (except with c1 and c2 interchanged) if instead these quantities are calculated along the line segment from (−2,−5) to
(−2, 5) which crosses over the phase boundary λ2 separating the empty and the c2-dominated phases.

the free energy fL in Fig. 11 is (up to numerical accuracy) a
constant for α < αc we conclude that 2−αs = 0 along the λ1

phase boundary as α → α−
c .

If α > αc, then the concentration 〈c1〉 increases sharply at
the critical point [as shown in Fig. 11(b)]. As α increases
in size, one expects that the first polygon becomes dense
and then fills the confining square, and 〈c1〉 → 1. In view of
Eq. (8),

〈c1〉 ∼ |α − αc|1−α′
s , for α → α+

c and β = −2. (20)

The exponent can be estimated by plotting log〈c1〉/
log |α−αc| as a function of 1/ log |α−αc|. This is improved
if we subtract from 〈c1〉 its (small but nonzero) value 〈c1〉|crit

at α = αc, to zero it at the critical point. This removes a
background term due to the finite size of our model. Defining

log 〈c1〉s = log(〈c1〉 − 〈c1〉|crit ) (21)

we get the model

γ = log 〈c1〉s/ log |α−αc|
= (1−α′

s) + C/ log |α−αc| + . . . (22)

Choosing αc = −0.97 and then plotting γ as a function of
1/ log |α−αc| for −0.95 � α � 0 gives the graph in Fig. 12.
This graph is almost a straight line, except at points where
α approaches αc. Fitting a linear function in 1/ log |α−αc|
to the graph gives the estimate 1−α′

s ≈ 0.545, and fitting a
quadratic instead gives 1−α′

s ≈ 0.516. The difference in these
two estimates is taken as a confidence interval in the estimate.
Taken together,

αs = 2 and α′
s ≈ 0.45 ± 0.03 (23)

along the λ1 phase boundary.
Thus, the transitions along the λ1 phase boundary has

exponents 2−αs = 0 and 2−α′
s = 1.55(3) in Eq. (8). Since

the model is symmetric in {c1, c2}, these results will be the
same if instead the λ2 phase boundary between the empty and
c2-dominated phases is crossed.

Scaling around the multicritical point: Scaling axes
through the multicritical point are set up consistent with

Fig. 7. The parallel scaling axis (parallel to the τ -phase bound-
ary) runs along the τ phase boundary on the main diagonal
from (−5,−5) to (5,5). The transverse axis (transverse to
the τ -line) runs along the λ2 phase boundary and crosses the
multicritical point into the c1-dominated phase. Similarly, a
second transverse axis runs along the λ1 phase boundary into
the c2-dominated phase.

Estimates of the free energy fL and its derivatives are
plotted for L = 20 on the axes through the multicritical point
in Fig. 13. The three top panels show results along the parallel
scaling axis, while the bottom panels display results along the
transverse scaling axis running along λ2 and crossing into the
c1-dominated phase.

Since the phase diagram is symmetric about the main di-
agonal in the αβ plane, and since the free energy is not a
function of β in the c1-dominated phase, and of α in the
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FIG. 12. Plotting γ = log(〈c1〉 − 〈c1〉|crit )/ log |α−αc| as a func-
tion of 1/ log |α−αc| for the unlinked model along a line segment
in the c1-dominated phase starting in the λ1 phase boundary with
β = −2. In this graph −0.9 � α < 0.
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FIG. 13. Top panels: The free energy, mean concentrations, and variances of the unlinked model as a function of α = β along the line
from the point (−5, −5) to (5,5) through the multicritical point in the phase diagram in Fig. 9. The free energy (top left) shows a transition at
approximately αc = βc ≈ − log μ2 ≈ −0.97 (as also seen in the graphs of the mean concentrations 〈ci〉). These critical curves show a transition
as the multicritical point is crossed into the dense phase where the polygons fill the confining square. The mean concentrations show a singular
point in the free energy at the critical point, and the variances (plotted on a logarithmic scale) show a sharp increase at this point. Bottom
panels: The free energy, mean concentrations, and variances as a function of α on the line through the multicritical point and with endpoints
(−5, βc ) and (5, βc ) (where βc = − log μ2 ≈ −0.97). These data show a continuous transition, similar to the transition seen in Fig. 8 between
the empty phase, and the c1-dominated phase.

c2-dominated phase, it follows that the scaling of 〈c1〉 and
〈c2〉 along these axes is the same as that given in Eq. (20)
with α′

s and αs having the values in Eq. (23). This follows
by symmetry, since fL(α, αc) = fL(α, β ) for any β < αc, and
fL(α, α) = fL(α, αc) in the dense phases (that is, for α > αc).
Thus, it follows that the exponents αu and αt in Eqs. (9) and
(10) have the same values as in Eq. (23), namely,

αu = αt ≈ 0.45 ± 0.03. (24)

By Eq. (12), the crossover exponent in this model is φ = 1.
Taking into account the uncertainty of the estimate in Eq. (24),
the estimate of the crossover exponent of the unlinked model
is given by

φ = 1.00 ± 0.04. (25)

B. The phase diagram of two linked confined square
lattice polygons

In Fig. 14(a) a density plot of gL(α, β ) is shown (for L =
20) with the left bottom color low, and the right and top colors
high. The free energy shows clear signs of phase transitions,
and this is also seen in plots of the first and second derivatives
of gL(α, β ), as shown in Figs. 14(b)–14(f).

The concentrations 〈c1〉 and 〈c2〉 [see Eq. (13)] are plotted
in Figs. 14(b) and 14(c). These plots show a rapid change in
the mean concentration of one, or both, 〈c1〉 and 〈c2〉 when
phase boundaries are crossed. Note that these plots are differ-

ent from those in Fig. 8, suggesting that the different topology
of this model (namely, that the two polygons are linked in R2)
has an impact on its thermodynamic properties.

The variances [Eq. (14)] and covariance [Eq. (15)] are
plotted in Figs. 14(d)–14(f). The covariance shows (as ex-
pected) strong negative correlations between c1 and c2

induced by the confining square, except along two phase
boundaries, where the correlation is positive. Var(c1) in
Fig. 14(e), considered with Fig. 14(b), shows a phase bound-
ary τ1 close to or on the main diagonal for α > αc and
β > βc, where (αc, βc) is the location of a multicritical
point.

Magnifying Fig. 14(a) in the vicinity of the multicritical
point gives the density plot in Fig. 15. This plot suggests that
a curved phase boundary τ2 separates the empty phase from
a c2-dominated phase for large positive β (in this phase the
inner polygon is dense, and the outer polygon is expanded to
near the perimeter of the confining square).

The rest of the phase diagram, as suggested by Figs. 14
and 15, is shown in Fig. 16. A vertical phase boundary runs
along α = αc from the multicritical point for β < βc. This
phase boundary, denoted by λ, separates an empty phase, for
large negative α and β, from a c1-dominated phase for large
positive α. This transition is similar to the transition across
the λ1 phase boundary in the unlinked model, and the critical
value of α is given by αc = − log μ2 (using an argument
similar to the one used for λ1 in the unlinked model). Crossing

064134-8



PHASE DIAGRAMS OF CONFINED SQUARE LATTICE … PHYSICAL REVIEW E 104, 064134 (2021)

FIG. 14. The free energy gL (α, β ) of the linked model for L = 20 (top left), and its first and second derivatives. Proceeding clockwise
from the top middle, the mean concentrations of the outer polygon 〈c1〉 and the inner polygon 〈c2〉, their variances Var(c2) and Var(c1), and
the covariance of c1 and c2, Cov(c1, c2). The concentrations c1 and c2 are negatively correlated, and the covariance shows a sharp transition
close to the main diagonal for α = β > αc. In addition, a second, apparently weaker, phase transition appears along a curve starting in the
multicritical point and running into the second quadrant, and a third phase transition runs vertically into the multicritical point from below. The
approximate location of the multicritical point in the model is denoted by a bullet in panel (a).

λ takes the model from its empty phase into a phase where
the outer polygon is dense, while the inner polygon remains
small.

Since the multicritical point (αc, βc) is the intersection
of the three phase boundaries λ, τ1 and τ2, with the λ

phase boundary running vertically and separating the empty
phase from the c1-dominated phase, we conclude that αc =

FIG. 15. A density plot the free energy gL (α, β ) of the linked
model in the vicinity of the multicritical point. The location of the
multicritical point is estimated to be (α, β ) = (−0.97, −0.77) and is
denoted by the bullet.

− log μ2 ≈ −0.97, but, as will be seen below, it appears from
our numerical data that βc > −0.97, although the resolution
of our data was not good enough to confirm this.

FIG. 16. Crossover exponents between the τ1 and λ, and τ2 and
λ critical curves around the multicritical point in the phase diagram
of the linked model.
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FIG. 17. Top row: The free energy, mean concentrations and variances of the linked model as a function of α along the line segment from
(0,5) to (5,0) across the τ1 phase boundary. The variances are plotted on a logarithmic vertical scale. Middle row: The free energy, mean
concentrations and variances as a function of β on the line segment from the point (−2, −5) to the point (−2, 5) across the τ2 phase boundary.
Bottom row: The free energy, mean concentrations and variances as a function of α on the line segment across the λ phase boundary from
(−5, −2) to (5,−2).

The trajectories of τ1 and τ2 were estimated by fitting
curves to points along the phase boundaries from our data sets.
In the case of τ1 a linear least squares fit using a quadratic
model shows that

τ1(α) ≈ 0.0824 + 0.9824 α + 0.00268 α2,

for α > −0.97. (26)

Since along the critical curve λ the value of α = αc ≈ −0.97,
it follows that this predicts that the multicritical point appears
to be close to (−0.97,−0.868).

In the case of τ2 a 3-parameter nonlinear fit using the
NonlinearFit function in the Statistics package of Maple17
[40] was used along points on the phase boundary. Assuming
a powerlaw shape gives the trajectory

τ2(α) ≈ −0.6680 + 0.5184|−0.97 − α|0.64,

for α < −0.97. (27)

This predicts that the multicritical point is close to
(−0.97,−0.668). Taking the average of this estimate, and the
estimate obtained from the trajectory of the τ1 phase bound-
ary, gives our best estimate of the location of the multicritical
point for the linked case:

(αc, βc) ≈ (−0.97,−0.77), (28)

assuming, of course, that finite-size corrections at L = 20 are
negligible. Note that the estimate of βc is larger than the one
reported for the unlinked model (namely, βc ≈ −0.97). This
estimate may have a large confidence interval, since numerical
estimates in the vicinity of the multicritical point are strongly
affected by the environment (namely, it is the intersection of
three phase boundaries).

Critical scaling in the linked model

The τ1 phase boundary: In the top row of Fig. 17 the free
energy and its derivatives are plotted as a function of α along

064134-10



PHASE DIAGRAMS OF CONFINED SQUARE LATTICE … PHYSICAL REVIEW E 104, 064134 (2021)

the line segment from (0,5) to (5,0) in the phase diagram. As in
the unlinked model, the free energy can be fitted to an absolute
value function using the model

w(α, 5−α) = a0 + a1 α + a2 |α − αc|2−αs + a3 (α − αc)2.

(29)

The curve in Fig. 17(a) appears to be rotated about its mini-
mum, and to account for this, a linear term in α was included
in Eq. (29). A fit with a3 = 0 (so that there is no quadratic
correction) gives

w(α, 5−α) ≈ 2.3172 + 0.1823 α + 0.7747 |α − 2.4592|1.018,

(30)

while including the quadratic term in the model gives

w(α, 5−α) ≈ 2.3259 + 0.1819 α + 0.7737 |α − 2.4583|1.057

− 0.0124 (α − 2.4583)2. (31)

We note again the relative small coefficient of the quadratic
term, suggesting minor curvature of the τ1 phase boundary for
−0.97 � α � 5. Equation (27) shows that the τ1 phase bound-
ary is crossed approximately at the point (2.4592,2.5408) by
the line segment from (0,5) to (5,0) in the phase diagram,
consistent with the observation that the τ1 phase boundary is
slightly off-set from the main diagonal in the αβ plane.

The critical exponents 2−αs and 2−α′
s [see Eq. (8)] can

also be read from the fits in Eqs. (30) and (31):

2 − αs = 2 − α′
s = 1.02 ± 0.04. (32)

The error bar is the absolute difference between the estimates
in Eqs. (30) and (31). These results are consistent with a
first-order transition along τ1 (which is seen in the jump dis-
continuities in 〈c1〉 and 〈c2〉 shown in the top middle graph in
Fig. 17).

The τ2 phase boundary: The free energy, concentrations
and variances across this phase boundary are plotted in Fig. 17
along a line segment from (−2,−5) to (−2, 5). The jump
discontinuities in 〈c1〉 and 〈c2〉 are consistent with this also
being a first-order transition. Fits similar to Eqs. (30) and (31)
give the approximations

w(−2, β ) ≈ −0.0392 + 0.4013 β + 0.3517 |β − 0.0517|1.059

(33)

and

w(−2, β ) ≈ −0.0188 + 0.4017 β + 0.3400 |β − 0.0567|1.182

− 0.0151 (β − 0.0567)2. (34)

Comparison of these fits with Eq. (8) give the estimated criti-
cal exponents

2 − αs = 2 − α′
s = 1.06 ± 0.12 (35)

and critical point (−2, τ2(−2)) ≈ (−2,−0.52(5)) on the τ2

phase boundary. These values are again consistent with τ2

being a curve of first-order transitions.
The λ phase boundary: The data along the λ phase

boundary are plotted in the bottom panels of Fig. 17. The
concentration 〈c1〉 plotted in Fig. 17(h) is obtained from esti-
mates along the line segment between the points (−5,−2) and
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FIG. 18. Plotting γ = log(〈c1〉 − 〈c1〉|crit )/ log |α−αc| as a func-
tion of 1/ log |α−αc| for the linked model in the c1-dominated phase
along a line segment starting in the λ phase boundary, with β = −2.
In this graph −0.9 � α � 0.

(5,−2) in the phase diagram. In this graph 〈c1〉 has a profile
consistent with a continuous transition.

As in the unlinked model, the scaling exponent α′
s in Eq. (8)

can be estimated by plotting log〈c1〉s/ log |α−αc| [Eq. (22)] as
a function of 1/ log |α−αc|. Plotting γ in Eq. (22) as a func-
tion of 1/ log |α−αc| for −0.95 � α � 0 gives the graph in
Fig. 18. Fitting a linear function in 1/ log |α−αc| to the graph
gives the estimate 1−α′

s ≈ 0.57, and fitting a quadratic instead
gives 1−α′

s ≈ 0.63. The difference in these two estimates is
taken as a confidence interval in the estimate.

On the empty phase side of λ the free energy is constant
to numerical accuracy, and so one expects αs = 2. Taken
together,

αs = 2 and α′
s ≈ 0.43 ± 0.06. (36)

This shows that 2−αs = 0 on the empty phase side of λ, and
2−α′

s = 1.57(6) on the c1-dominated phase side.
Scaling around the multicritical point: In the phase diagram

in Fig. 16 a transverse scaling axis is set up to run horizontally
through the multicritical point, while two parallel scaling axes
are set up to run along the first phase order phase boundaries.

The free energies, mean concentrations and variances of
the concentrations are plotted along the parallel and transverse
scaling axes in Fig. 19. Along the transverse axis [shown
in Fig. 19(h)] our data show that the concentrations remain
unchanged when compared to Fig. 17(h). Thus, the transverse
scaling exponents are the same as those found along the λ

phase boundary given in Eq. (35), namely, αt = 2 from the τ2

side of the phase boundary, and αt = 0.43(6) on the τ1 side.
Since the trajectory of the τ1 phase boundary and loca-

tion of the multicritical point are not known exactly, it is
more challenging to estimate the scaling exponent αu. Putting
�(α) = [α, τ1(α)] and denoting the distance along τ1 between
�(αc) and �(α) in the αβ plane by d (αc, α), the exponent αu

can be estimated by calculating the ratio log〈c1〉s/ log d (αc, α)
with αc = −0.970 along τ1 [see Eqs. (21) and (22)]. By the
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FIG. 19. Top row: The free energy, mean concentrations and variances of the linked model as a function of α from the empty phase and
then along the τ1 phase boundary. The variances are plotted on a logarithmic vertical scale. Middle row: The free energy, mean concentrations
and variances as a function of β along the λ phase boundary and tangent to the τ2 phase boundary at the multicritical point. The data is
plotted against β along the line segment from (αc, −5) to the point (αc, 5). Bottom row: The free energy, mean concentrations and variances
as a function of α transverse to the λ phase boundary thought the multicritical point along the line segment from (−5, βc ) to (5, βc ) into the
c1-dominated phase.

same arguments leading to Eq. (22), we plot

γ = log 〈c1〉s/ log d (αc, α) (37)

as a function of 1/ log d (αc, α) and estimate the exponent 1 −
αu by a linear fit. This gives the graph in Fig. 20.

A linear fit to the data in Fig. 20 gives 1−αu ≈ 0.172 and a
quadratic fit gives 1−αu ≈ 0.242. Taking the difference as an
error bar gives the estimate 1−αu = 0.17 ± 0.07. Thus, our
estimate is

αu = 0.83 ± 0.07, along τ1. (38)

Comparing this with the estimate of αt on the c1-dominated
phase side of the λ gives the estimated crossover exponent
φ1 = 1.3 ± 0.2, by Eq. (12).

Along the τ2 phase boundary the situation is simpler.
This phase boundary is between the empty phase and the
c2-dominated phase, and the free energy is continuous along
τ2. Since the free energy in the scaling limit is a constant in

the empty phase, it is also, by continuity, a constant along
the τ2 phase boundary in the scaling limit. Thus, one con-
cludes that αu = 2 along τ2, whereas the transverse exponent
on the empty phase side of λ is αt = 2 as well. This gives
the crossover exponent φ = 1 between the λ and τ2 phase
boundaries.

C. Finite-size effects

In the previous sections we have considered the phase
diagrams for L = 20. In this section we briefly consider finite-
size effects in our data. We do this only for the linked model;
finite-size effects in the unlinked model are smaller and phase
boundaries do not move with increasing L.

In Fig. 21(a) the concentrations 〈c1〉 are plotted along a
line segment as the λ phase boundary is crossed into the
c1-dominated phase in the linked model, for models of sizes
L = 8, 12, 16, and 20. The graphs show rapid convergence
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FIG. 20. Plotting γ = log(〈c1〉 − 〈c1〉|crit )/ log d (αc, α) as a
function of 1/ log d (αc, α) for the linked model along the trajectory
of the τ1 phase boundary, starting in the multicritical point. In this
graph −0.9 � α � −0.2.

toward a limiting curve with increasing L, particularly in the
c1-dominated phase. Finite-size effects are most pronounced
close to the critical point, and is seen in the slight upturn of
the plot in Fig. 18 when α approaches αc. We accommodated
for this by fitting a linear function to data, while discarding
data close to the critical point.

Figure 21(b) is a graph of the variance Var(c1) plotted
along a line segment from (0,5) to (5,0) crossing the τ1 phase
boundary, for L = 8, 12, 16, and 20. These curves all spike
sharply when τ1 is crossed when α ≈ 2.48. The heights of
the spikes increase by almost doubling as L increments by
4. Finite-size effects can be seen in the slight broadening at
the base of the spikes, and this broadening decreases with
increasing L.

The variance Var(c2) plotted along a vertical line from
(−2,−2) to (−2, 3) across the τ2 phase boundary is shown
in Fig. 21(c) for L = 8, 12, 16, and 20. For each L this shows
a spike roughly twice the height of the spikes in Fig. 21(b).
With increasing L the spikes move, towards the left, but with
decreasing increments. This shows that the location of the
τ2 phase boundary remains uncertain, but also that it should

converge to a limiting curve of first-order transitions along
which Var(c2) is divergent.

IV. CHARACTERIZING THE TRANSITIONS

The nature of transitions across phase boundaries in these
models can also be explored by defining and tracking order
parameters and metric observables as the system is taken
through a transition. Numerical estimates of order parame-
ters were obtained by sampling the models using a multiple
Markov chain metropolis algorithm [28,41,42] implement-
ing BFACF elementary moves (see Fig. 3) [26,27] on each
polygon. In our particular implementation we sampled along
50 Markov chains (performing 105 iterations along each se-
quence) along lines in the αβ plane. Apart from tracking
the lengths n1 and n2 of the polygons, these simulations also
collected data on the number of nearest neighbor contacts k1

and k2 in each polygon (these are self-contacts), as well as
the number of nearest neighbor contacts km between polygons
(these are mutual contacts).

Let wL(n1, n2; k1, k2, km) be the number of conformations
of the unlinked or linked model in a square of side-length
L, of lengths n1 and n2, respectively, with k1 self-contacts
in the first polygon, k2 in the second, and km mutual con-
tacts. The mean density of self-contacts of the first polygon is
defined by

〈
k1/L2

〉 =
∑

n1,n2
k1 ,k2 ,kM

(k1/L2) uL(n1, n2; k1, k2, kM ) eαn1 eβn2

∑
n1 ,n2

k1 ,k2 ,kM

uL(n1, n2; k1, k2, kM ) eαn1 eβn2
.

(39)

The densities 〈k2/L2〉 of self-contacts in the second
polygon, and 〈km/L2〉 of mutual contacts, are defined
similarly.

We sampled data on metric observables, namely, the mean-
square radius of gyration of the first polygon [a function of
(α, β )], 〈r2

1〉, and the corresponding quantity for the second
polygon, 〈r2

2〉. Moreover, we look at the mean distance or
separation between the centers-of-mass of the two polygons,
〈dcm〉.

In addition to these quantities, the correlations
Cor(k1, k2) = 〈k1k2〉 − 〈k1〉〈k2〉 (between self-contacts in

FIG. 21. (a) The concentration of the outer polygon in the linked model along a line segment with β = −2 crossing the λ phase boundary
in the c1-dominated phase, for system sizes L = 8, 12, 16, and 20. The location of the critical point is denoted by a bullet (b).
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FIG. 22. Across the τ and τ1 phase boundaries in the αβ plane. Graphs for the unlinked model are shown in panels (a–f) and for the linked
model are shown in panels (g–l). Consistent with the results in Figs. 10(a)–10(c) and 17(a)–17(c), these results show first-order transitions as
the τ and τ1 phase boundaries are crossed in the two models, respectively.

the polygons), and Cor(r2
1 , r2

2 ) = 〈r2
1 r2

2〉 − 〈r2
1〉〈r2

2〉 (between
the square radii of gyration of the two polygons) were
calculated.

In Fig. 22 we show thermodynamic and metric data esti-
mates along the line segment with endpoints (0,5) and (5,0)
in the phase diagram for the unlinked model (Fig. 10) and
the linked model (Fig. 17). This line crosses the τ phase
boundary in the unlinked model, and the τ1 phase boundary
in the linked model. The results for the unlinked model are
shown in Figs. 22(a)–22(f), while the results for the linked
model are shown in Figs. 22(g)–22(l).

The results in both models are consistent with a first-order
transition as the phase boundaries (τ or τ1, respectively) are
crossed. There are sharp discontinuities in the mean number
of self-contacts in both models, as well as in the metric quan-
tities. The correlations show sharp peaks at the critical points.
Figure 22(j) indicates that the outer polygon in the linked
model is inflated by the inner polygon in the c2-dominated
phase, and expands in the c1-dominated phase to compress
the inner polygon to a very small size.

In Fig. 23 the estimated mean quantities are plotted as the
linked model is taken through the τ2 phase boundary. The
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FIG. 23. Across the τ2 phase boundary in the αβ plane (linked model). Consistent with the results in Figs. 17(d)–17(f), these results show
a first-order phase transition with sharp peaks in the correlation functions as the phase is crossed.

results are consistent with those in Figs. 17(d)–17(f), showing
a strong first-order character as the inner polygon inflates the
outer polygon when the model is taken from the empty phase
into the c2-dominated phase in Fig. 16. The mean number of
self-contacts in the inner polygon changes discontinuously at
the phase boundary, as the mean-square radii of gyration of
both polygons change discontinuously.

In Fig. 24 we show changes in order parameters as the
λ1 (or λ2) phase boundary is crossed in the unlinked model,
and the similar changes as the λ boundary is crossed in the
linked model. Our results in the previous sections show that
these are continuous phase boundaries, and the results in
Fig. 24 are consistent with this. The mean density of self-
crossings in Fig. 24(a) (across the λ1 phase boundary), and
Fig. 24(g) (across the λ phase boundary) show very similar
behavior in the two models. Crossing these boundaries into
the c1-dominated phase causes the first polygon in the un-
linked model, and the outside polygon in the linked model,
to expand into the dense phase occupying almost all sites in
the confining square. The second polygon (in the unlinked
model) and the inside polygon (in the linked model) are in
both cases squeezed to minimal length by the expanding poly-
gon, and this is consistent with the metric data reported in
the figure. The mean distance between the centers-of-mass in
the unlinked model decreases from the mean distance in the
empty phase to a smaller distance as one polygon increases in
length, while in the linked model, the distance in the empty
phase is zero, but becomes positive when the outer polygon
expands into the c1-dominated phase with center-of-mass near
the center of the confining square, while the inner polygon has
almost minimal length and explores the inside of the square.
These observations are in contrast with the results seen in

Fig. 23, where a first-order transition is seen along the τ2 phase
boundary in the linked model.

V. CONCLUSIONS

We determined the phase diagrams of two square lattice
models of pairs of ring polymers in the dense phase. The
placements of the two polygons in a confining square were
chosen in two distinct topological ways, in one case they
were unlinked (or splittable) in the plane, and in the second
case, linked (or unsplittable) in the plane. The phase diagrams
include, in addition to an empty phase, a phase dominated
by the first polygon (it is dense inside the square), and a
phase dominated by the second polygon, and are shown in
Figs. 9 and 16. These phases are separated by critical curves
whose nature depends on the topology of the model. In the
unlinked model, there are two lines of continuous transitions
(λ1 and λ2) separating the empty phase from the two dense
phases, while the two dense phases are separated by a line
of first-order transitions (τ ). In contrast, the linked model
has two curves of first-order transitions (τ1 and τ2), where τ1

separates a phase in which the outer polygon is dense from a
phase in which the inner polygon is dense, and τ2 separates
the empty phase from the dense inner polygon phase. A line
of continuous transitions λ separates the empty phase from the
dense outer polygon phase.

In the case of both models we were able to determine
critical exponents along the critical curves. Along the curves
of first-order transition the exponents are given in Eqs. (19)
(for τ ), (32) (τ1), and (35) (τ2). In each case the result is con-
sistent with the expected value 2 − αs = 2 − α′

s = 1 reported
in Eq. (5). We were similarly able to estimate these exponents

064134-15
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FIG. 24. Across the λ1 (or λ2) and λ phase boundaries in the αβ plane. Graphs for the unlinked model are shown in (a–f), and for the
linked model are shown in (g–l). Consistent with the results in Figs. 8(a)–8(c) and 19(g)–19(i), these results show continuous transitions as
these phase boundaries are crossed in the two models, respectively.

along the lines of continuous transitions. The results are
shown in Table I.

The concentration gap associated with the first-order tran-
sitions may also be estimated. For example, for the critical
line τ in the unlinked model the free energy crossing τ is
given by Eq. (17). Taking derivatives on either side of τ and
subtracting to determine the gap gives Hτ | α=2.5 ≈ 1.95. In
the same way, by Eqs. (27) and (29), Hτ1 | α=2.5 ≈ 1.55 and
Hτ2 | α=−2.0 ≈ 0.70.

TABLE I. Estimates of 2 − αs and 2 − α′
s across phase boundaries.

Unlinked model Linked model

τ λ1 λ2 τ1 τ2 λ

2 − αs 1.003(3) 0 0 1.02(4) 1.06(12) 0
2 − α′

s 1.003(3) 1.55(3) 1.55(3) 1.02(4) 1.06(12) 1.57(6)
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TABLE II. Estimates of 2 − αt and 2 − αu between τ and λ

boundaries.

Unlinked model Linked model

τ -λ1 τ -λ2 τ1-λ τ2-λ

2 − αt 1.55(3) 1.55(3) 1.57(6) 0
2 − αu 1.55(3) 1.55(3) 1.17(7) 0
φ 1.00(4) 1.00(4) 1.3(2) 1

Multicritical scaling around the multicritical points was
more difficult to determine, in particular in the linked
model. Our estimates of the critical exponents are less se-
cure in the linked model. We show our best estimates in
Table II.

Finally, we note that exact enumeration methods may be
used to determine the partition functions in Eqs. (1) and (2) for
squares of side-length L = 20. The methods in Refs. [43,44]
seem particularly suited for a study like this. In the cubic
lattice such exact enumeration methods will be less effective,
and approximate enumeration methods, including the GAS
and GARM algorithms, will perform better. For example, in
Ref. [18] the GAS algorithm was used to approximately enu-
merate knotted polygons in a confining cube of dimensions
153.
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