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We investigate the concept of molecular-sized outward-swinging gate, which allows for entropy decrease in
an isolated system. The theoretical analysis, the Monte Carlo simulation, and the direct solution of governing
equations all suggest that under the condition of local nonchaoticity, the probability of particle crossing is
asymmetric. It is demonstrated by an experiment on a nanoporous membrane one-sidedly surface-grafted with
bendable organic chains. Remarkably, through the membrane, gas spontaneously and repeatedly flows from the
low-pressure side to the high-pressure side. While this phenomenon seems counterintuitive, it is compatible
with the principle of maximum entropy. The locally nonchaotic gate interrupts the probability distribution of
the local microstates, and imposes additional constraints on the global microstates, so that entropy reaches a
nonequilibrium maximum. Such a mechanism is fundamentally different from Maxwell’s demon and Feynman’s
ratchet, and is consistent with microscopic reversibility. It implies that useful work may be produced in a cycle
from a single thermal reservoir. A generalized form of the second law of thermodynamics is proposed.
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I. INTRODUCTION

In an ergodic and chaotic system, when the particle distri-
bution of an ideal gas is uniform, entropy (S) is maximized
[1]. However, a nonchaotic or nonergodic system may not
reach thermodynamic equilibrium [2–7]. A recent computer
simulation discovered that a locally nonchaotic energy barrier
could break the symmetry of the cross-influence of thermally
correlated thermodynamic driving forces [8].

In the current research, we investigate a locally nonchaotic
entropy barrier, as depicted in Fig. 1(a). In an isolated system,
two large containers, “+” and “–”, are filled with an ideal
gas. The containers are connected through a small nanopore
in the dividing wall. The system is initially at thermodynamic
equilibrium; that is, the gas distribution is uniform in the two
containers. There is a molecular-sized outward-swinging gate
at the “+” side (“outside”). The nanopore size and the gate
size are much smaller than the mean free path of the gas
molecules, so that the gas molecules interact with the gate
individually. The gate cannot cross the dividing wall; i.e., its
swinging motion is limited in container “+”. In the ideal-case
scenario, the gate is rigid and lightweight. There may be a
nondissipative attraction force (FG) between the gate and the
“door stopper” on the dividing wall, which tends to trap the
gate in a closed configuration. As will be discussed in Sec. II,
under the condition of local nonchaoticity, the overall crossing
ratio of the gate, κ = δ±/δ∓, does not equal to 1, where δ±
and δ∓ are the probabilities for the gas molecules to cross the
nanopore from container “–” to “+” and from container “+”
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to “–”, respectively. As a result, the steady-state gas molecular
density in container “+” is not the same as in container “–”.

The second law of thermodynamics states that entropy of
an isolated system cannot decrease [1]. Yet, when the isolated
system in Fig. 1(a) evolves from the uniform initial state to the
nonuniform steady state, the distribution of the gas molecules
spontaneously becomes nonequilibrium, and entropy is re-
duced. Below, in Secs. II–IV, we consider the fundamental
mechanism of the molecular-sized outward-swinging gate. In
Secs. V and VI, we experimentally demonstrate the concept
by using a nanoporous membrane one-sidedly surface-grafted
with bendable organic chains.

II. MICROSCOPIC REVERSIBILITY: WHY κ �= 1

In this section, we show how the overall crossing ratio of
the gate can be asymmetric (κ �= 1): While every particle tra-
jectory is time reversible, the probabilities of the microstates
associated with the forward process and the reverse process
are different. The critical factors include the local nonchaotic-
ity and the thermal motion of the gate.

A. Probability distribution of microstates

Figure 2(a) depicts the particle crossing event at an
outward-swinging gate. For the forward process from left to
right, the microstate of incident particle in container “–” is
denoted by �a, and the microstate of outgoing particle in
container “+” is denoted by �b. When the particle is at �a

and �b, the particle velocities are, respectively, denoted by
�va and �vb, and the microstates of the gate are, respectively,
denoted by �a and �b. For the reverse process from right
to left, •̄ indicates the reverse microstates. Compared with
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FIG. 1. (a) Schematic of an isolated system consisting of two large containers filled with an ideal gas. The containers are connected through
a small nanopore. A molecular-sized outward-swinging gate is at the side of container “+” (“outside”). (b) Schematic of the experimental setup.
In some tests, the untreated membrane between valves C1 and C2 is replaced by a nonpermeable solid film. The inset at the right-hand side
shows a magnified view of the dodecyl chains surface-grafted at the nanopore openings.

the forward microstate, the velocity direction of the reverse
microstate is inverted, with everything else being identical. It
is worth noting that �a and �b are only for the crossing cases;
if the particle is blocked by the gate, its microstates are not
registered.

In Fig. 1(a), the two gas containers are large, in which the
gas molecular motion is chaotic. The characteristic duration
of the particle-gate interaction event (ti) is much shorter than
the characteristic time for an outgoing particle to come back
to the gate (tr), where ti accounts for the time for the particle

FIG. 2. (a) Schematic of the particle crossing process. (b) The Monte Carlo (MC) simulation of a billiard-like particle interacting with
an outward-swinging gate. (c) The MC simulation result of the time profiles of n±/n∓. The moment of inertia of the gate (IG) is 1. The
steady-state n±/n∓ indicates the overall crossing ratio of the gate, κ . The three dotted curves are for the reference cases. The upper ruler of
the horizontal axis is for the multiparticle case (the blue dotted curve); the lower ruler of the horizontal axis is for the single-particle cases (all
the black curves). (d) The steady-state n±/n∓ (i.e., κ) as a function of the particle number (N̂). With multiple particles, the gate is reduced to
a chaotic trapdoor, so that κ decreases to 1. (e) The steady-state n±/n∓ (i.e., κ) as a function of the moment of inertia of the gate (IG), for the
single-particle setup. As IG becomes larger, the gate is increasingly heavy and converges to a stationary sidewall, so that κ decreases to 1.
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to enter and exit the gate zone, as well as the time for the
gate to return to equilibrium after the particle-gate collision.
In such a system, the microstate of the incident particle (�a)
is uncorrelated with the microstate of the gate (�a). If the
particle distribution is uniform, the ensembles of the incident
particles from right to left and from left to right are symmetric;
the characteristic interval between incident particles (ta) is the
same in containers “–” and “+”.

Like the nonequilibrium steady states of many other
nonchaotic or nonergodic systems [2–7], the overall nonuni-
formity in Fig. 1(a) is consistent with the microscopic
reversibility [9]. For each set of �a and �a in the forward
process in Fig. 2(a), there are a set of �̄b and �̄b of the
reverse process. In either Hamiltonian dynamics or stochastic
thermodynamics, regardless of ergodicity and chaoticity, time
reversibility ensures microscopic reversibility [10,11]:

{�b�b|�a�a} = {�̄a�̄a|�̄b�̄b}, (1)

where {•| } is the conditional probability of • given . In a
chaotic system, Eq. (1) indicates that the probability of any
process is symmetric in forward and reverse directions [10],
so that for Smoluchowski’s trapdoor, κ = 1 [12,13].

In Fig. 1(a), however, the gate is locally nonchaotic,
specifically ta � ti. Under this condition, the particle-gate
interaction events are independent of each other. Since only a
subset of the incident particles can cross the gate (�a�a in the
forward process, �̄b�̄b in the reverse process) and the others
are blocked, the overall crossing ratio of the gate should be
calculated as

κ = δ±
δ∓

= ∫{�b�b|�a�a} · {�a} · {�a}d�

∫{�̄a�̄a|�̄b�̄b} · {�̄b} · {�̄b}d�
, (2)

where {•} is the probability of microstate •, and � indicates
the phase space. In the current system, {�̄b} = {�b}, and
{�̄b} = {�b}.

Without extensive particle collision at the gate, in Eq. (2),
there is no mechanism for the system to reach thermody-
namic equilibrium. Firstly, in the forward process from �a

to �b, upon the nonchaotic particle-gate interaction, vb is
determined by the following parameters: va, the length (LG)
and the moment of inertia (IG) of the gate, the angular ve-
locity (ωa) and the swinging angle (φa) of the gate at �a,
the collision location on the gate (Lc), the particle mass (mP)
and the particle size (DP), and the incident angle of the
particle (ψa). Based on dimensional analysis, we have vb

va
=

f̂ ( ωaLG
va

,
3IG/L2

G
mP

, LC
LG

, DP
LG

, φa, ψa ), where f̂ represents a certain
function. When the thermal motion of the gate is significant
(i.e., ωa �= 0), vb is nonlinear to va, so that va and vb do
not have the same probability distribution; i.e., {�b} �= {�a},
which leads to {�̄b} �= {�a}. That is, although the ensemble
of incident particle is symmetric in both directions, the prob-
ability of crossing/blocking can be asymmetric.

Secondly, if there is an attraction force (FG) between the
gate and the “door stopper” on the dividing wall, the gate
would be self-closing. In other words, �a tends to be a closed
configuration. Notice that when DP/LG is nontrivial, �b must
be an open configuration, so is �̄b. With FG, because the
closed gate configuration is energetically favorable but the

open configuration is energetically unfavorable, {�̄b} is un-
equal to {�a}.

Consequently, since the probability distributions of �̄b and
�̄b mismatch with those of �a and �a, as the system param-
eters (FG, IG, LG, mP, DP) may be arbitrarily chosen, Eq. (2)
suggests that in general, κ �= 1.

In the Appendix A 1 a, by directly solving the governing
equations of particle-gate collision (for FG = 0), we calculate
the probability distributions of the crossing cases for the ve-
locity of the particle, the angular coordinate of the particle,
and the angular velocity of the gate. The result confirms that
when IG is not too large, {�a}{�a} �= {�̄b}{�̄b}.

In Fig. 1(a), while in the interior of the containers the
particle behavior is regular, the gate is a nonchaotic compo-
nent. It changes the boundary condition. These factors are
not considered in the classical Boltzmann equation and the
H-theorem [1].

B. Monte Carlo simulation

Figure 2(b) shows a Monte Carlo (MC) simulation of a
billiard-like particle. The details are given in the Appendix
A 2; the computer program is available in the Supplemental
Material [14]. The particle randomly moves in a container.
The container is separated into two sections by a dividing
wall. The upper and the lower container walls and the dividing
wall are diffusive. The left and the right borders are open,
and use periodic boundary condition. The gate is a specular
line. Its swinging motion is limited to the “+” side by a “door
stopper” at point C. We compare the total times the particle
crosses the gate zone from right to left (n∓) and from left to
right (n±). The steady-state n±/n∓ ratio indicates the overall
crossing ratio of the gate, κ .

Figure 2(c) gives the numerical result of the time profiles
of n±/n∓, for IG = 1. The three dotted lines are the reference
curves. In one reference case, the gate is removed, so that
the opening in the dividing wall (OC) remains unblocked; it
represents the classical process of ideal-gas diffusion across a
small pore, as discussed by Pauli [15]. In another reference
case, the gate is not obstructed by point C, so that it can
freely swing at both sides of the dividing wall. In the third
reference case, the gate is outward swinging, while there are
100 particles in the container; it is similar to the classical
Smoluchowski’s trapdoor [12,13], for which the gate motion
is chaotic (i.e., ta � ti). All the reference curves converge to
1, as they should. It confirms that the average particle arrival
rates are equal at the two sides, and the local nonchaociticy is
critical. The solid curves are for three randomized simulations
of the outward-swinging gate with a single particle, for which
the gate motion is nonchaotic (i.e., ta � ti). They use the same
parameter setting as the single-particle reference case. For all
of them, the steady-state n±/n∓ → 1.53, suggesting that the
crossing ratio is asymmetric.

In Fig. 2(d), the particle number (N̂) is varied, with every-
thing else being the same as the solid curves in Fig. 2(c). As
more particles are in the system, the average arrival time (ta)
decreases. When N̂ is large, ta � ti, i.e., the local nonchaotic-
ity is lost. Under this condition, the system is reduced to the
classical chaotic case of Smoluchowski’s trapdoor, so that the
steady-state n±/n∓ decreases to 1, consistent with the study
in Refs. [12,13].
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In Fig. 2(e), the gate mass is varied, with everything else
being the same as the solid curves in Fig. 2(c). The trend
is clear that when IG increases, the steady-state n±/n∓ is
reduced to 1, as the gate converges to a stationary sidewall.
It is consistent with the numerical result in the Appendix
A 1 a, as well as the previous dimensional analysis that vb is
nonlinear to va only when ωa �= 0. When IG is relatively small,
the steady-state n±/n∓ (i.e., κ) is much greater than 1.

In the Appendix A 1 b, we solve the particle-gate collision
equations to directly assess the nominal crossing ratio of the
gate (κo). The computed IG − κo relationship is compatible
with Fig. 2(e). Moreover, all the simulation cases converged
within ∼3 × 109 time steps; with the same parameter setting,
all the randomized simulations had similar steady-state κ;
since at the diffusive walls the reflected particle/gate velocity
was random, the steady-state κ had little history dependence.

In this MC simulation and the Appendix A 1 b, there is no
long-range force on the gate, that is, FG = 0. When IG is small,
the unbalanced crossing ratio (κ �= 1) should be attributed to
the microstate of the particle, i.e., {�̄b} �= {�a}. The effect of
FG on {�a} and {�̄b} will be demonstrated by the molecular
dynamics (MD) simulation in Sec. VII below.

The outward-swinging gate is a type of spontaneously
nonequilibrium dimension discussed in Ref. [8]. The above
analysis of microscopic reversibility accounts for the entire
phase space (�). The effects of the microstates of the gate and
the particle are both taken into consideration. The self-closing
force is optional, i.e., FG can be 0. The multiparticle reference
curve in Fig. 2(c) shows that when ta � ti, Fig. 2(a) is reduced
to a classical trapdoor, in agreement with the previous study
on the second law of thermodynamics [12,13]. In Sec. IV be-
low, we will discuss the consistency between the asymmetric
crossing ratio (κ �= 1) and the principle of maximum entropy.

In the future, a parameterized study needs to be performed
to further examine the effects of FG, mP, and DP/LG. To an-
alyze the time-average properties, the characteristics of small
systems should be taken into account, e.g., Ref. [16].

III. DIFFERENCE FROM CLASSICAL MODELS

A. Maxwell’s demon and the Szilárd engine

The molecular-sized outward-swinging gate is not
Maxwell’s demon or its variant, e.g., the Szilárd engine [17].
When a Maxwell’s demon guards an opening, its microstate
depends on the microstate of the incident particle (�a) [18],
which involves the physical nature of information [19–21].
On the contrary, in Figs. 1(a) and 2(a), there is no active
information gathering or processing. The microstate of the
gate (�a) is uncorrelated with the microstate of the incident
particle (�a). The working mechanism is associated with the
incomplete thermalization and the probability distributions
of microstates. The gas containers in Fig. 1(a) are large and
chaotic.

B. Feynman’s ratchet and Smoluchowski’s trapdoor

Figure 1(a) has fundamental difference from Feynman’s
ratchet [22] and Smoluchowski’s trapdoor [12,13]. These
classical systems do not have nonchaotic components. Upon
reaching thermodynamic equilibrium, they cannot sponta-

neously deviate from it, since the thermal motions of all the
parts are balanced. For instance, in Feynman’s model, the
probability for the ratchet to overcome the energy barrier of
the pawl (
Ep) is dominated by e−β·
Ep , where β = 1/kBT ,
kB is the Boltzmann constant, and T is temperature. The same
Boltzmann factor also rules the Brownian movement of the
vanes.

Conversely, in Fig. 1(a), the local nonchaoticity of the gate
motion is essential. It allows the system to reach a nonequi-
librium steady state. For example, consider a self-closing gate
with FG. In the forward process, under the condition of lo-
cal nonchaoticity (ta � ti), the probability for the gate to be
pushed open by a gas particle is governed by e−β(
EG−KP ),
where 
EG is the energy barrier caused by FG, and KP is
the kinetic energy from the incident particle. In the reverse
process, the probability for the gate to spontaneously open
is governed by e−β·
EG . Hence, when the gate is closed, the
probabilities of crossing are unequal in the two directions. If
the gate is at an open configuration as a particle arrives, the
particle may pass through it without collision; such “leakage”
events reduce but do not eliminate the overall asymmetry in κ .
In comparison, for Smoluchowski’s trapdoor, as the particle
arrival rate is relatively high and the local nonchaoticity con-
dition is broken (i.e., ta � ti), the mechanism of e−β(
EG−KP )

is irrelevant [12,13].
Unlike Feynman’s ratchet, the gate in Fig. 1(a) does not

rely on the fluctuation of any potential field (e.g., chemical
potential), nor does it manipulate any potential field by chang-
ing pressure or volume. The gate is placed at the boundary
of the large gas containers, and may be alternately exposed
and covered by a frictionless sliding door. Thus, the system
can shift between the nonequilibrium steady state and the
equilibrium state.

C. Osmotic pressure

In Fig. 1(a), the pressure difference across the gate (
P) is
not an osmotic pressure. An osmosis membrane is symmetric.
It selectively obstructs particles according to their sizes. In
osmosis, the crossing ratio for each type of particles is 1; the
interaction among particles is not essential; for each crossing
event, the probability distributions of the incident particle
microstate and the outgoing particle microstate are the same;
to measure 
P, the pressure sensors in the two containers
must be exposed to different gaseous/liquid compositions;
most importantly, the system cannot spontaneously deviate
from thermodynamic equilibrium [23].

IV. NONEQUILIBRIUM MAXIMUM OF ENTROPY

In this section, we show that κ �= 1 is compatible with the
principle of maximum entropy, while S may decrease in an
isolated system.

As a first-order analysis, consider Fig. 1(a) as a classical
system with discrete microstates. For a canonical ensemble,
the nonchaotic particle-gate interaction imposes a set of con-
straints on the probability of system microstates

ρm

ρn
= κmn, (3)
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where ρ indicates probability, subscripts m and n indicate sys-
tem microstates (m = 1, 2, 3 . . . and n = m + 1, m + 2 . . .),
κmn = κNmn is the probability ratio, and Nmn is the excess
number of gas molecules in container “+”. That is, compared
to microstate n, if microstate m has Nmn more gas molecules
in container “+”, ρm would be different from ρn by a factor of
κNmn . It can be viewed from the perspective of the equivalent
potential difference (
Ê ). In terms of the distribution of the
particles, the gate in the locally nonchaotic system [Fig. 1(a)]
has the same effect as 
Ê = −kBT · lnκ between containers
“–” and “+” in a fully chaotic system; for the latter, it can
be seen that ρm

ρn
= exp(−Nmn
Ê

kBT ) = κNmn . In Fig. 1(a), if in
addition to the gate, there is also a potential difference (
E )
between the two containers, κmn should be modified as κ̃Nmn ,
where κ̃ = κ · e−β·
E .

At thermodynamic equilibrium, entropy S =
−kB

∑
i ρilnρi reaches the maximum value (Seq) with two

constraints on ρi,
∑

i ρi = 1 and
∑

i ρiEi = U [1], where 


indicates summation for microstates (i = 1, 2, 3 . . .), Ei and
ρi are, respectively, the energy and the probability of the ith
microstate, and U is the internal energy. With Eq. (3), the
Lagrangian becomes L = −kB

∑
i ρilnρi + ∨

λ(
∑

i ρi − 1) +
λ̂(

∑
i ρiEi − U ) + ∑

m,n[λmn(ρm − κmnρn)], where
∨
λ, λ̂, and

λmn are the Lagrange multipliers. To maximize S [1],

∂L
∂ρi

= 0 (4)

leads to ρi = exp[ 1
kB

(ς0 + ςi )], where ς0 = −kB + ∨
λ + λ̂Ei

and ςi = ∑
n>i λin − ∑

m<i κmiλmi. In accordance with∑
i ρi = 1, we define Z∗ = ∑

i exp[ 1
kB

(λ̂U + ςi )] =
exp[− 1

kB
(−kB + ∨

λ)] as the nonequilibrium parti-

tion function, which gives
∨
λ = kBlnZ∗ + kB. Thus,

ρi = 1
Z∗ exp[ 1

kB
(λ̂U + ςi )] and S = −kB

∑
i ρilnρi =

−λ̂U−∑
i ρiςi + kBlnZ∗. Because dS

dU = 1
T , λ̂ = − 1

T .
Substitution of the expression of ρi into Eq. (3) suggests
that ςi = kBN+

i lnκ , where N+
i is the number of gas molecules

in container “+” of the ith microstate. Consequently,

Z∗ = e−βU
∑

i

κN+
i , (5)

ρi = 1

Z̃∗ κN+
i , (6)

S = U

T
+ kBlnZ∗ − kBlnκ

Z̃∗
∑

i

N+
i κN+

i , (7)

where Z̃∗ = Z∗eβU = ∑
i κ

N+
i . If different microstates may

have different Ei, through a similar derivation procedure,
we have Z∗ = ∑

i e−βEiκN+
i , ρi = 1

Z∗ e−βEiκN+
i , and S = U

T +
kBlnZ∗ − kBlnκ

Z∗
∑

i e−βEi N+
i κN+

i .
According to Eq. (7), when κ �= 1, as S is maximized by

Eq. (4), it reaches a nonequilibrium maximum (Sne), which
is less than Seq. At thermodynamic equilibrium, the gas pres-
sures in containers “–” and “+” are the same, denoted by P0.
With the molecular-sized outward-swinging gate, the steady-
state pressure ratio P+/P− = κ , where P− and P+ are the
gas pressures in containers “–” and “+”, respectively. Be-
cause P− + P+ = 2P0, we have P− = 2

1+κ
P0 and P+ = 2κ

1+κ
P0.

Therefore, N− = 2
1+κ

N and N+ = 2κ
1+κ

N , where N = P0V0
kBT , V0

is the container volume, and N− and N+ are the numbers of gas
molecules in containers “–” and “+”, respectively. From the
equation of entropy of ideal gas [1], the decrease in entropy
(
S = Sne − Seq) can be calculated as


S =
(

N−kBln
eV0

N−
+ N+kBln

eV0

N+

)
−

(
2 · NkBln

eV0

N

)

= −2NkB f̃ , (8)

where f̃ = ln( 2
κ+1κ

κ
κ+1 ). With a constant U , the associated in-

crease in Helmholtz free energy is 
F = −T 
S = 2NkBT f̃ .
If dκ = κ−1 is small, 
S ≈ −NkB

4 dκ2 and 
F ≈ NkBT
4 dκ2.

With the molecular-sized outward-swinging gate, S = Sne;
if the containers are connected through a regular open chan-
nel, S = Seq. Hence, as the connection between the two
containers is changed from a regular channel to a molecular-
sized outward-swinging gate, S decreases by 
S from Seq

(the global maximum) to Sne (a local maximum), without an
energetic penalty. Before and after the transition, S remains
maximized, since Eq. (4) is always satisfied. The decrease of
S is caused by the reduction in the maximum possible entropy
of steady state (SQ), as the gate influences the boundary con-
dition of the gas containers.

The internal gas diffusion does not cause an overall heat
exchange with the environment, and the internal energy is
constant. The result of the above analysis is also applicable
to a microcanonical ensemble. Equation (8) can be used to
calculate 
S caused by the diffusive gas transfer either in an
adiabatic process [e.g., Fig. 1(a)] or in an isothermal process
(e.g., the experiment discussed below).

V. EXPERIMENTAL DESIGN

One method to experimentally investigate molecular-sized
gates is to surface-graft molecular chains at nanopore open-
ings [e.g., [24,25]]. As the carbon-carbon or carbon-nitrogen
bonds rotate, an organic chain can be bent, e.g., Refs. [26,27].
The van der Waals attraction force between the substrate and
the grafted chains may serve as FG.

Figures 1(b) and 3 show the experimental setup. The de-
tails of the testing procedure are given in the Appendix A 3.
We used lauric aldehyde (LA) for the surface grafting. The
molecular structure of LA is depicted in Fig. 4(a). It has 12
carbon atoms, with the molecular mass (mc) ∼184 and the
contour length ∼14 Å. It is somewhat similar to the bendable
organic chains studied by Kim et al. [28], but has different end
groups. One end is a methyl group (–CH3), which is nonpolar
[29]; the other end is an aldehyde group (–CHO), which is
reactive to amide linkage [30], as illustrated in Fig. 4(c).

Grafting of dodecyl chains was performed on the front
surface of a 10-μm-thick nanoporous polyamide membrane,
as shown in Figs. 4(d) and 4(e); the back surface of the
membrane was untreated. The nanopore size was below 1
nm. The grafted side was toward container 2. The gas phase
was pentafluoroiodoethane (C2F5I) [Fig. 4(b)]. Its molecular
mass (mg) is ∼246 and the molecular size is ∼6 Å. The gas
pressures in container 1 (P1) and container 2 (P2) were contin-
uously monitored by two pressure sensors, respectively. There
were three valved channels between the two gas containers: a
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FIG. 3. The gas-pressure measurement system (upper left), the main system body (right), and a polyamide membrane mounted on a
compound o-ring (bottom left). The letters in the photo of the system body indicate the vacuum valves. The system body is placed in a QL
model-30GCE box oven.

FIG. 4. Schematics of (a) a lauric aldehyde (LA) molecule and
(b) a pentafluoroiodoethane (C2F5I) gas molecule. (c) The aldehyde
group (–COH) can react with an amide linkage. Thus, dodecyl chains
can be grafted on a polyamide surface. (d) Top view and (e) a
schematic of the cross section of a polyamide membrane mounted
on a compound o-ring.

regular open hose between valves A1 and A2, a one-sidedly
surface-treated membrane between valves B1 and B2, and an
untreated membrane (or a nonpermeable solid film) between
valves C1 and C2.

The tests were conducted at ambient temperature ∼22 ◦C.
Valves A1, A2, B1, and B2 were initially open, and valves P,
G, C1, and C2 remained closed. The initial P1 and P2 were
∼0.8 Torr. At such a pressure, the average spacing among gas
molecules was ∼30 nm, much larger than the chain length.
Since the effective permeability of the open hose between
valves A1 and A2 was higher than the membrane permeability
by many orders of magnitude, the initial pressure difference
measured by the two pressure sensors (
P = P2 − P1) was
zero.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Initially, 
P ≈ 0. We closed valves A1 and A2, leav-
ing only valves B1 and B2 open. Figure 5(a) shows that
spontaneously, a pressure difference was developed across
the one-sidedly surface-treated membrane. In ∼9 min, 
P
reached ∼1.2 mTorr. It was positive, indicating that P2 > P1;
that is, gas flew from the low-pressure side (container 1) to
the high-pressure side (container 2), until the steady state
was reached. The effective gas permeability, J̇/(P1 − P2), was
negative, where J̇ is the average gas flow rate [31]. After 
P
has stabilized for ∼5 min, valves A1 and A2 were reopened.
The pressure difference instantaneously decreased to zero.
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FIG. 5. (a) Time profiles of the pressure difference (
P = P2 − P1). The surface-grafted side faces container 2. The black curves are for
the one-sidedly surface-grafted membrane; the red curve is for the untreated membrane; the gray curve is for the nonpermeable solid film. The
two valves across the membrane/film remain open; valves A1 and A2 are closed and opened repeatedly; all the other valves remain shut. The
gray arrows indicate that valves A1 and A2 are closed; the black arrows indicate that valves A1 and A2 are reopened. (b) The initial 
P has
no influence on the steady-state 
P: 
P is first adjusted to about −2, 0, or 2 mTorr; with valves B1 and B2 being open and all the other valves
being closed, 
P eventually converges to the same steady state as in (a). The surface-grafted side faces container 2. (c) Similar to (a), while
the surface-grafted side faces container 1. The red and the gray curves are the same as in (a). (d) Similar to (b), while the surface-grafted side
faces container 1. (e) When the initial gas pressure (P1 and P2) changes from ∼0.4 Torr to ∼1.6 Torr, the steady-state 
P increases nearly
proportionally. Left: typical time profiles of 
P; right: the steady-state 
P as a function of the initial gas pressure. (f) Associated with the
development of 
P (left), P2 increases by ∼
P/2 and P1 decreases by ∼
P/2 (right). The surface-treated side faces container 2.

As valves A1 and A2 were closed and opened again, the
increase and decrease of 
P were repeatedly observed. If
the membrane was flipped and the surface-grafted side faced
container 1, a similar 
P profile was measured, except that

P = P2 − P1 became negative [Fig. 5(c)]. The slight differ-
ence between the steady-state 
P in Figs. 5(a) and 5(c) was
due to data scatter. The steady-state 
P was stable for more
than 12 h (Fig. 6).

The container volume (V0) was about 710 cm3. With P1 and
P2 being ∼0.8 Torr, according to the ideal-gas law [1], the

amount of gas in each container was ∼3.1 × 10–5 mol. Upon
reaching the steady-state 
P, approximately 2.3 × 10–8 mol
gas has transferred across the membrane. Equation (8) sug-
gests that 
S ≈ −1.6 × 10−10 J/K and 
F ≈ 4.8 × 10−8 J.

If valves C1 and C2 were open and all the other
valves were shut, 
P was nearly zero [the red curve
in Fig. 5(a)]. That is, the gas pressure across an un-
treated symmetric membrane was balanced, as it should
be. If we replaced the untreated membrane between valves
C1 and C2 by a nonpermeable solid film, the change
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FIG. 6. Long-time measurement of the gas pressure difference
(
P). The surface treatment and the testing procedures were similar
with those of Fig. 5(a). The gray arrow indicates that valves A1 and
A2 are closed.

in 
P was also trivial over time [the gray curve in
Fig. 5(a)]. Only when the two containers were separated by
a one-sidedly surface-treated membrane, could P1 and P2

be different.
The sign of the steady-state 
P followed the membrane di-

rection [Figs. 5(a) and 5(c)]. Figures 5(b), 5(d), and 5(e) show
that the steady-state 
P is independent of the initial 
P, and
proportional to P1 and P2. Associated with the development
of 
P, the gas pressure at the surface-grafted side increased
by ∼
P/2, and the gas pressure at the back side decreased
by ∼
P/2 [Fig. 5(f)], indicating a mass transfer across the
membrane. The pressure sensors were ∼90 cm away from the
membrane (Fig. 3), ensuring that the measured 
P was not a
local phenomenon. The container was ∼710 cm3 in volume,
in which the effect of gas adsorption and desorption of the
1.3 cm2 membrane was negligible (Fig. 7). If a dodecane layer
was not chemically bonded to the membrane but physically
adsorbed, no 
P could be detected [Fig. 8(a)]; likewise, if
the grafted side of the surface-treated membrane was physi-
cally attached to an untreated membrane, the steady-state 
P
remained similar [Fig. 8(b)], demonstrating that 
P must be
attributed to the covalent bonding between the grafted chains
and the membrane surface, i.e., the gate-like chain behavior.
These observations suggest that the system steady state was
dominated by the overall crossing ratio of the membrane (κ̄),
which determines the final P2/P1 ratio.

VII. OVERALL CROSSING RATIO OF THE MEMBRANE

We used C2F5I as the gas phase, because of its large mg.
In general, the gas particles must be sufficiently heavy to
overcome the organic chains (see Appendix A 3 j).

If all the nanopore openings were perfectly grafted and all
the dodecyl chains were perfect self-closing gates, regardless
of the probability for a gas particle to push open a chain
(χ ), the steady-state P2/P1 ratio, κ̄ , would be infinity. In the
experiment, however, κ̄ is finite. It should be attributed to the
“leakage” of the open pores; i.e., not all the nanopores are
obstructed by the organic chains. Firstly, a certain portion of
the grafted chains are randomly in the straight configuration
normal to the membrane surface [see Fig. 9(a)]. Secondly,
while the contour chain length is ∼1.4 nm, the average end-
to-end distance is shorter, which may not be sufficient to
cover the largest pores. Thirdly, to minimize the membrane
deformation, the surface treatment temperature is relatively
low and the treatment time is relatively short, and the amount
of the LA solution is small; consequently, not all the amide
linkages are end-capped.

With the percentage of the effectively covered pores being
denoted by ξ , κ̄ may be calculated as 1 + ξχ

1−ξ
. The rotational

barrier of carbon-carbon bond, EC, is on the scale of 104 J/mol
[32]. At room temperature, the associated Boltzmann factor is
δ0 = exp(− EC

RT ) ≈ 1.8%, where R is the gas constant. When
a gas particle impacts a chain, since the momentum along
the chain backbone direction does not directly contribute to
the chain rotation, as a first-order approximation, χ is δ

3/2
0 ≈

0.24%. According to the experimental data in Fig. 5(a), κ̄ =
P2/P1 ≈ 1 + 0.16%. When ∼40% of the nanopore openings
are effectively gated (i.e., ξ ≈ 0.4), 1 + ξχ

1−ξ
is close to the

measured κ̄ .
The above analysis of χ ≈ 0.24% is qualitatively in agree-

ment with our MD simulation, as detailed in the Appendix
A 4. A carbon nanotube (CNT) was employed as an analog
to a micropore, at one end of which a dodecyl chain was
covalently bonded. The gas particle was a mercury (Hg) atom,
which collided with the dodecyl chain from either inside or
outside of the CNT.

The MD simulation also gives the probability distribution
of the tilting angle (θG) of the equilibrium state of the grafted

FIG. 7. The pressure difference (
P) across a trilayer membrane remains near zero. The trilayer sample is depicted by the inset at the
right-hand side. It has the same front and back surfaces as a one-sidedly surface-treated membrane, but the middle layer is nonpermeable and
therefore, no gas transport can take place. The testing result confirms that the effect of the gas adsorption and desorption of the membrane is
negligible. The gray arrow indicates that valves A1 and A2 are closed; the black arrow indicates that valves A1 and A2 are reopened.
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FIG. 8. The pressure difference (
P) was caused by the gate-like chain behavior. (a) A dodecane layer is not chemically grafted, but
physically adsorbed on the membrane surface through solvent deposition, as depicted by the inset in the middle. No 
P can be detected,
showing that without the covalent bonding with the membrane surface, the organic chains do not drive the system away from thermodynamic
equilibrium. (b) Across an asymmetric bilayer sample, the steady-state 
P is similar with that of the one-sidedly surface-grafted membrane;
across a symmetric bilayer sample, 
P remains nearly zero. The gray arrows indicate that valves A1 and A2 are closed; the black arrows
indicate that valves A1 and A2 are reopened.

chain [Fig. 9(a)]. We randomly generated 100 chain config-
urations. Due to the van der Waals force between the CNT
and the chain (FG), the average θG is only 25.6◦; that is, the
chain tends to be self-closed, causing {�̄b} �= {�a}. Under
this condition, when a gas particle (a mercury atom) moves
upwards inside the CNT, it may push open the chain and
cross the opening [Fig. 4(b); when the gas particle moves
downwards to the CNT, it may push close the chain and be
blocked [Fig. 4(c)]. Figure 9(d) shows the statistical result

of the probability of crossing (δcr) for the 100 random chain
configurations. For all the initial gas-particle velocities (v0)
under investigation, δcr is always greater in the forward pro-
cess than in the reverse process. Thus, the overall crossing
ratio is asymmetric (i.e., κ �= 1).

There are other factors that also affect κ̄ . The membrane-
chain attraction (FG) increases the energy barrier of chain
opening. The pore geometry, the collision mode, and the gas
particle structure influence the dynamics of the gas-chain

FIG. 9. (a) Molecular dynamics (MD) simulation result of the probability distribution of the tilting angle (θG), between the end surface of
the carbon nanotube (CNT) and the end-to-end line of the covalently bonded dodecyl chain. The chain ends are defined as the centers of the
first and the last carbon atoms. Altogether 100 equilibrium configurations were generated, among which 11 chains congested the CNT (i.e.,
θG < 0) and are not included in this chart. (b) Side view of a mercury (Hg) atom exiting the CNT: before (left), during (middle), and after
(right) the Hg-chain collision. The Hg atom moves upwards. (c) A Hg atom is blocked by the chain and cannot enter the CNT: before (left),
during (middle), and after (right) the collision. The Hg atom initially moves downwards. (d) The probability of crossing (δcr) as a function of
the initial Hg velocity (v0), for the forward and the reverse processes. The details of the MD simulation are given in the Appendix A 4.
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interaction. Reducing EC or raising ξ may help to increase

P. For instance, the rotational barrier of siloxane linkage
is only ∼8 meV [33], so that χ of polysiloxane tends to be
large. The recent study in molecular engineering may offer
other low-barrier mechanisms of gate motion [34,35], such
as interlocked molecular rings. To enhance ξ , the membrane
should be compatible with higher-temperature and longer-
time surface treatment. Probably more importantly, the pore
size and the pore shape must be uniform. In future study, the
statistical fluctuation, the pore coverage ratio, and the pressure
and temperature effects need to be examined in detail.

The experiment was performed at a constant temperature
without thermal insulation, consistent with the canonical en-
semble in the theoretical analysis in Sec. IV. As the internal
energy of the gas phase remains unchanged, the diffusive
gas transfer does not cause an overall heat exchange with
the environment. Hence, the isothermal process is also adia-
batic, corresponding to the isolated configuration in Fig. 1(a).
The asymmetric κ̄ raises an interesting question: Whether
useful work can be produced in a cycle by absorbing heat
from a single thermal reservoir (see the discussion in the
Appendix A 5).

VIII. GENERALIZED FORM OF THE SECOND LAW OF
THERMODYNAMICS

Conventionally, the second law of thermodynamics can be
expressed in a number of equivalent forms [1]. The entropy
statement claims that in an isolated system, entropy cannot
decrease. The Kelvin-Planck statement claims that no useful
work can be produced in a cycle from a single heat reservoir.

With arbitrary chaoticity and ergodicity, in accordance with
the discussion in Sec. IV, the second law of thermodynamics
may be generalized as follows: In an isolated system, entropy
(S) cannot evolve away from the maximum possible value of
steady state (SQ), i.e.,

S → SQ. (9)

In other words, in an isolated system, |S − SQ| can never
increase; that is, entropy always has the tendency to converge
toward SQ, where SQ is determined by the principle of max-
imum entropy (e.g., Eq. (4)). This statement is based on the
understanding that probability can be measured by entropy.
It reflects the fundamental concept that a state of a higher
probability is more probable to occur.

The general form [Eq. (9)] is broader than the classical
entropy statement. They are equivalent to each other if SQ is
equal to the maximum possible entropy of the system, i.e.,
the equilibrium maximum (Seq). However, the general form
allows that SQ can be a nonequilibrium maximum (Sne), which
is less than Seq. While S always tends to be maximized [in
the sense that the steady state is governed by Eq. (4)], for a
nonchaotic or nonergodic system, a spontaneously nonequi-
librium dimension may impose additional constraints on ρi.
Thus, SQ can be reduced without an energetic penalty, e.g.,
from Seq to Sne when the boundary condition is changed by
a molecular-sized outward-swinging gate. In an isolated sys-
tem, if initially S > SQ, entropy would decrease.

IX. CONCLUDING REMARKS

In the current research, we investigate the concept of
molecular-sized outward-swinging gate, through theoreti-
cal analysis (Secs. II A and IV), Monte Carlo simulation
(Sec. II B), directly solving the governing equations of
particle-gate collision (Appendix A 1 b), and experiment
(Secs. V and VI). All the results consistently indicate that
under the condition of local nonchaoticity (ta � ti), the proba-
bilities of particle crossing are unequal in the forward and the
reverse directions.

The experiment was performed by using a nanoporous
polyamide membrane one-sidedly surface-grafted with do-
decyl chains. The membrane was placed in between two
large containers filled with pentafluoroiodoethane gas. Re-
markably, a pressure difference was repeatedly developed
across the membrane, as the gas spontaneously flew from the
low-pressure side to the high-pressure side. That is, the gas
permeability of the membrane was asymmetric, and could be
effectively negative.

The gate is a locally nonchaotic entropy barrier, which
is a type of spontaneously nonequilibrium dimension [8]. It
interrupts the probability distribution of the local microstates,
and imposes additional constraints on the global microstates.
Thus, entropy reaches a nonequilibrium maximum, less than
the equilibrium maximum. It is compatible with microscopic
reversibility, and is fundamentally different from Maxwell’s
demon, Feynman’s ratchet, Smoluchowski’s trapdoor, and os-
mosis. Essentially, the gate changes the boundary condition of
the gas containers, so that the maximum possible entropy of
steady state (SQ) is reduced. Such a system can shift from the
equilibrium state to the nonequilibrium steady state, causing
an entropy decrease without an energetic penalty; e.g., entropy
can decrease in an isolated system. It implies that useful
work may be produced in a cycle by absorbing heat from a
single thermal reservoir. To circumvent the contradiction to
the conventional theory, the second law of thermodynamics
may be generalized as Eq. (9): In an isolated system, entropy
cannot evolve away from SQ.

APPENDIX

1. Analyses of particle-gate interaction

a. Probability distributions of microstates

Consider the two-dimensional system depicted in
Fig. 10(a). A billiard-like particle impacts a gate with
the incident velocity of �va. The velocity of the outgoing
particle is �vb. The setup is scalable; an example of the unit
system can be based on g/mole, Å, fs, and K. The gate is a
rigid specular line, with the length (LG) of 10; temperature
(T ) is set to 1000; the particle is a point mass of 1; the
moment of inertia of the gate (IG) varies in a broad range. The
gate rotates freely around point O. The particle-gate collision
is elastic and friction free. No long-range force exists.

The radius of the dashed-dotted circle in Fig. 10(a) is 10,
the same as the gate size. Initially, the particle is placed on
the left-hand side of the circle with given va, θ , ψ , ωa, and
φ, where θ is the angular coordinate of the particle, ψ is the
direction of the particle velocity, ωa is the angular velocity of
the gate, and φ is the swinging angle of the gate. For different
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FIG. 10. (a) Schematic of the particle-gate interaction. (b) The nominal crossing ratio of the gate (κo) calculated by directly solving the
governing equations of the particle-gate collision. It is consistent with the result of the Monte Carlo simulation in Fig. 2(e).

calculation cases, θ varies from 0 to π , with the resolution
of π/50; φ varies from 0 to π , with the resolution of π/25;
ψ varies from 0 to π , with the resolution of π/50; va varies
from 0 to 0.1, with the resolution of 0.002; ωa varies from
−3

√
kBT/IG to 3

√
kBT/IG, with the resolution of 1/50 of the

full range.
By solving the equations of energy conservation, con-

servation of angular momentum, and conservation of linear
momentum along the gate line, for each case, after the
particle-gate interaction, we obtain the particle velocity (vb),
the angular coordinate of the outgoing particle when it reaches
the dashed-dotted circle (θ ), and the angular velocity of the
gate (ωb). The kinetic energy of the gate is KG = IGω2/2,
where ω is either ωa or ωb. If the particle collides with the
gate and can reach the right-hand side of the dashed-dotted
circle, the case is registered as crossing; otherwise, the case is
dismissed.

It is assumed that θ , ψ , and φ associated with the
incident particle (i.e., microstates �a and �a) are uni-
formly distributed; va follows the two-dimensional Maxwell-
Boltzmann distribution; ωa follows the one-dimensional
Maxwell-Boltzmann distribution. As suggested by Eq. (2),
only the crossing cases are essential to the calculation of
the crossing ratio. For all the crossing cases, we compute
the probability distributions of the particle velocity, the mag-
nitude of θ , and KG, weighted by the distributions before
particle-gate collision. The computer program is available in
the Supplemental Material [14].

The results are shown in Figs. 11–13, for various IG. It
can be seen that for the crossing cases, the distributions
of these parameters are generally different from the overall
distributions (the Maxwell-Boltzmann distribution for the par-
ticle velocity; the uniform distribution for θ ; the chi-squared
distribution for KG). More importantly, the distributions be-
fore collision (microstates �a and �a) may not be the same
as the distributions after collision (microstates �b and �b),
depending on IG. When IG is large, the distributions of all
the parameters are nearly symmetric for incident and outgo-
ing particles, suggesting that {�a} = {�̄b} and {�a} = {�̄b}.
When IG is small, the distributions of the particle velocity and
KG are nearly symmetric for incident and outgoing particles,
yet the spatial distribution of the particle (θ ) is significantly
different; thus, {�a} tends to be the same as {�̄b}, while

{�a} is different from {�̄b}, so that {�a} · {�a} �= {�̄b} · {�̄b}.
When IG is in the middle range, all the distributions are asym-
metric. This result is consistent with Fig. 2(e) that κ > 1 when
IG is relatively small, and κ → 1 when IG is large.

b. Assessment of the nominal crossing ratio

The setup is the same as Fig. 10(a). The parameters and the
governing equations of particle-gate collision are the same as
in Appendix A 1 a, except that ψ varies from π

2 − θ to 3π
2 − θ .

For the forward process from left to right, in each cal-
culation case, initially the particle is placed on the left-hand
side of the dashed-dotted circle, with given vi, θ , ψ , ωi, and
φ, where vi is the incident particle velocity and ωi is the
initial angular velocity of the gate. For a particle that crosses
the line of opening of the dividing wall (OC), if it collides
with the gate, the collision location and the velocity of the
outgoing particle are calculated. We count the total number
of the cases that the particle can reach the right-hand side
of the circle (Nc). For the reverse process from right to left,
in each calculation case, initially the particle is placed on
the right-hand side of the dashed-dotted circle, with given
vi, θ , ψ , ωi, and φ. Based on the calculated particle trajec-
tories, we count the total number of the cases that the line
of opening (OC) is crossed (N

′
c). The resolutions of θ , ψ ,

φ, vi, and ωi are 1/200, 1/400, 1/200, 1/15, and 1/15 of
the full scales, respectively. The moment of inertia of the
gate (IG) ranges from 10–4 to 104. For each IG, more than
7.3 × 109 cases are simulated. The nominal crossing ratio is

defined as κo = ∑Nc
1 p̂(vi ) p̂(ωi )/

∑N
′
c

1 p̂(vi ) p̂(ωi ), where 
 in
the numerator and the denominator indicate summation for
the forward crossing cases and the reverse crossing cases,
respectively; p̂(•) indicates the probability density; p̂(vi ) fol-
lows the two-dimensional Maxwell-Boltzmann distribution,
and p̂(ωi ) follows the one-dimensional Maxwell-Boltzmann
distribution.

Figure 10(b) shows the computed κo as a function of IG.
The trend qualitatively agrees with the MC simulation result
[Fig. 2(e)]. For a light gate of a small IG, κo > 1. For a heavy
gate of a large IG, κo decreases to 1. The difference between
Figs. 10(b) and 2(e) may be attributed to the large difference
in particle size, as well as the possible multiple collisions in
the gate zone that are ignored in this section.
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FIG. 11. Probability density of the particle velocity for all the crossing cases.

FIG. 12. Spatial distribution of the particle for all the crossing cases.

FIG. 13. Distribute of the kinetic energy of the gate for all the crossing cases.
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2. Monte Carlo simulation

The Monte Carlo (MC) simulation is carried out for a
billiard-like particle, as shown in Fig. 2(b). The system is
two-dimensional. The upper container wall (AA′), the lower
container wall (BB′), and the dividing wall (OD) are diffusive.
From a diffusive wall, the magnitude of the reflected velocity
follows the Maxwell-Boltzmann distribution; the direction of
the reflected particle is random. The left and the right borders
(AB and A′B′) are open, using periodic boundary condition.
The gate is a specular line. It freely swings around point O,
and the swinging motion is limited to the “+” side by the
“door stopper” at point C. There is no long-range force among
the particle, the walls, and the gate. The area enclosed by the
middle line (CD) and the track of movement of the edge of
the gate (the dashed-dotted semicircular curve) is defined as
the gate zone.

The setup is scalable; an example of the unit system can be
based on g/mole, Å, fs, and K. The container is 60 in length
and 20 in width; the particle mass is 1; the particle diameter
is 1; the opening in the dividing wall (OC) is 10 in width;
the time step is 0.05; temperature (T ) is 400; the moment of
inertia of the gate (IG) is in the range from 10–1 to 103; the gate
length is 10; the average kinetic energy of the particle reflected
from a diffusive wall is kBT ; the average kinetic energy of the
gate reflected from the dividing wall or point C is kBT/2.

Initially, the gate is closed, and the particle moves horizon-
tally from left to right toward the middle point of the gate, with
the initial velocity of 9.118 × 10–4 per time step. The system
is randomized for 108 time steps. After the preparatory period,
every time when the particle crosses the gate zone from left to
right, n± increases by 1; every time when the particle crosses
the gate zone from right to left, n∓ increases by 1.

Figure 2(c) shows the time profiles of n±/n∓ (IG = 1). The
three dotted lines are the reference curves. For one reference
curve, the gate is removed. For another reference curve, the
“door stopper” (point C) is removed, so that the gate can
swing freely at both sides of the middle line (CD). For the
blue-colored reference curve, the gate is outward swinging
at the right-hand side of the middle line, while the particle
number is increased to 100. In the no-gate reference case, a
screen wall is attached to the upper container wall at A and A′
along the lateral boundary, to interrupt the trivial horizontal
particle movement. The screen wall is a diffusive line, with the
length of 5. In the multiparticle reference case, the particles
are first evenly generated in the container. The initial particle
velocity is randomly oriented, and the magnitude follows the
Maxwell-Boltzmann distribution. The system is prepared for
105 time steps, after which counting of n± and n∓ begins. For
all the reference cases, the crossing event is defined as that a
particle passes the line of opening in the dividing wall (OC).
The simulation continues until the n±/n∓ ratio stabilizes at
the steady-state level.

Figure 2(d) shows the effect of the particle number
(N̂). The setup is similar to the single-particle simulation
[Fig. 2(b)], except that multiple particles are placed in the con-
tainer. At time zero, all the particles are evenly distributed; the
velocity follows the Maxwell-Boltzmann distribution, and the
direction is random. The maximum allowed swinging angle of
the gate (φ) is set to 120◦, to minimize the trivial situation of

unobstructed opening. After the initial randomization period,
we count the total numbers of the crossing events at the middle
line (OC) in both directions (n± and n∓), until the n±/n∓ ratio
reaches the steady state. For N̂ = 1, 10, 20, 30, 40, and 100,
the initial randomization periods are 50, 7, 5.5, 1.5, 1, and 1
million time steps, respectively; the overall simulation times
are 900, 40, 11, 10, 5, and 3 million time steps, respectively.

Figure 2(e) shows the single-particle steady-state n±/n∓
ratio as a function of the moment of inertia of the gate (IG),
where IG = mGL2

G/3 is varied by changing the gate mass
(mG); the gate size (LG) is kept constant. The setup is the same
as Fig. 2(b). In Figs. 2(d) and 2(e), for each data point, three
simulations are performed; the error bars are calculated as the
90% confidence interval, ±1.645σSD/

√
3, where σSD is the

standard deviation.
Each single-particle simulation of the outward-swinging

gate demonstrates a particle flux. It is worth noting that the
particle flux is not caused by the occupied space of the
gate. In the work on the classical Smoluchowski’s trapdoor
in Ref. [13], the excluded volume of the trapdoor leads to
different nominal particle densities at the two sides, but the
difference is only 1–2% and the crossing ratio is not affected;
contrary to Figs. 2(c)–2(e), the trapdoor side has a lower
particle count. In fact, for Figs. 2(c) and 2(e), the gate zone is
excluded from the data analysis of n±/n∓, since the crossing
events are counted at the boundary of the gate zone. Further-
more, Fig. 2(e) suggests that the gate mass is an important
parameter, opposite to the conclusion of the study in [13].

3. Experimental details

a. Materials processing

The experiment was performed on Toray UTC-82V
polyamide (PA) microporous membranes obtained from Ster-
litech. The membrane thickness was ∼10 μm and the
pore size was below 1 nm [36,37]. A membrane piece
was sectioned by a razor blade, about 1.7 cm in diam-
eter. It was attached to the stainless-steel inner frame of
a McMaster-4518K63 compound o-ring [Fig. 4(d)], using
McMaster-7541A77 Devon epoxy. The epoxy was cured at
room temperature for 24 h. The membrane was thoroughly
cleaned by deionized (DI) water, and then immersed in 50 wt.
% aqueous solution of isopropyl alcohol for 24 h. Untreated
membrane was dried at 75 ◦C for 30 min.

For the surface treatment, LA and sulfuric acid (H2SO4)
were provided by Sigma Aldrich (CAS No. 112-54-9 and
CAS No. 7664-93-9, respectively). Similar to the procedure
reported in Ref. [30], 20-mM aqueous solution of LA was
prepared, and H2SO4 was dropped into it to adjust the pH
value to 2. About 1 ml LA solution was added onto the front
surface of the PA membrane, filling the steel frame [Fig. 4(e)].
The setup was heated at 75 ◦C for 30 min in a Jeio Tech
ON-01E-120 oven. Then, the LA solution was removed and
the membrane was repeatedly rinsed by DI water, immersed
in DI water at 50 ◦C for 2 h, dried at 75 ◦C for 3 h, and rested at
ambient temperature for 24 h. The Viton fluoroelastomer outer
ring was placed onto the steel inner frame. The contact-angle
measurement result confirmed that the grafting of dodecyl
chains was successful (Fig. 14).
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FIG. 14. Contact angle measurement is a common technique to characterize surface-treated materials [38,39]. Upon surface treatment, the
contact angle of a water drop on the polyamide membrane increased from ∼50◦ to ∼102◦, indicating that the hydrophilic amide linkages were
end-capped by the hydrophobic dodecyl chains. The insets on the right-hand side are photos of sessile water drops on a surface-grafted (top)
and an untreated (bottom) polyamide membrane, observed through a Ramé-Hart model-200 contact angle goniometer at ambient temperature.

b. Testing system

Figures 1(b), 3, and 15 show the testing system. The
compound o-ring with a one-sidedly surface-grafted mem-
brane was placed in between valves B1 and B2. An untreated
membrane was mounted on a similar compound o-ring, and
placed in between valves C1 and C2. The gas phase was

C2F5I. Table I lists the major system components. The con-
tainers mainly consisted of thin-walled stainless-steel vacuum
hoses, four-way connectors, and flexible couplings, and were
connected to a MTI EQ-FYP-Pump-110 vacuum pump, two
Inficon SKY-CDG200D pressure sensors, and a C2F5I gas
storage vessel (Sigma Aldrich, CAS No. 354-64-3). The con-
nections used vacuum clamps, o-rings, and vacuum grease.

FIG. 15. Schematic of the experimental setup. Vacuum clamps (see the inset at the upper-right corner) and vacuum grease are used at all
the connections.

064133-14



MOLECULAR-SIZED OUTWARD-SWINGING GATE: … PHYSICAL REVIEW E 104, 064133 (2021)

TABLE I. Parts list of the experimental system.

Vender Part name Description Product number

MTI Vacuum pump UL certified 156 L/m double stage rotary vane
vacuum pump with exhaust filter-EQ-FYP-Pump

EQ-FYP-Pump-110

Inficon Pressure sensor SKY CDG200D capacitance diaphragm gauge 3CF1-751-2300
Nor-Cal Vacuum valve 1" manual angle valve, NW-25 flanges ESV-1002-NWB

Vacuum hose NW-25 thin-wall stainless-steel flexible hose, with the LH-100-10-2NW
length being 25.4 cm, 45.7 cm, or 61 cm. LH-100-18-2NW

LH-100-24-2NW
Vacuum flexible coupling NW-25 flexible coupling, 3.2" free length 2FC-NW-25-1
Vacuum connector NW-25 four-way cross connector 4C-NW-25B
Vacuum clamp NW-25 wing nut clamp NW-25-CP

McMaster-Carr Vacuum o-ring “S” O-Ring for 3/4" tube OD Quick-Clamp high-vacuum
fitting

4518K621

Vacuum o-ring “L” O-Ring for 1" tube OD Quick-Clamp high-vacuum
fitting

4518K63

Vacuum cap Cap for 1" stainless-steel tube OD Quick-Clamp
high-vacuum fitting

4518K58

Vacuum reducer Quick-Clamp high-vacuum fitting 4518K281
Dow Corning Vacuum grease Dow Corning high-vacuum grease 1597418

c. System preparation and the initial condition

To prepare the system, valve G was closed, and all the
other valves were open. The vacuum pump was turned on.
The gas pressure was reduced to below 0.06 mTorr for 1 h.
The pressure sensors were calibrated. Valve P was closed, and
the pump was turned off. Valve G was opened, and C2F5I
slowly flowed into the containers, until the pressure sensor
readings reached ∼0.8 Torr. The relatively low gas pressure
had a low requirement on the membrane strength, and was
within the pressure limit of the sensors. Valve G was closed,
and the system rested for 2 h. If we needed to change the
membrane, the valves across it would be closed and the low
pressure was maintained in the rest of the system. After the
membrane change, the operation of the vacuum pump was
repeated.

For some tests [Figs. 5(f) and 8], the system temperature
was first raised to 75 ◦C. Valves G, C1, and C2 were shut, and
all the other valves were open. The vacuum pump was turned
on for 24 h, and the gas pressure was kept below 0.06 mTorr.
Then, the system was cooled down to room temperature for
2 h. Valve P was closed, and valve G was opened, allowing
C2F5I to slowly flow into the containers, until P1 and P2

reached ∼0.8 Torr. Valve G was closed, and the system rested
for 30 min.

After the system preparation, valves A1, A2, B1, and B2
were open, and all the other valves remained shut. It was
confirmed that at ∼0.8 Torr, C2F5I behaved as an ideal gas
(Fig. 16).

Before the surface treatment, the gas permeability of each
untreated membrane sample was observed. The procedure was
similar to the measurement of Fig. 5(b) (see Appendix A 1 f
below), except that valves B1 and B2 remained closed and
valves C1 and C2 remained open. The untreated membrane
was installed between valves C1 and C2. The initial 
P was
set to ∼2 mTorr. If the average decrease rate of 
P was

different from 5∼10 μTorr/sec by more than 50%, the sample
would be rejected. About 2/5 of the membrane sheets met this
criterion.

d. Measurement of the pressure difference: Figures 5(a) and 5(c)

Initially, 
P ≈ 0. The surface-treated side of the mem-
brane was toward container 2. We closed valves A1 and A2,
leaving only valves B1 and B2 open. The operation of the
two valves was steady and simultaneous, to minimize the
disturbance on the pressure measurement. The readings of

FIG. 16. Based on Boyle’s law, the pressure-volume mea-
surement result supports the ideal-gas assumption. At ambient
temperature, two identical chambers were separated by a closed
vacuum valve. The chamber volume was 503 cm3. The left chamber
was filled by pentafluoroiodoethane (C2F5I) gas, and the initial gas
pressure was around 1.0, 1.2, 1.4, or 1.6 Torr. The initial gas pressure
in the right chamber was below 0.6 mTorr. Then, the valve was
opened, and the pressure was measured again. Before and after the
valve operation, the product of gas pressure (P) and gas volume
(V ) remained nearly constant, indicating that in such a low pressure
range, C2F5I can be analyzed as an ideal gas [40,41].
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P1 and P2 were recorded. After ∼10 min, valves A1 and A2
were opened again, followed by repeating the process for two
more cycles, as shown by the black curve in Fig. 5(a). Then,
the membrane sample was flipped, so that the surface-treated
side was toward container 1. The same 
P measurement
was performed, and the result is shown by the black curve
in Fig. 5(c).

The measurement procedures of the red and the gray curves
in Fig. 5(a) were similar, except that valves B1 and B2 re-
mained shut and valves C1 and C2 remained open. For the
gray curve, the untreated membrane in between valves C1
and C2 was replaced by a nonpermeable 250-μm-thick solid
polycarbonate film (McMaster 85585K103).

e. Effect of the initial pressure difference: Figures 5(b) and 5(d)

Initially, P1 and P2 were ∼0.8 Torr. Valves B1 and B2 were
open and all the other valves were closed. Then, valve P was
opened, and the vacuum pump was turned on to reduce the
pressure in the vacuum hose between valves A1 and A2. After
∼5 sec., valve P was closed. Valve A1 or A2 were opened, so
that the gas in container 1 or 2 flew into the section between
valves A1 and A2, and P1 or P2 decreased by ∼2 mTorr,
causing an initial 
P. The changes of the pressure sensor
readings were continuously monitored. Figures 5(b) and 5(d)
show the measured 
P profiles.

f. Effect of the initial gas pressure: Figure 5(e)

Initially, the gas pressure (P1 and P2) was adjusted to about
0.4, 0.8, 1.2, or 1.6 Torr; valves A1 and A2 were closed.
Valves B1 and B2 remained open; all the other valves re-
mained shut. The testing procedure was similar to that of
Fig. 5(a). The result is given in Fig. 5(e). For each initial
pressure, three measurements were performed. The error bars
were calculated as the standard deviation of the steady-state

P.

g. Variation of gas pressure in the two containers: Figure 5(f)

Initially, P1 and P2 were 801.5 mTorr; valves A1, A2,
B1, B2 were open; all the other valves were closed. Then,
valves A1 and A2 were shut. Valves B1 and B2 were slightly
adjusted, to keep the gas pressure constant. The readings of
sensor 1 (P1) and sensor 2 (P2) were continuously monitored.
After 
P has stabilized for ∼15 min, valves A1 and A2
were opened again. The testing data indicate that, associated
with the development of 
P [Fig. 5(f), left], P1 decreased by
∼
P/2 and P2 increased by ∼
P/2 [Fig. 5(f), right].

h. Negligible effect of gas adsorption/desorption of the
membrane: Figure 7

Two 1.7-cm-diameter Toray UTC-82V polyamide (PA)
microporous membranes and one 1.7-cm-diameter 250-μm-
thick nonpermeable solid polycarbonate (PC) film (McMaster
85585K103) were harvested by a razor blade. One PA mem-
brane was one-sidedly surface treated. The untreated side of
the PA membrane was firmly attached to the PC film by
McMaster-7541A77 Devon epoxy. The other PA membrane
was untreated. Its front surface was firmly attached to the
other side of the PC film by the epoxy.

In Fig. 1(b), the untreated membrane between valves C1
and C2 was replaced by the trilayer sample. Valves A1,
A2, C1, and C2 were open; all the other valves remained
closed. The initial gas pressure in containers 1 and 2 was
∼0.8 Torr. The trilayer sample had the same front and back
surfaces as the one-sidedly surface-grafted membrane, but
the middle layer was nonporous, and no gas transport could
take place.

At time zero, valves A1 and A2 were closed. Valves C1
and C2 were slightly adjusted to remove the disturbance on

P. After about 25 min, valves A1 and A2 were reopened.
Over time, little variation in pressure difference could be
detected (Fig. 7), suggesting that the effect of gas adsorption
and desorption of the membrane was trivial.

i. Effect of the gate-like chain behavior: Figure 8

Figure 8(a) shows the measured time profile of 
P across
an untreated membrane, with a dodecane layer physically
adsorbed on one side. On a 1.3 cm2 untreated Toray UTC-82V
polyamide microporous membrane surface, ∼1 ml 20-mM
ethanol solution of dodecane (Sigma Aldrich, CAS No. 112-
40-3) was dropped. The solvent was evaporated at 75 ◦C in
a Jeio Tech OV-12-120 oven at 20 kPa for 1 h, and then the
membrane was rested at ambient temperature for 24 h. After
the solvent deposition, the contact angle of water on the mem-
brane increased from ∼50◦ to ∼100◦, as shown by the inset
in Fig. 8(a). In Fig. 1(b), the membrane in between valves
B1 and B2 was replaced by the deposition-coated sample.
The measurement procedure of 
P was the same as that of
Fig. 5(a).

The upper curve in Fig. 8(b) shows the pressure difference
across an asymmetric bilayer sample. Two 1.7-cm-diameter
Toray UTC-82V PA microporous membranes were harvested
by a razor blade. One was one-sidedly surface treated. The
other membrane was not surface-treated. It was hydrother-
mally conditioned in a similar process, but no LA or acid was
added in water. The two membranes were pressed together
by a Vacmaster VP120 vacuum sealer. The surface-grafted
side of the first membrane was attached to the front side of
the second membrane. In Fig. 1(b), the membrane in between
valves B1 and B2 was replaced by the bilayer sample. The
measurement procedure of 
P was similar to that of Fig. 5(a).
It can be seen that addition of the untreated membrane has no
significant influence on the steady-state 
P of the one-sidedly
surface-treated membrane.

The lower curve in Fig. 8(b) shows the pressure differ-
ence across a symmetric bilayer sample. Two 1.7-cm-diameter
Toray UTC-82V PA membranes were one-sidedly surface
treated. The untreated sides were firmly attached to each
other by a Vacmaster VP120 vacuum sealer. In Fig. 1(b), the
membrane in between valves B1 and B2 was replaced by the
bilayer sample. The measurement procedure was similar to
that of Fig. 5(a). The testing data showed that 
P remained
near zero.

Figure 8 suggests that 
P is associated with the chemical
bonding between the grafted dodecyl chains and the mem-
brane surface. The covalent bonding enables the gate-like
chain behavior. Physically adsorbed dodecane chains do not
lead to a pressure difference.
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FIG. 17. A particle collides with a vertical rod.

j. Effect of the particle mass

For an order-of-magnitude assessment of the collision be-
tween a gas molecule and an organic chain, consider Fig. 17.
An elastic particle impacts a rigid rod. One end of the rod is
hinged on the ground, and the other end is free. The rod can
rotate around the hinge. The rod length is L0, and its mass
is mr. Initially, the rod is vertical and its angular velocity is
zero. The elastic particle moves in the horizontal direction,
and impacts the rod at height L1. The particle mass is mp. After
the rotational barrier of the hinge has been overcome, the
effective incident velocity is v̂0. Upon collision, the particle
velocity becomes vz, and the rod gains an angular velocity ω.

In accordance with the conservation of kinetic energy and
angular momentum, we have vz = ςr−1

ςr+1 v̂0, where ςr = 3
ς̂r

( L1
L0

)2

and ς̂r = mr
mp

. In order to keep vz and v̂0 in the same direction,
ςr needs to be larger than 1. Since L1 � L0, the upper bound of
ς̂r is 3. That is, the particle mass must be at least greater than
1/3 of the rod mass; otherwise, the particle would always be
reflected.

4. Molecular dynamics simulation

The MD simulation was performed in LAMMPS [42]. The
behavior of the dodecyl chain was simulated by the classical
AIREBO potential [43]. The computer program is available
in the Supplemental Material [14]. The system is three-
dimensional. A (10,0) single-wall CNT was employed as the
analog to a nanopore. The gas particle was a mercury (Hg)
atom. The Hg atomic size is ∼3 Å and its atomic mass (mHg)
is 200.6.

The long-range interactions were described by the 12–
6 Lennard-Jones potential, Ẽ = 4εμν[( σμν

r )12 − ( σμν

r )6] (for
r � rco), where subscripts μ and ν represent atom type, r
is the atom-atom distance, rco is the cut-off distance, and
εμν and σμν are two system parameters. When r > rco, Ẽ
was set to zero. The parameters of carbon-carbon, hydrogen-
hydrogen, and mercury-mercury interactions have been well
studied in open literature [43,44]: εCC = 0.00284 eV, σCC =
3.4 Å, εHH = 0.0014994 eV, σHH = 2.65 Å, εMM = 0.0645
eV, and σMM = 2.969 Å, where subscripts C, H, and M
indicate carbon, hydrogen, and mercury, respectively. The
Lorentz-Berthelot combining rule [45] was employed to com-
pute the interactions between different types of atoms: σμν =
(σμμ + σνν )/2 and εμν = √

εμμενν . For all the potentials, rco

was 10.2 Å.
The length of the CNT was 17.04 Å and the inner diameter

was 6.3 Å. At the end of the CNT, one 12-carbon hydrocarbon
chain was covalently bonded. The unoccupied carbon atoms
at the CNT edge were saturated by hydrogen. The CNT was
placed at the center of a cuboid simulation box. In the x-y di-
mension normal to the CNT, periodic boundary condition was
used. In the z direction along the CNT, the upper and bottom
surfaces of the simulation box were isolated. The simulation
box was 9.74 Å in width and 80 Å in length. The mercury
(Hg) atom was placed on the center line of the CNT, either

FIG. 18. (a) The final z-dimension velocity of the Hg atom (vz) as a function of the initial Hg velocity (v0), for three randomly selected
chain configurations. When v0 is relatively low, the Hg atom cannot overcome the dodecyl chain and would be reflected back into the CNT,
so that vz is negative. With a higher v0, the Hg atom can push the chain open and exit the CNT, so that vz is positive. (b) A mercury (Hg)
atom is forced to move downwards toward the CNT along −z, at a constant rate of 2 Å/ps. The variation in system energy is computed, as
a function of the Hg displacement (
z). The Hg atom starts at 
z = 0, 18 Å above the CNT opening. Initially, the system energy slightly
decreases, because of the van der Waals attraction force between the chain and the Hg atom. When the chain is bent toward the CNT, as its
motion is obstructed, the system energy drastically increases. The red dashed line indicates the level of the rotational barrier of carbon-carbon
bond, EC ∼ 0.1 eV. The inset shows the overall profile of the system energy.
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FIG. 19. (a) Schematic of an isothermal cycle. In the pressure-volume (P−V ) loop at the lower-left corner, numbers I–IV indicate the
system states. (b) A variant of the isothermal cycle, without mass exchange with the environment. In the pressure-volume (P−V ) loop at the
lower-right corner, the blue upper-case numbers (I–IV) indicate the states of the left chamber; the red lower-case numbers (i–iv) indicate the
states of the right chamber.

inside the CNT (17 Å below the CNT opening) or outside the
CNT (18 Å above the CNT opening).

The time step was 0.1 fs. The carbon atoms in the CNT
wall were fixed. The chain and the Hg atom were allowed
to move. At 300 K, the system was equilibrated for 10 ps
using the Langevin thermostat, and another 10 ps using the
Nose-Hoover thermostat. Then, the temperature was raised to
1000 K in 20 ps with the Nose-Hoover thermostat. The high
temperature was maintained for 10 ps, followed by cooling to

300 K in 10 ps and resting at 300 K for 10 ps. This process
was repeated to randomly generate 100 chain configurations.
They were used as the initial conditions for the study on the
Hg-chain collision.

For each configuration, the Hg atom moved along the z
direction toward the dodecyl chain. The initial Hg velocity
(v0) ranged from 1.0 to 6.0 Å/ps. For Hg, v0 = 2 Å/ps is
the rms velocity at ∼320 K. The simulation was stopped after
15 ps, or when the Hg atom crossed the lateral boundary of the
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simulation box. The final z-dimensional Hg velocity (vz) and
the final position of the Hg atom were recorded. The position
was used to determine whether the Hg atom passed the chain.
The probability of crossing was defined as δcr = Ncr/Ntot ,
where Ntot = 100 is the total number of the investigated chain
configurations and Ncr is the number of passing cases (for a
given v0).

Figure 18(a) shows three examples of the final z-dimension
Hg velocity (vz). The Hg atom initially moves in the CNT
upwards along z. When T ∗ = mHg

2kB
v2

0 is low, Hg cannot over-
come the rotational barrier of carbon-carbon bond (EC) and
is reflected back, so that vz is negative. When T ∗ is large, vz

becomes positive, i.e., the Hg atom crosses the CNT opening.
The critical T ∗/T value of vz = 0 is 5∼7. The corresponding
Boltzmann factor (e−T ∗/T ) is 0.1% ∼ 0.6%. The first-order
assessment of χ in Sec. VII (∼0.24%) is within this range.
Figure 18(b) indicates that to force a Hg atom to push the
chain into the CNT, the energy barrier is much higher than
EC, primarily because the CNT wall obstructs the chain
movement.

5. Production of useful work in an isothermal cycle

In an isothermal setup, asymmetric membrane permeabil-
ity (κ̄ �= 1) cannot be described by the conventional theory of
thermodynamics. It implies that useful work may be produced
in a cycle by absorbing heat from a single thermal reservoir.

One example is given in Fig. 19(a). The environment is
a large reservoir of thermal energy and gas molecules, at
constant pressure P0 and temperature T . In the wall of a
chamber, an asymmetric nanoporous membrane is installed.
On the inner side of the membrane, there are molecular-sized
outward-swinging gates at the nanopore openings. At State I,
the membrane is covered by a frictionless sliding door, and
the chamber is open to the environment through a regular
venting channel, so that the inner gas pressure is P0. The
initial chamber volume is denoted by VS. From State I to II,

the venting channel is closed, and the membrane is exposed.
The inner pressure spontaneously rises to κ̄P0. From State II
to III, a frictionless piston moves out of the chamber and does
work to the environment. The chamber volume increases to
VL, while the gas pressure remains κ̄P0. From State III to IV,
the membrane is covered and the venting channel is open, and
the inner pressure decreases to P0. Finally, the piston moves
back, and the chamber and the environment return to State
I. After a complete cycle, the system produces work Wtot =
(κ̄ − 1)P0
V , where 
V = VL − VS. The produced work is
from the absorbed heat from the environment.

Figure 19(b) shows another example, without mass transfer
between the system and the environment. The environment
is a large reservoir of thermal energy, at constant pressure
(P0) and temperature (T ). There are two identical asym-
metric nanoporous membranes in the dividing wall between
two chambers filled with an ideal gas. Each membrane is
one-sidedly grafted with molecular-sized outward-swinging
gates. The gated side of the upper membrane faces the right
chamber; the gated side of the lower membrane faces the left
chamber. At State I, both membranes are covered by friction-
less sliding doors. The gas pressure in the two chambers is
the same P0; the volumes of the left and the right chambers
are

√
κ̄V0 and V0, respectively. At State II, the upper mem-

brane is exposed. As the gas diffuses from the left side to
the right side across the upper membrane, the gas pressures
in the left and the right chambers become P0/

√
κ̄ and

√
κ̄P0,

respectively. Then, both membranes are covered again. The
left piston moves into the left chamber, and the right piston
moves out of the right chamber. At State III, the volumes of
the left and the right chambers are V0 and

√
κ̄V0, respectively.

It can be seen that State III is symmetric to State I. The
processes from State III to IV and from State IV to I are
similar to I to II and II to III, respectively. For each cycle,
the total input work is Win = P0V0lnκ̄; the total output work
is Wout = P0V0

√
κ̄ lnκ̄; the overall produced work is Wtot =

Wout − Win = [(
√

κ̄ − 1) lnκ̄]P0V0 = (
√

κ̄ − 1)Win.
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