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Statistical properties of avalanches via the c-record process
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We study the statistics of avalanches, as a response to an applied force, undergone by a particle hopping on a
one-dimensional lattice where the pinning forces at each site are independent and identically distributed (i.i.d.),
each drawn from a continuous f (x). The avalanches in this model correspond to the interrecord intervals in a
modified record process of i.i.d. variables, defined by a single parameter c > 0. This parameter characterizes the
record formation via the recursive process Rk > Rk−1 − c, where Rk denotes the value of the kth record. We show
that for c > 0, if f (x) decays slower than an exponential for large x, the record process is nonstationary as in the
standard c = 0 case. In contrast, if f (x) has a faster than exponential tail, the record process becomes stationary
and the avalanche size distribution π (n) has a decay faster than 1/n2 for large n. The marginal case where f (x)
decays exponentially for large x exhibits a phase transition from a nonstationary phase to a stationary phase as
c increases through a critical value ccrit . Focusing on f (x) = e−x (with x � 0), we show that ccrit = 1 and for
c < 1, the record statistics is nonstationary. However, for c > 1, the record statistics is stationary with avalanche
size distribution π (n) ∼ n−1−λ(c) for large n. Consequently, for c > 1, the mean number of records up to N steps
grows algebraically ∼Nλ(c) for large N . Remarkably, the exponent λ(c) depends continuously on c for c > 1 and
is given by the unique positive root of c = − ln(1 − λ)/λ. We also unveil the presence of nontrivial correlations
between avalanches in the stationary phase that resemble earthquake sequences.
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I. INTRODUCTION

Records are ubiquitous in nature. We keep hearing about
record-breaking events in sports, in stock prices, in the sum-
mer temperature in a given city, in the amount of rainfall in
a given place, or in the magnitude of earthquakes in a cer-
tain geographical zone. The studies on the theory of records
were initiated in the statistics literature almost 70 years ago
[1–6] and since then have found numerous applications across
disciplines: in sports [7–9], in the analysis of climate data
[10–17], in fitness models of evolutionary biology [18–22],
in condensed matter systems such as spin glasses and high
temperature superconductors [23–25], and in models of grow-
ing networks [26]. Record statistics have also been studied
extensively in various random walk models [27–34] with
applications to avalanches and depinning of elastic lines in
disordered medium [35], to the analysis of financial data
[36–39], and more recently to active particles with run-and-
tumble dynamics [40–42]. For reviews on record statistics in
the physics literature, see Refs. [43,44].

In its most general setting, the record problem can be
formulated as follows. Consider an infinite sequence of con-
tinuous random variables {x1, x2, x3, . . .} representing the
entries of a discrete-time series—they may be the stock prices
on successive days or the daily average temperature in a given
city. The random variables are distributed via a joint distribu-
tion P(x1, x2, x3, . . .). A record (upper) occurs at step k if the
entry xk exceeds all previous entries, i.e., if

xk > xi, for all i = 1, 2, . . . , k − 1. (1)

By convention, the first entry is always a record. The suc-
cessive record values are denoted by {R1, R2, R3, . . . } and is
called the associated record series (see Fig. 1). Furthermore,
let {t1, t2, t3, . . .} denote the times at which the records occur;
we will call it the associated record-time series. Since the first
entry is always a record by convention, we have R1 = x1 and
t1 = 1.

Given this time series {x1, x2, x3, . . .} and its underlying
probability distribution P(x1, x2, x3, . . .), one can investigate
various observables associated to the occurrences of records.
Three rather natural questions are the following:

(1) How many records MN occur in the first N steps? For
example, given the joint distribution P(x1, x2, x3, . . .), what is
the average number of records 〈MN 〉 within the first N steps?

(2) How are the record values distributed? For example,
let

qk (R) = Prob.[Rk = R] (2)

denote the probability density that the kth record (in the
infinite sequence) takes value in [R, R + dR]. What can
we say about qk (R), given the underlying joint distribution
P(x1, x2, x3, . . .) of the original entries?

(3) Suppose that a record occurs at time tk . How long does
it take to break this record? Let nk = tk+1 − tk denote the time
gap between the (k + 1)-th record and the kth record—this is
the age of the kth record. Let

πk (n) = Prob.[nk = n] (3)
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denote the distribution of the age of the kth record. Given the
joint distribution of entries P(x1, x2, x3, . . .), can one com-
pute πk (n)?

i.i.d. model: The simplest model where one can compute
exactly all three observables corresponds to the case when the
entries xi are uncorrelated, and each is drawn independently
from a continuous distribution f (x). In other words, the joint
distribution factorizes

P(x1, x2 x3, . . .) = f (x1) f (x2) f (x3) · · · . (4)

This is usually referred to as the independent and identically
distributed (i.i.d.) model [1–6]. The probability density func-
tion (PDF) f (x) is normalized to unity and its cumulative
distribution is defined as F (x) = ∫ x

−∞ f (y) dy. We summarize
these classical results here, and for a derivation see, e.g., the
review [44] with citations to the original literature [1–6].

(1) It turns out that the average number of records up to
first N steps is universal, i.e., independent of f (x) and is given
by the simple formula

〈MN 〉 =
N∑

k=1

1

k
−−−→
N→∞

ln N. (5)

Thus the mean number of records grows very slowly (log-
arithmically) with increasing N indicating that records get
increasingly harder to break. Moreover, the full distribution
of MN , i.e., P(M, N ) = Prob.(MN = M ) is also known and
is universal. In the limit N → ∞, the distribution P(M, N )
approaches a Gaussian form with mean ln N and variance
ln N .

(2) The distribution qk (R) of the value of the kth record is
also known explicitly,

qk (R) = f (R)
{− ln[1 − F (R)]}k−1

(k − 1)!
, k = 1, 2, . . . , (6)

where F (R) is the cumulative distribution. Unlike the distribu-
tion of MN , the record value distribution qk (R) is not universal,
as it depends explicitly on f (R). For example, for exponen-
tially distributed positive entries with f (x) = e−x θ (x) [where
the Heaviside step function θ (x) = 1 if x > 0 and θ (x) = 0 if
x � 0)] Eq. (6) gives

qk (R) = e−R Rk−1

(k − 1)!
k = 1, 2, . . . . (7)

In this case the average record value 〈Rk〉 = ∫ ∞
0 R qk (R) dR =

k increases linearly with k. Similarly, the variance of Rk also
grows linearly with k. In fact, for generic f (x) in Eq. (6), one
can show that qk (R) does not have a limiting distribution as
k → ∞.

(3) Finally, the age distribution πk (n) of the kth record
is also known explicitly and turns out to be universal, i.e.,
independent of f (x). For any k � 1, it reads [44]

πk (n) =
n−1∑
m=0

(
n − 1

m

)
(−1)m

(2 + m)k
�

n→∞
1

n2

[ln n](k−1)

(k − 1)!
. (8)

Two important points to note for the i.i.d. model that will be
important in this paper: (1) the distribution qk (R) depends on k
even when k → ∞, i.e., there is no limiting stationary record

FIG. 1. An infinite discrete-time series with entries {x1, x2, . . .}.
A record happens at step k if xk > xi for all i = 1, 2, . . . , k − 1.
The successive record values (shown by (red) filled circles)
{R1, R2, R3, . . .} form the record series. The times at which the
records occur form a record-time series {t1, t2, t3, · · · }. The time
gap nk = tk+1 − tk between the kth record and the (k + 1)-th record
is called the age of the kth record. By convention, the first entry is a
record, hence R1 = x1 and t1 = 1.

value distribution as k → ∞, simply because the record val-
ues grow with k for generic f (x) and (2) similarly, the age
distribution πk (n) in Eq. (8) also does not have a limiting
stationary distribution when k → ∞.

After introducing this basic background, we now turn to
the main topic of this paper. Here our goal is to use the tools
of record statistics to provide a simple model for the pecu-
liar jerky motion observed in many disordered systems, as a
response to an external driving force. In such systems the dy-
namics of the relevant degree of freedom typically alternates
between static immobile states and periods of rapid motion
called avalanches. Examples of such a behavior are quite ubiq-
uitous, ranging from the crack propagation in solids [45–49],
the earthquake of seismic faults [50], or the Barkhausen noise
[51–53] appearing in the magnetization curve as a function of
the applied magnetic field; see [54] for a review. Avalanches
are well studied in the context of the depinning of an elastic
interface pulled through a disordered medium by an external
force [35,51,55–58]. In the absence of an external force the
line is pinned by the disorder. Upon increasing the force
beyond a local threshold, a portion of the interface gets de-
pinned and its center of mass moves forward, thus creating
an avalanche. Interestingly, a simple one-dimensional (1D)
lattice model for depinning can be mapped exactly to the
record model discussed above, as we show below.

In this lattice model, the elastic line is replaced by a single
particle (representing its center of mass) that moves on an
infinite 1D lattice. Under this mapping, the time series {xi}
in Fig. 1 gets mapped on to the quenched pinning forces
with the horizontal axis i labeling the sites of a 1D lattice.
This defines the disorder landscape {x1, x2, . . . } on which the
particle moves under the effect of the applied force, fa(i)
(namely, the force applied at the site i). The particle leaves the
site i if fa(i) > xi. Hence, the minimal force profile allowing
motion alternates between plateaus and vertical jumps (see
Fig. 2). The plateaus coincide exactly with the record series
{R1, R2, R3, . . . } and the vertical jumps occur exactly at the
sites {t1, t2, t3, . . . } where the record occurs in Fig. 1. The
age of the kth record nk in Fig. 1 maps on to the size of the
kth avalanche in the depinning model. The three observables
〈MN 〉, qk (R) and πk (n) have precise physical meaning in the
context of depinning. For example, 〈MN 〉 is the number of
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FIG. 2. The applied force profile fa(i) in the 1D depinning model
has a staircase structure (shown by the solid black line), alternating
between plateaus and vertical jumps. The plateau values coincide
exactly with the record series {R1, R2, R3 , . . .}, while the jumps
occur precisely at the sites where the records occur, i.e., at sites
{t1, t2, t3, . . .} of Fig. 1. The age of the kth record nk coincides
exactly with the size of the kth avalanche in the depinning model.

jumps of the applied force profile in order to displace the
position of the particle by N sites, given that it started at
i = 1. Similarly, πk (n) represents the size distribution of the
kth avalanche in the depinning model.

In the simple i.i.d. setting, the pinning forces {xi} in the
disordered landscape are independent and identically dis-
tributed, each drawn from a continuous PDF f (x). However,
as we discuss in detail in Sec. II, this simple i.i.d. model,
while analytically tractable, fails to reproduce the behaviors of
the three observables as seen in real systems. In addition, the
spatiotemporal correlations in the applied force profile fa(i)
(record values) as well as in the avalanches seen in realistic
systems are also not reproduced by the i.i.d. model. This calls
for some amendments in this basic i.i.d. model. The idea is to
introduce minimal changes in the model such that it retains its
analytical tractability and yet reproduces the features observed
in real systems.

After discussing briefly the previous attempts of modify-
ing the simple i.i.d. model in Sec. II, we introduce a new
model in this paper which we call the c-record model. This
model has the i.i.d. landscape with input f (x), and one single
additional parameter c > 0 associated with the applied force
profile fa(i). The model is precisely defined in Sec. III. We
demonstrate in this paper that (a) the the c-record model
is exactly solvable with a rich analytical structure and (b)
it reproduces qualitatively similar features for all the three
observables, as well as the spatiotemporal correlations, that
one observes in realistic system of depinning.

Quite remarkably, it turns out that this c-record model
was already introduced in a different context in the statistics
literature by Balakrishnan et al., where it was called the δ-
exceedance record model [59]. The parameter δ = −c < 0 is
negative in our context. In addition, this δ-exceedance model
with a negative δ = −c < 0 also appeared in the random
adaptive walk (RAW) model to describe biological evolution
on a random fitness landscape [20–22]. In fact, we use the
notation c for −δ in our model following Ref. [20].

In the context of the RAW model, the two observables
〈MN 〉 and qk (R), but not πk (n), were already studied ana-
lytically in Ref. [20]. In the notation of Ref. [20] for RAW,
our 〈MN 〉 corresponds to the mean walk length of an adaptive
walker (for genome size L) DRAW(L) in the RAW model, with
L ∼ N for large L. In particular, for exponentially distributed

positive fitness landscapes f (x) = e−xθ (x) where θ (x) is the
Heaviside step function, Ref. [20] uncovered a striking phase
transition at the critical value c = 1, across which the asymp-
totic growth of 〈MN 〉, with increasing N , changes drastically.

In this paper, we revisit this c-record model in the context
of depinning and avalanches. We provide a thorough analyti-
cal and numerical study of all three observables 〈MN 〉, qk (R)
and πk (n) and also the underlying correlation structure of the
record values and avalanches for a general f (x), including
in particular the interesting case f (x) = e−xθ (x). For this
particular case f (x) = e−xθ (x), while our results fully agree
with Ref. [20] for c � 1, we show that for c > 1 the model
has a much richer structure than was reported in Ref. [20].
In particular, we show that for c > 1 and f (x) = e−xθ (x), the
average number of records 〈MN 〉 grows for large N as a power
law

〈MN 〉 ∼ Nλ(c), (9)

with an exponent λ(c) that depends continuously on c (for
c > 1) and is given by the unique positive root of the tran-
scendental equation

c = − ln(1 − λ)

λ
. (10)

Thus our prediction for the asymptotic growth of 〈MN 〉 in
Eq. (9) for c > 1 differs from Ref. [20] where 〈MN 〉 ∼ O(N )
was reported. We also show that for c > 1, the record value
distribution qk (R) approaches a stationary distribution as k →
∞, which is given by a pure exponential behavior for all
R � 0

qk→∞(R) = λ(c) e−λ(c) R. (11)

In addition, the avalanche size distribution πk (n) also ap-
proaches a stationary distribution as k → ∞ (for c > 1) with
a power-law tail

πk→∞(n) ∼ n−λ(c) as n → ∞, (12)

where the exponent is the same λ(c) as in Eq. (10).
The rest of our paper is organized as follows. In Sec. II

we recall the mapping between the 1D lattice model of de-
pinning and the record model and also discuss previously
studied models that go beyond the simple i.i.d. record model.
In Sec. III we define the c-record model precisely and provide
a detailed summary of our results. For the particular case
f (x) = e−xθ (x), we also provide a detailed comparison of
our results to that of Ref. [20]. In Sec. IV we set up the
exact recursion relations and derive the nonlocal differen-
tial equations for the three main observables, respectively, in
Secs. IV A, IV B, and IV C. In Sec. V we provide the full
exact solution of all three observables in the c-record model
and demonstrate the phase transition at c = 1. In Sec. VI we
discuss in detail the criterion for stationarity of the record
value distribution qk (R) as k → ∞ for a stretched exponential
family of f (x). Section VII considers other families of f (x),
including an exact solution for the uniform distribution over
[0,1] and numerical results for the Weibull class of f (x).
In Sec. VIII we show some possible generalizations of the
c-record process. Section IX is dedicated to the conclusion.
Finally, the derivation of the asymptotic results, rather long
and tedious, are relegated to Appendixes A–G.
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II. DEPINNING, AVALANCHES,
AND RECORD STATISTICS

To understand how record statistics of a discrete-time se-
ries, discussed in the introduction, can be used to study the
avalanches associated with the depinning of an elastic inter-
face, we consider a very simple one dimensional model where
one replaces the extended interface by a point representing
its center of mass [35]. The model is defined on an infinite
one dimensional lattice where the lattice sites are labeled by
i = 1, 2, 3, . . .. At each site i, we assign a positive random
variable xi, drawn independently from a continuous f (x), rep-
resenting the local pinning force at site i. The time series {xi}
in Fig. 1 then defines the quenched random landscape, with
the horizontal axis i labeling the lattice sites. The associated
record series {R1, R2, R3, . . .} in Fig. 1 now defines the record
values of this pinning force landscape. We then launch a single
particle on this quenched landscape at site i = 1 and apply an
external force fa at site i = 1 that tries to drag the particle from
i = 1 to the neighboring site i = 2. The force fa is increased
continuously with time at a constant rate. As long as the value
of fa is less than the local pinning force x1, the particle does
not move from site 1. Upon increasing the force fa, when it
just exceeds x1 = R1, the particle suddenly jumps to site 2. Let
fa(1) denote the applied force just when the particle leaves the
site i = 1. The value of the applied force remains the same,
i.e., fa = fa(1) = x1 = R1 when the particle is moving. When
the particle arrives at site i = 2, if the current force fa(1) is
less than x2, i.e., x2 is a record, the particle gets stuck again
at site 2 and the applied force needs to increase to exceed the
pinning force x2. However, if x2 is not a record, the current
force fa(1) is bigger than x2 and the particle hops from i = 2
to i = 3. Essentially the particle keeps moving forward to the
right till it encounters the next record value of the landscape.
We then have to increase the force fa to exceed the current
record value and the process continues. The number of sites
the particle moves forward following a depinning (till it gets
pinned again) is precisely the size of an avalanche.

Let fa(i) denote the value of the applied force at site i just
when the particle leaves the site i. In this simple model, we
thus see that the applied force profile fa(i) essentially has a
staircase structure alternating between plateaus and vertical
jumps (see Fig. 2). The plateau values of the force fa(i) are
precisely the record values {R1, R2, R3, . . .} of the underlying
landscape and the jumps of fa(i) occur exactly at the sites
where records occur in the quenched landscape, i.e., they
coincide with record-time series {t1, t2, t3 , . . . } in Fig. 1.
Consequently, the ages nk of the records coincide exactly with
the sizes of successive avalanches. Thus the three observables
introduced in Fig. 1 are also very relevant in the context of
depinning: (i) 〈MN 〉 measures the average number of jumps
the external force has to undergo in order to displace the
particle from site i = 1 to site i = N , (ii) qk (R) represents
the distribution of the height of the kth plateau of the applied
force, and (iii) πk (n) is precisely the distribution of the size of
the kth avalanche.

How realistic is this simple depinning model with an i.i.d.
landscape? It turns out that there are three important features
in real systems that the i.i.d. model fails to reproduce faith-
fully:

(1) In real systems, the distribution qk (R) of the height
of the kth plateau in the force profile typically approaches
a stationary distribution as k → ∞. In contrast, in the i.i.d.
model, as seen from Eq. (6), there is no limiting stationary
distribution for qk (R) as k → ∞.

(2) In real systems, the avalanche size distribution πk (n)
not only approaches a stationary distribution π (n) as k →
∞, but the stationary distribution also has a pure power-law
tail, π (n) ∼ n−τ as n → ∞ [52,60,61] (e.g., the celebrated
Gutenberg-Richter law for earthquake magnitude). In the i.i.d.
model, the result in Eq. (8) indicates that πk (n) neither ap-
proaches a stationary distribution as k → ∞, nor does it have
a pure power-law tail.

(3) Real systems exhibit very interesting correlations be-
tween the record ages, nk , as well as between the record
values, Rk . For example, after a large earthquake occurs, one
observes a cascade of large aftershocks followed by long
periods of quiescent activity characterized by events of small
size. It turns out that in the i.i.d. model the record values Rk’s
increase monotonically with k and a similar trend is observed
for the ages, leaving no scope for observing cascade of events
of large sizes, followed by quiescent activity.

An important improvement over the i.i.d. model is
represented by the well-known Alessandro-Beatrice-Bertotti-
Montorsi (ABBM) model introduced to study the avalanches
in Barkhausen noise [51]. In the ABBM model, the i.i.d.
landscape is replaced by a correlated one where xi represents
the position of a 1D random walk [51,54]. In this case, the
avalanche size distribution πk (n) coincides with the return
time distribution of a Brownian motion in one dimension, and
hence πk (n) is stationary (independent of k) and does have
a pure power-law tail, πk (n) ∼ n−τ with τ = 3/2. A similar
analysis also follows from the study of record statistics for a
random walk sequence [27]. However, in this model, qk (R)
does not approach a stationary distribution as k → ∞ [point
(1) above] and the sequence of record ages is uncorrelated
at variance with what it is seen in real systems [point (3)
above].

Another modification of the simple i.i.d. record model is
the so called linear-trend model [35]. In this model, the land-
scape of pinning forces {xi} remains i.i.d., but the applied force
profile fa(i) changes from Fig. 2 in a simple way (see Fig. 3,
upper panel). Just after the particle is deblocked from a pin-
ning site, one assumes that the applied force fa(i) decreases
linearly, fa(i + 1) = fa(i) − c (with c > 0) with increasing i
till the particle gets blocked again. Thus, as opposed to the
horizontal plateaus between two successive records in the
i.i.d. model (as in Fig. 2), the force profile in the linear-trend
model has a linear behavior with a negative slope, as shown
schematically in Fig. 3 upper panel. The physical rationale
behind the decrease of the applied force is the dissipation
during the avalanche motion [in particular we have a linear
decrease if fa(i) is the elastic force between the particle and
a drive that moves at a constant slow rate]. In this model, at
the end of an avalanche when the particle gets stuck at a new
site, the force profile fa(i) jumps again to the corresponding
record value of the landscape at that site and the process con-
tinues. The sequence of the force values at the beginning of an
avalanche coincides with the record series {R1, R2, R3, . . .}
of the landscape (see Fig. 3, upper panel).
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FIG. 3. Schemes for modified records. Upper panel: linear trend
records. Lower panel: c-records.

Interestingly, it turns out that this linear-trend model
was also introduced originally in the statistics literature by
Ballerini and Resnick [62,63] and has since been studied ex-
tensively with numerous applications [64–67]. The analysis of
the linear-trend model with c > 0 shows that the average num-
ber of records grows linearly with N for large N , i.e., 〈MN 〉 ≈
a(c) N where the prefactor a(c) is nontrivial and nonuniversal,
i.e., depends on f (x) [62,65,66]. The record value distribution
qk (R) (or equivalently the distribution of the applied forces at
the beginning of the kth avalanche) does approach a stationary
distribution as k → ∞ (as in realistic systems) that depends
on the tail of f (x). Similarly, the avalanche size distribu-
tion πk (n) also approaches a stationary distribution π (n) as
k → ∞; however, this stationary distribution π (n) does not
have a power-law tail (rather an exponential cutoff) for large
n as expected in real systems. In summary, the linear-trend
model does reproduce some features of avalanches in realistic
depinning systems, but not all.

In this paper, we introduce a simple modification of the
linear-trend model, which we call the c-record model. The
model is defined more precisely in the next section where
we also provide a summary of our main results. This model
allows exact solutions for the three observables 〈MN 〉, qk (R),
and πk (n). We show that these observables as well as the
correlation structure between records and their ages reproduce
the features observed in realistic systems.

III. c-RECORD MODEL: THE DEFINITION
AND A SUMMARY OF MAIN RESULTS

The model. The c-record model that we study in this paper
is defined as follows. Once again, we consider an infinite i.i.d.
landscape {x1, x2, x3, . . .} of quenched pinning forces defined
on a 1D lattice, where each entry is chosen independently
from a continuous PDF f (x). Let {R1, R2, R3, . . .} denote the
record series of this landscape. As in the simple i.i.d. model,
the particle starts from site i = 1 and it can leave the this site
when the local applied force fa exceeds the pinnning force x1.
The only difference in our model from that of the linear-trend
model discussed in the previous section, is how the force

profile fa(i) behaves between two avalanches. In the linear-
trend model, the force profile following a record decreases
linearly till the next record (as in Fig. 3, upper panel). In
contrast, in the c-record model, we assume that following a
record, the force decreases by c only in the first step, but after
that it stays flat till it encounters the next record (see Fig. 3,
lower panel). More precisely, between two successive record
values Rk at tk and Rk+1 at tk+1 we now have

fa(i) = Rk − c, for i = tk + 1, tk + 2, . . . , tk+1 − 1. (13)

At i = tk+1, the force fa(i) undergoes a jump to the associated
record value Rk+1 of the landscape. The physical rationale
behind this new model is that the dissipation in the force
profile that occurs just after depinning is short-ranged in time,
e.g., occurs only during the first hopping but stays constant
afterwards.

The formation of records in this c-record depinning model
can be alternatively phrased in the language of standard time
series discussed in the introduction. Consider, as before, an
infinite i.i.d. sequence of entries {x1, x2, x3 , . . .} each drawn
from f (x). Here a record series {R1, R2, R3, . . .} is formed
recursively, in the presence of a single parameter c > 0, as
follows. If a record occurs at some step with record value
R, a subsequent entry will be a record only if its value ex-
ceeds (R − c) θ (R − c). Clearly, for c = 0, this is the standard
record model discussed in the introduction. For c > 0, this is
precisely the δ-exceedance model introduced by Balakrishnan
et al. [59] with δ = −c < 0. As already discussed in the intro-
duction, this model with c > 0 was also studied in Ref. [20]
as the RAW model of biological evolution in a random fitness
landscape.

In this paper, we have studied the three observables 〈MN 〉,
qk (R) and πk (n) in the c-record model, both analytically and
numerically, for a class of f (x)’s. From the motivation of the
depinning phenomenon, our main interest is to determine if,
when k → ∞, the c-record process becomes “stationary” or
not. We say that it is stationary if the distributions qk (R) and
πk (n) have a well-defined limit as k → ∞:

lim
k→∞

qk (R) = q(R),

lim
k→∞

πk (n) = π (n). (14)

Below we summarize our main results.
The summary of main results. We find that for c > 0, the

behavior of all three observables depends explicitly on f (x)
and c. For simplicity, we consider positive random variables,
i.e., f (x) with a positive support. In particular, three cases can
be distinguished:

(1) If f (x) decays slower than any exponential function
as x → ∞, then the record process does not reach a station-
ary limit for any c > 0, i.e., qk (R) and πk (n) do not have a
k-independent limiting distribution as k → ∞. The average
number of records 〈MN 〉 grows logarithmically with N as
in the standard record problem c = 0 (but with a different
subleading constant):

〈M〉N = ln N + O(1). (15)

(2) If f (x) decays faster than any exponential function as
x → ∞ (this includes bounded distribution), then the average
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number of records grows linearly with N at the leading order:

〈M〉N = A1(c)N + O(N ), (16)

where the amplitude A1(c) can be analytically determined
in some cases, e.g., for uniform f (x) over the interval [0,1]
[see Eq. (72)]. In this case, the record process also reaches
a stationary limit for all c > 0. We compute the stationary
record value distribution q(R) and the stationary age distribu-
tion π (n), analytically and numerically, in several examples
of f (R). In particular, for distributions with a finite support,
we show that π (n) decays exponentially with n for large n.
Finally, for distributions with unbounded support and f (x) →
e−xγ

as x → ∞ with γ > 1, we show that π (n) still has a
power-law tail with an exponent larger than 2.

The case f (x) = exp(−x) that separates these two behav-
iors turns out to be marginal, with a striking phase transition
at c = 1. While for 0 � c � 1, there is no limiting stationary
distribution for qk (R) and πk (n) as k → ∞, we show that for
c > 1, they do approach stationary distributions. In particular,
we find that for c > 1

q(R) = λ(c)e−λ(c) R, (17)

π (n → ∞) = λ(c)[1 − λ(c)]

n1+λ(c)
, (18)

where λ(c) is the unique positive root of the transcendental
equation:

c = − ln(1 − λ)

λ
. (19)

The average number of records 〈MN 〉 is computed exactly
in Eq. (36) and its large N behavior also exhibits a phase
transition at c = 1. we show that

〈M〉N =

⎧⎪⎨
⎪⎩

1
1−c ln N − μ(c) + O

(
1
N

)
0 � c < 1

ln2 N + O(ln N ) c = 1

A0(c)Nλ(c) + 1
1−c ln N + O(1) c > 1

,

(20)

where the exponent λ(c) depends continuously on c and is
given in Eq. (19). Note that λ(c) increases monotonically
with increasing c � 1: λ(c) → 0 as c → 1+, while λ(c) →
1 only when c → ∞. The explicit expression of the con-
stant A0(c) is given in Eq. (B17). The constant μ(c) can be
evaluated using the method explained in Appendix B. We
also provide careful numerical checks for all our analytical
formulas.

As mentioned in the introduction, precisely this marginal
case f (x) = e−x was also studied in Ref. [20] in the con-
text of RAW model in evolutionary biology, and indeed, this
striking phase transition at c = 1 was already noticed there.
In Ref. [20], two of the three observables, 〈MN 〉 and qk (R)
[but not πk (n)], were studied in detail, but using different
notations, language, and method. In order to compare our
results to those of Ref. [20], it is useful to provide a dictio-
nary of notations for the reader. In the limit of large genome
size L, the RAW model studied in [20] becomes equivalent,
in the ensemble sense, to our c-record model with N ∼ L.
In this limit, our average number of records 〈MN 〉 for large
N then translates to the mean length of the adaptive walk

DRAW(L ∼ N ) in [20] for large L. Furthermore, our record
value distribution qk (R) is precisely Ql=k (y = R, L → ∞),
the probability for the adaptive walker to take l = k steps
to arrive at a local fitness c(l − L) + y in the limit of large
genome size L → ∞. Hence, to summarize, for large L (or
equivalently for large N in our notation)

N ∼ L ; 〈MN 〉 ≡ DRAW(L ∼ N ),

qk (R) ≡ Ql=k (y = R, L → ∞). (21)

With the precise translation in Eq. (21) we can now com-
pare our results with those of Ref. [20]. We start with the
asymptotic large N behavior of the average number of records
〈MN 〉. For c � 1, our leading order large N results for 〈MN 〉
in Eq. (20) agree with that of Ref. [20], though the sub-
leading constant −μ(c) for 0 � c < 1 was not computed in
[20]. However, for c > 1, our result in Eq. (20) is much
richer (characterized by a power-law growth of 〈MN 〉 with
an exponent depending continuously on the parameter c) and
different from that of [20] where 〈MN 〉 ∼ O(N ) was reported
[see Eq. (15) of [20]]. We find that the growth of 〈MN 〉 with
increasing N becomes linear only when c → ∞, since only in
that limit λ(c) → 1 in Eq. (20).

Next we turn to qk (R) for c > 1. In this case, an exact
summation formula for qk (R) was derived for all c in [20] [see
their Eq. (8)]. In the limit k → ∞, this sum is convergent only
for c > 1. In Ref. [20] this sum was not analyzed in the limit
k → ∞, since they didn’t need it in their problem. In fact, it
can be checked that their Eq. (8), in the limit k → ∞ and for
c > 1, satisfies the fixed-point differential equation, q′(R) =
q(R + c) − q(R) [see later in Eq. (42)], whose solution is
precisely a single pure exponential q(R) = λ(c) e−λ(c) R, with
λ(c) given by the positive root of Eq. (19). This is a rather
nontrivial confirmation that two different methods lead to the
same solution.

Let us finally conclude this summary section by mention-
ing that we have also studied the correlations between record
values in the stationary state when it exists. In that case, the
sequence of records display remarkable clustering properties
(see Fig. 4, upper panel): after a large record value, we observe
other large record values followed by a swarm of smaller
record values. In the exponential case f (x) = e−x, we show
that the correlation between record values 〈RkRk+τ 〉 decreases
exponentially with increasing τ . The value of c controls the
correlation length: when c → 1 from above, the correlation
lengths diverges as ∼1/(c − 1)2 reminiscent of the critical
phenomena (see Fig. 8, below). We also study the clustering
property of record ages that correspond to avalanches (see
Fig. 4, lower panel). This property is qualitatively similar to
what is observed in seismic catalogs.

IV. SETTING UP THE RECURSION RELATIONS
FOR THE THREE OBSERVABLES

In this section, we show how to set up the basic recursion
relations to compute the three observables in the c-record
model: (1) the mean number of records 〈MN 〉 up to N steps,
(2) the distribution qk (R) of the value of the kth record, and
(3) the distribution πk (n) of the time interval nk between
the kth and the (k + 1)-th record. For simplicity, we will
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FIG. 4. Typical sequence of c-record values (upper panel) and
their ages (lower panel) computed from a series of exponential num-
ber and using c = 1.5. Note that large record values and large ages
are organized in well-defined clusters.

assume throughout that we have an infinite series of i.i.d.
entries {x1, x2, x3, . . .}, each drawn from a continuous f (x)
which has a positive support, i.e., the entries are non-negative
random variables.

A. The number of records

In this subsection we derive the exact recursion relation
that we have used to compute 〈M〉N . It turns out that the
main object that we need for this computation is the joint
probability density PN (M, RM = R) that in the first block of
size N of the infinite series of random entries there are exactly
M records and that the last record has value R. This quantity
PN (M, R) satisfies a closed recursion relation

PN (M, R) = PN−1(M, R)θ (R − c)
∫ R−c

0
f (x) dx

+ f (R)
∫ R+c

0
PN−1(M − 1, R′) dR′ (22)

with θ (x) the Heaviside step function. It is straightforward
to understand Eq. (22): the first term on the right-hand side
(r.h.s.) accounts for the event when the N th entry is not a
record, while the second term corresponds to the event when
the N th entry is a record. In the first case, given that the last
record has value R, the value of the N th entry xN must be less
than R − c which happens with probability

∫ R−c
0 f (x) dx. In

the second case, the N th entry is a record with value R, hence
the previous record R′ must be less than (R + c) explaining
the second term on the r.h.s. in Eq. (22). The recursion relation
(22) starts from the initial condition

P1(M, R) = δM,1 f (R), (23)

since the first entry, by convention, is a record. The recursion
relation (22), starting from (23), is nontrivial to solve since it
relates PN (M, R) at R to its integral up to R + c at step N − 1,
making it a nonlocal integral equation for any c > 0.

In order to compute 〈M〉N , namely, the average number
of records as a function of N , we introduce Q̃(R, z, s) as the
double-generating function of PN (M, R):

Q̃(R, z, s) =
∞∑

N=1

∞∑
M=1

PN (M, R)zN sM . (24)

Using Eq. (22) with the initial condition (23), we obtain the
following equation for (24):

Q̃(R)[1 − zF (R − c)θ (R − c)]

= zs f (R)

[
1 +

∫ R+c

0
Q̃(R′) dR′

]
. (25)

For simplicity, we omitted the arguments z and s of Q̃. Ev-
idently, Eq. (25) is also nonlocal with respect to R for any
c > 0.

Even though the full joint distribution PN (M, R) of the
number of records M and the last record value R is of in-
terest as it contains several interesting pieces of information,
we will focus on the simplest quantity, the mean number of
records 〈M〉N . To compute this, we need to extract PN (M ), the
distribution of the number of records M up to N steps. This is
obtained by integrating over the value R of the last record up
to N steps

PN (M ) =
∫ ∞

0
PN (M, R) dR. (26)

The double-generating function of PN (M ) is then related to
Q̃(R, s, z) simply by

∞∑
N=1

∞∑
M=1

PN (M )zN sM =
∫ ∞

0
Q̃(R, z, s)dR , (27)

where Q̃(R, z, s) is the solution of the integral equation (25).
Using Eq. (27), the average number of records can be obtained
from the relation

〈M〉N =
∞∑

M=1

M PN (M )

= 1

N!
∂N

z ∂s

∫ ∞

0
Q̃(R, z, s) dR |z=0,s=1. (28)

Solving the recursion relation (25) for arbitrary f (x) seems
hard. However, we were able to compute Q̃ and from it 〈MN 〉
explicitly for two special cases: the exponential distribution
f (x) = e−x θ (x) and the uniform distribution f (x) = I[0,1](x)
with I[a,b](x) denoting the indicator function which is 1 if x
belongs to the interval [a, b] and zero otherwise.

B. The record value distribution

In this subsection we derive an exact recursion relation for
the kth record value distribution qk (R) in the c-record model.
We start from the joint conditional probability q(R, n|R′) that,
given a record with value R′ has occurred at some instant
in the infinite sequence, the next record has value R and the
age of the current record with value R′ is n, i.e., there are n
steps separating the current record and the next record. This
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conditional probability can be very simply computed,

q(R, n|R′) =
⎧⎨
⎩

f (R) δn,1 R′ < c

f (R) [F (R′ − c)]n−1
θ (R − R′ + c) R′ > c

,

(29)

where we recall that F (R) = ∫ R
0 f (y) dy is the cumulative

distribution of each entry of the underlying time series.
Equation (29) is easy to interpret: when the previous record R′
is smaller than c, the very next entry with any positive value
R > 0 will be a record, indicating that n = 1 is the only pos-
sible value. In contrast, when R′ > c, assuming that there are
exactly n − 1 entries separating two successive records with
values R′ and R (with R > R′ − c), each of these intermediate
entries must be less that R′ − c (in order that none of them is a
record), explaining the factor [F (R′ − c)]n−1. The probability
that the nth entry is a record is simply f (R) θ (R − R′ + c). By
summing over all possible age values n � 1 we obtain the dis-
tribution of the next record value conditioned on the previous
one:

q(R|R′) =
∞∑

n=1

q(R, n|R′) = f (R) θ (c − R′)

+ f (R)

1 − F (R′ − c)
θ (R − R′ + c) θ (R′ − c). (30)

Equations (29) and (30) are particularly useful when simulat-
ing directly the c-record process (see Appendix G).

A recursion relation for qk (R) can then be set up using this
conditional probability q(R|R′) as

qk+1(R) =
∫ ∞

0
qk (R′) q(R|R′) dR′ = f (R)

∫ c

0
qk (R′) dR′

+ f (R)
∫ R+c

c

qk (R′)
1 − F (R′ − c)

dR′, (31)

with the initial condition q1(R) = f (R). This relation can be
easily understood as follows. The first term takes into account
the event when the record R′ is in the range 0 � R′ � c. In this
case, the entry immediately after this record is a record with
probability f (R). The second term on the r.h.s. in Eq. (31)
accounts for the contributions coming from the case when
c � R′ � R + c. In this case, one needs to use q(R|R′) from
Eq. (30) and integrate over all allowed values of R′. This rela-
tion (31) was also derived in [20] using different notations and
for different observables, in the context of the RAW model
of evolutionary biology. Furthermore, for c = 0, this relation
was used in Ref. [13] for studying the global temperature
records.

When the stationary limit of qk (R) exists, q(R) =
limk→∞ qk (R) has to satisfy the following fixed-point equa-
tion:

q(R) = f (R)
∫ c

0
q(R′) dR′

+ f (R)
∫ R+c

c

q(R′)
1 − F (R′ − c)

dR′. (32)

This is also a nonlocal differential equation for any c > 0
and is hard to solve for general f (x). Again, we will see

later that for f (x) = e−xθ (x) (with c > 1) and for the uniform
distribution, it is possible to obtain explicitly the fixed-point
stationary solution of Eq. (32).

C. The age distribution of records

In this subsection, we derive a recursion relation for
πk (n) = Prob.(nk = n) denoting the distribution of the age nk

of the kth record, in an infinite i.i.d. series. The distribution
πk (n) can be obtained from the previously defined conditional
probability q(R, n|R′) (29) and the record value distribution
qk (R) as follows:

πk (n) =
∫ ∞

0

∫ ∞

0
q(R, n|R′) qk (R′) dR dR′

= δn,1

∫ c

0
qk (R′) dR′ +

∫ ∞

c
[1 − F (R′ − c)]

× F n−1(R′ − c)qk (R′) dR′, (33)

where we used F (R′ − c) = 0 if R′ − c � 0. The stationary
distribution π (n), when it exists, is obtained by taking the
limit limk→∞ πk (n) and using q(R) = limk→∞ qk (R):

π (n) = δn,1

∫ c

0
q(R′) dR′ +

∫ ∞

c
[1 − F (R′ − c)]

× F n−1(R′ − c) q(R′) dR′. (34)

Thus, knowing the fixed-point distribution q(R) of the record
value when it exists, one can compute the stationary age distri-
bution using Eq. (34). Later we will compute π (n) explicitly
for the two solvable cases: the exponential distribution f (x) =
e−xθ (x) with c > 1 and the case of the uniform distribution
over [0,1].

V. EXPONENTIAL CASE

In this section we study in detail the exponential case with
f (x) = exp(−x) θ (x).

A. Number of records

For the exponential distribution Eq. (25) reduces to

Q̃(R)
[
1 − z(1 − e−(R−c) )θ (R − c)

]
= z s e−R

[
1 +

∫ R+c

0
Q̃(R′) dR′

]
. (35)

The nonlocality manifest in Eq. (25) makes it hard to find its
general solution. Remarkably, for the exponential f (x), this is
possible. Performing a rather involved calculation, reported in
Appendix A, we computed the generating function for PN (M )
defined in Eq. (27). Its explicit form is given in Eq. (A10)
from which we extracted the average number of records 〈M〉N ,
obtaining

〈M〉N = N!
N−1∑
m=0

(−1)m

∏m
k=1(k − 1 + e−kc)

(m + 1)!2(N − m − 1)!
. (36)
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FIG. 5. Exponential case: Mean number of c-records for c = 1.5.
Blue symbols correspond to numerical data. Black dashed line cor-
responds to the analytical prediction for the leading term A0(c)Nλ(c).
The values of the constants are A0(1.5) = 3.4376, λ(1.5) = 0.5828
[obtained from Eqs. (19) and (B17) using Mathematica]. Inset:
the subleading behavior 〈	M〉N = A0(c)Nλ(c) − 〈M〉N . Black dashed
line corresponds to − 1

1−c ln N .

This result for 〈MN 〉 is exact for all N � 1. For example, the
first few values of N yield

〈M〉1 = 1, (37)

〈M〉2 = 2
(
1 − 1

4 e−c
)
, (38)

〈M〉3 = 3
[
1 − 4

9 e−c + 1
18 e−3c

]
. (39)

A nontrivial check of Eq. (36) is for c = 0. By plugging
c = 0 the term

∏m
k=1(k − 1 + e−kc) simplifies to k!. Thus

Eq. (36) becomes

〈M〉N =
N−1∑
m=0

(
N

m + 1

)
(−1)m 1

(m + 1)
. (40)

The above expression can be shown to coincide with the well-
known result 〈M〉 = 1 + 1/2 + 1/3 + · · · + 1/N . This can be
done by considering the difference 〈M〉N − 〈M〉N−1. While
the exact formula (36) is useful to compute the result for
moderate values of N , the asymptotic behavior of 〈M〉N for
large N is difficult to extract from it.

Indeed, to extract the large N behavior, we use a different
approach reported in Appendix B, which leads to our main
result in Eq. (20) and shows the existence of a phase transition
at c = 1. The presence of the phase transition at c = 1 in
the asymptotic behavior of 〈MN 〉 in Eq. (20) is also related
to the fact that both qk (R) and πk (n) has stationary limiting
distributions as k → ∞, only for c > 1 as shown in the next
Sec. V B. To check the validity of our analytical prediction we
also performed direct numerical simulations using N = 106

random variables and averaging over 104 realizations. The
results are shown in Fig. 5 for c = 1.5 and in Fig. 6 for
c = 0.5, as well as for the marginal case c = 1. For details
of the numerical simulation methods see Appendix G.

FIG. 6. Exponential case: mean number of c-records for c = 0.5
(red circles) and for c = 1 (orange circles). Circles are numerical
data. Black dashed lines correspond to the analytical predictions of
Eq. (20) for the leading term. For c = 0.5 we find μ(c) = 1.42878 . . .

computed using Mathematica with the method of Appendix B.

B. Stationary record and age statistics

The solution of Eq. (31) for a given k has been studied by
Park et al. [20] for the case f (x) = exp(−x) θ (x). Here we
focus instead on the stationary limit and we seek the solution
of Eq. (32). By taking a derivative with respect to (w.r.t.) R of
Eq. (32) we get

q′(R) = f (R)

1 − F (R)
q(R + c) + f ′(R)

f (R)
q(R). (41)

For the exponential case, using f (R) = exp(−R) and 1 −
F (R) = exp(−R), Eq. (41) reduces to

q′(R) = q(R + c) − q(R). (42)

To solve this equation we use the ansatz:

q(R) = λ e−λR. (43)

Equation (42) becomes

1 − λ = e−λc. (44)

A positive solution for λ = λ(c) exists only for c > 1. This
means that for c � 1 there is no stationary regime. This
conclusion was already pointed out in [20] based on scaling
arguments and numerical simulations. Here we perform an ex-
plicit calculation which is also confirmed by the independent
calculation of the large N expansion of 〈M〉N report in the
Appendix B. The stationary average record value is 1/λ(c)
(see inset of Fig. 7) and has the following limiting behaviors:

〈R〉(c) = 1/λ(c) =
{

1/2(c − 1) c → 1+
1 c → ∞ . (45)

The divergence as c → 1+ is one of the fingerprints of the
absence of a stationary state for c � 1.

We now turn to the age distribution πk (n). As in the case of
qk (R), a stationary distribution π (n) in the limit k → ∞ exists
only for c > 1. For c � 1, πk (n) depends explicitly on k even
in the k → ∞ limit. To derive the stationary age distribution
π (n) for c > 1, we substitute q(R) from Eq. (43) into Eq. (34).
Upon carrying out the integration explicitly, we obtain the
following exact expression of π (n) in the stationary state valid
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FIG. 7. Exponential case: age statistics of the stationary c-
records process for c = 1.5 (blue circles) and for c = 1.1 (green
circles). Numerical data are averaged over 104 realizations. Black
dashed line corresponds to the analytical predictions of Eq. (46). The
inset shows λ(c) as a function of c.

for all n � 1 and c > 1:

π (n) = λδn,1 + (1 − λ)
λ
(n)
(λ + 1)


(n + λ + 1)
, (46)

where 
(z) = ∫ ∞
0 e−x xz−1 dx is the standard Gamma func-

tion. The stationary age (or avalanche size) distribution π (n)
is then the sum of two contributions: a delta peak at n = 1
and the Yule-Simon form for n � 1. Using the asymptotic be-
havior, 
(n)
(α)/
(n + α) → 1/nα for large n, we unveil a
beautiful power-law behavior of the stationary age distribution
(see Fig. 7),

π (n → ∞) = λ(1 − λ)

n1+λ
, (47)

where λ ≡ λ(c) is given by the positive root of Eq. (44) for
c > 1. Note that the power-law exponent (1 + λ(c)) continu-
ously varies with c. When c → ∞, the exponent λ(c) → 1,
thus strengthening the amplitude of the delta peak and in ad-
dition, for large n, the power-law tail behaves as π (n) ∼ 1/n2.

We now show that the power-law decay of π (n) ∼
n−(1+λ(c)) for large n in Eq. (47) for c > 1 is completely
consistent with the result 〈MN 〉 ∼ Nλ(c) for large N in the
third line of Eq. (20). To see this, we use a simple scaling
argument. Given π (n) ∼ n−(1+λ(c)) for large n and the length
of the series N , the mean interrecord distance (mean age of a
record) scales, for large N , as

〈n〉 =
N∑

n=1

n π (n) ∼ N1−λ(c). (48)

Consequently, the mean number of records, which is identical
to the mean number of interrecord intervals, up to step N
scales for large N as

〈MN 〉 ∼ N

〈n〉 ∼ Nλ(c), (49)

which reproduces the third line of Eq. (20) for c > 1. In
Appendix A this result is proved more rigorously.

FIG. 8. Upper panel: record correlation function numerically
computed as in Eq. (50). Lower panel: correlation length ξ (c) as a
function of c − 1. We fitted an exponent ν ≈ 2.

C. Record correlations

One of the most interesting features of the c-records statis-
tics is shown in Fig. 4. We focus on a sequence of records
when the stationary regime is already reached. The sequence
tends to cluster in patterns where record values are high, fol-
lowed by events of smaller value. The corresponding sequence
of ages shows a similar behavior: when the record values are
high we observe large ages, while the age is of the order 1
when the records are small.

To understand this behavior we can first observe that in
the classical record case c = 0, even if there is no stationary
regime, all the records values are strongly correlated. As a
fingerprint of this, the sequence of record values is strictly
increasing. For c > 0 this is not always the case. For example
we know that the c-record process of an exponential series
with c > 1 has a stationary state and the correlations have
a finite range (which corresponds to the typical size of the
correlated patterns in Fig. 4). To characterize this behavior we
focus on the record values and study the following correlation
function:

ρc(τ ) ≡ Cov(RkRk+τ )

Var(Rk )
. (50)

By definition ρc(0) = 1. In Appendix C we compute the cor-
relation between two successive records, ρc(1), which reads

ρc(1) = [1 − λ(c)]{1 − ln[1 − λ(c)]}. (51)

When c → ∞, from Eq. (19), λ(c) → 1 and ρc(1) → 0. This
means that when c → ∞ the records become uncorrelated.
Indeed, every random variable {x1, x2, . . . } becomes a record.
On the other hand as c → 1, λ(c) → 0 and ρc(1) → 1. This
result signals that the correlations are very strong, and we
study numerically how fast they decay for the exponential
case. In Fig. 8 we compute the correlation function (50)
of a stationary record sequence for the exponential distri-
bution and for different values of c. As in standard critical
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phenomena, the correlation length diverges when one ap-
proaches the critical point c = 1. The numerical curves in
Fig. 8 are well fitted by an exponential law as ρc(τ ) =
exp[−τ/ξ (c)]. Using this fit we estimate the correlation
length and find that it diverges as ξ (c) ∼ 1/(c − 1)ν , with ν ≈
2 (see Fig. 8). This result is coherent with the estimation of
ξ (c) via ξ (c) ∼ −1/ ln ρc(1) coming from exp[−1/ξ (c)] =
ρc(1). Indeed as c → 1, λ(c) ∼ 2(c − 1) and −1/ ln ρc(1) ∼
(c − 1)−2.

VI. STRETCHED EXPONENTIAL f (x)

Let us recall from the summary of results in Sec. III that
a stationary limiting distribution for qk (R) and πk (n) exist
for any c > 0, if f (x) decays faster than e−x for large x.
In the complementary case when f (x) has a slower than
exponential tail, there is no stationary limiting distribution.
In the borderline case f (x) = e−x one has a phase transition
at c = 1, separating the nonstationary phase (c � 1) and the
stationary phase (c > 1), as demonstrated in detail in the
previous section. In this section, we will investigate the two
complementary cases of f (x): respectively, with a “faster” and
a “slower” than exponential tail. We will do so by choosing
f (x) from the stretched exponential family, defined on the
positive real axis x � 0,

fstretched(x) = γ



(

1
γ

) e−xγ

for γ > 0, (52)

with cumulative Fstretched(x) = 1 − 
( 1
γ
,xγ )


( 1
γ

)
, where 
(s, t ) =∫ ∞

t xs−1e−x dx the incomplete gamma function. This family
of f (x) in Eq. (52) includes the “borderline” exponential as
the special case γ = 1. Furthermore, the case γ > 1 would
correspond to a “faster” than exponential, while γ < 1 would
correspond to “slower” than exponential tail.

The reason why γ = 1 is a borderline case, i.e., why the
presence of a finite c > 0 affects the record statistics differ-
ently for γ < 1 and γ > 1 can be understood intuitively using
the extreme value statistics as follows. Consider first c = 0.
Let us consider the first N steps of the infinite i.i.d. sequence.
The value of the last record in this series of size N then
coincides, for c = 0, with the global maximum Xmax up to N
steps. For the stretched exponential f (x) in Eq. (52), it is well
known from the theory of extreme value statistics (for a recent
review see [68]) that while the mean value 〈Xmax〉 ∼ (ln N )1/γ

for large N , the variance scales as

σ 2 = 〈
X 2

max

〉 − 〈Xmax〉2 ∼ (ln N )2(1−γ )/γ . (53)

Hence, for 0 < γ < 1, the width of the fluctuation grows with
increasing N , while for γ > 1 it decreases for large N . Now,
imagine switching on a small c > 0. If 0 < γ < 1, an addition
of a finite offset c will not affect the record statistics, since it
is much smaller than the fluctuation of the record value for
large N . In contrast, for γ > 1 where the width is of O(1)
for large N , the record value and its statistics will obviously
be more sensitive to a finite offset c. The case γ = 1 is thus
marginal. In fact, this change of behavior at γ = 1 for the
stretched exponential family was also noticed in the asymp-
totic behavior of the density of near extreme events, i.e., the
density of entries near the global maximum in an i.i.d. series

FIG. 9. Phase diagram for the stretched exponential case. For
γ < 1 no stationary limit exists for any c > 0 while for γ > 1 it
always exists. The exponential distribution γ = 1 corresponds to the
marginal case, for which a stationary state exists only for c > 1.

[69]. Below we will provide a more precise derivation of this
change of behavior in the record statistics at γ = 1 due to a
nonzero c > 0.

In this section, for simplicity we focus only on one observ-
able: the record value distribution qk (R). Our main goal here
is to understand the criteria for having a stationary distribution
for qk (R) in the limit k → ∞. The other two observables
〈MN 〉 and πk (n) can also be studied in principle, but we will
skip them here for brevity. For the c-record model with f (x)
belonging to this class, we then have two parameters (γ , c).
Our goal is to find in which region in the (γ � 0, c � 0)
quadrant, we have a stationary solution for qk (R) → q(R) as
k → ∞. We will show that this leads to an interesting phase
diagram shown in Fig. 9.

We start from the general recursion relation for qk (R) in
Eq. (31), valid for general f (x). We assume that there exists a
stationary solution q(R) which would then satisfy the integral
equation (32). Our strategy would be to find, for f (x) given in
Eq. (52), if Eq. (32) allows a normalizable solution q(R). If it
does not, there is no stationary solution. For later analysis, it
is first convenient to define

q(R) = f (R) G(R) (54)

and rewrite Eq. (32) as

G(R) =
∫ c

0
G(R′) f (R′) dR′ +

∫ R+c

c

G(R′) f (R′)
1 − F (R′ − c)

dR′,

(55)

where we recall F (R) = ∫ R
0 f (y) dy. By taking a derivative

with respect to R one gets

G′(R) = f (R + c)

1 − F (R)
G(R + c). (56)

This is a first-order nonlocal differential equation. We need
only one “boundary” condition, i.e., the value of G(R) at some
point R, to fix the solution uniquely. To find such a condition,
we note that the solution of this differential equation need, in
addition, to satisfy the original integral equation (55). Substi-
tuting, e.g., R = 0 in Eq. (55) gives a condition

G(0) =
∫ c

0
G(R′) f (R′) dR′. (57)
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This shows that G(0) is a constant and the solution must
satisfy this condition (57) self-consistently. Another compat-
ibility condition follows by investigating the large R limit of
Eq. (55). If the limit G(∞) exists, one obtains

G(∞) =
∫ c

0
G(R′) f (R′) dR′ +

∫ ∞

c

G(R′) f (R′)
1 − F (R′ − c)

dR′.

(58)

For arbitrary f (x), it is hard to find a general solution to
Eq. (56) with boundary condition (57) or (58). Hence, below
we focus on the stretched exponential class in Eq. (52), for
which the first-order Eq. (56) reduces to

G′(R) = e−(R+c)γ[∫ ∞
R dR′e−R′γ ] G(R + c). (59)

Note that for γ = 1, Eq. (59) reduces to G′(R) = e−c G(R +
c) and this leads to the nontrivial solution q(R) = λ(c) e−λ(c) R

for all R � 0 with λ(c) given in Eq. (44), as discussed in the
previous section.

The case c = 0 and arbitrary γ > 0. Let us first start
with c = 0 case with arbitrary γ > 0. In this case, Eq. (59)
becomes local in R whose general solution can be easily
found,

G(R) = G(R0)

∫ ∞
R0

e−xγ

dx∫ ∞
R e−xγ dx

, (60)

where R0 is arbitrary. The condition (57) says that for c = 0,
G(0) = 0 identically. If we choose R0 = 0 in Eq. (60), then
using G(0) = 0, we see that the only possible solution for
G(R) is just G(R) = 0 for all R. Consequently, using Eq. (54),
we get Q(R) = 0 which evidently cannot be normalized to
unity. This indicates that there is no stationary solution q(R)
for c = 0 and arbitrary γ > 0. In other words, there is no
stationary solution on the horizontal axis c = 0 in the phase
diagram in Fig. 9.

The case 0 < γ < 1 and arbitrary c > 0. In this case,
we want to show that there is no limiting stationary solu-
tion q(R) (see the red shaded region in the phase diagram
in Fig. 9). In other words, we will show that a solution
to Eq. (56) satisfying the condition (58) does not exist for
γ < 1 with c � 0 arbitrary. To show this, it is sufficient to
investigate Eq. (56) for large R, keeping c � 0 fixed. For
large R, let us first assume that the limit G(∞) in Eq. (58)
exists. Since G(R) approaches a constant as R → ∞, it fol-
lows that for any arbitrary c � 0 and large R, we must have
G(R + c) → G(∞) on the r.h.s. of Eq. (56). This gives, for
large R,

G′(R) ≈ G(∞)
e−(R+c)γ[∫ ∞

R dR′ e−R′γ ] . (61)

Now consider first the large R behavior of the denominator on
the r.h.s. of Eq. (61). It is easy to show that, to leading order
for large R, ∫ ∞

R
e−R′γ

dR′ ≈ 1

γ
Rγ−1 e−Rγ

. (62)

Substituting this in Eq. (61) one obtains for large R and for
any γ > 0:

G′(R) ≈ G(∞) γ Rγ−1 e−(R+c)γ +Rγ

≈ G(∞) γ Rγ−1 e−γ c Rγ−1
. (63)

Consider now the case 0 < γ < 1. In this case, the argument
of the exponential on the r.h.s. of Eq. (63) vanishes, i.e.,
e−γ c Rγ−1 → 1 as R → ∞. Consequently, integrating Eq. (63),
one finds that G(R) ∼ Rγ actually grows with increasing R
for γ < 1. But this is incompatible with the condition (58)
and our starting assumption G(∞) is finite. In fact, this is
also incompatible with the original integral equation (55). As
R → ∞, the l.h.s of Eq. (55) grows as Rγ , while the r.h.s. ap-
proaches a constant since the integral on the r.h.s is convergent
as R → ∞. Hence we conclude that for 0 < γ < 1 and c � 0,
there is no stationary solution for G(R), and equivalently for
q(R) leading to the (red) shaded area of the phase diagram in
Fig. 9.

The case γ > 1 and arbitrary c > 0. Let us first check that
in this case there is no obvious incompatibility between the
large R behavior in Eq. (63) and the original integral equation
(55). Indeed, for γ > 1, the exponential factor e−γ c Rγ−1

on
the r.h.s. of Eq. (63) decays rapidly, and integrating over R
we find that G(R) approaches a constant as R → ∞, which
is perfectly compatible with Eq. (55) in the large R limit, or
equivalently with Eq. (58). This already indicates that there is
a normalizable stationary solution for any c > 0 and γ > 1.
To compute explicitly this solution for arbitrary c > 0 (and
γ > 1) still seems rather hard. Below we compute this station-
ary distribution for γ > 1 in two opposite limits: (1) c → 0+
and (2) c → ∞ limit.

The limit c → 0+ and γ > 1 arbitrary. We start with the
c → 0 limit with fixed γ > 1. We fix R in Eq. (59) and take
the limit c → 0+. To leading order for small c, we can ap-
proximate G(R + c) ≈ G(R) to make Eq. (59) local and also
expand (R + c)γ ≈ Rγ + γ c Rγ−1 up to O(c) with R fixed.
Equation (59) then reduces to

1

G(R)

dG(R)

dR
≈ e−Rγ −c γ Rγ−1[∫ ∞

R dR′ e−R′γ ] ≡ gc(R). (64)

Note that only c-dependence appears through the factor
c γ R′γ−1 inside the exponent in gc(R). For γ > 1, this term
contributes significantly for large R, even when c → 0+.
Hence, we cannot neglect this c-dependent term, especially
for large R. One can then easily integrate Eq. (64) and obtain
the solution as

G(R) ≈ G(0) exp

[∫ R

0
gc(x) dx

]
, (65)

where G(0) is a constant and gc(x) is defined in Eq. (64). It
is easy to show that for large x, gc(x) behaves as gc(x) ≈
γ xγ−1 e−γ c xγ−1

. Hence for γ > 1, the integral
∫ ∞

0 gc(x) dx
is perfectly convergent and is just a constant. Conse-
quently, we find from Eq. (65) that G(R) → G(∞) =
G(0) exp[

∫ ∞
0 gc(x) dx] as R → ∞. Thus the stationary solu-

tion q(R) in this c → 0+ limit is given by

q(R) ≈ γ



(

1
γ

) e−Rγ

G(R) ≈ f (R) G(R), (66)
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where the function G(R), given in Eq. (65), is well defined
for any R as long as c → 0+ (nonzero) and γ > 1. Thus, in
the c → 0 limit, the stationary record value distribution q(R)
gets modified considerably from the parent distribution f (R)
by the multiplicative factor G(R).

The limit c → ∞ and γ > 1 arbitrary. Next we consider
the opposite limit c → ∞. When c → ∞ every random vari-
able in the series {x1, x2, x3, . . .} is a record, hence q(R) =
f (R) and G(R) = 1 for all R � 0. Now consider c large,
but not strictly infinite. In this case, the function G(R) will
change from its flat value G(R) = 1, which is valid strictly for
c → ∞. However, we expect that G(R), in the limit R → ∞,
is not very sensitive to c, i.e., G(∞) = 1 even for finite but
large c. However, for finite but fixed R, we expect that G(R)
will deviate from its flat value 1. To find this change in G(R)
for fixed R, to leading order for large c, we can use the ap-
proximation G(R + c) ≈ 1 on the r.h.s. of Eq. (59) and solve
the resulting first-order local equation, leading to the solution

G(R) = 1 −
∫ ∞

R

e−(R′+c)γ[∫ ∞
R′ e−xγ dx

] dR′, (67)

where we used the expected boundary condition G(∞) = 1
mentioned above. For fixed R and large c, we can approx-
imate (R + c)γ ≈ cγ + γ cγ−1 R. Using this approximation
in the numerator of the integrand in Eq. (67) and rescaling
z = γ cγ−1 R′, we find that for γ > 1 and in the scaling limit
c → ∞, R → 0 such that the product cγ−1 R is fixed:

G(R) ≈ 1 − e−cγ

cγ−1 

(

1
γ

) e−γ cγ−1 R. (68)

This is clearly compatible with the starting ansatz that
G(∞) = 1. Finally, using this in Eq. (54) we get the stationary
solution for γ > 1 and large c limit:

q(R) ≈ f (R)

[
1 − e−cγ

cγ−1 

(

1
γ

) e−γ cγ−1 R

]
. (69)

Thus, in the c → ∞ limit, q(R) approaches f (R) with a small
additive correction term as given in Eq. (69).

Summarizing, for γ > 1 in the phase diagram in Fig. 9, the
record value distribution becomes stationary for large k, for
any c > 0. In the two limits c → 0 and c → ∞, the stationary
distribution q(R) is given, respectively, in Eqs. (66) and (69).
We have checked these results numerically in Fig. 10 for γ =
2. In this figure, we see that as c increases, q(R) progressively
approaches f (R).

We have also computed numerically the mean number of
records 〈MN 〉 up to N steps. As indicated in the phase diagram
in Fig. 9, we expect that for 0 < γ < 1 the record process
is nonstationary, i.e., the effect of c is insignificant and the
system behaves similar to c = 0. Hence in this regime (red
shaded region in the phase diagram in Fig. 9, we expect
〈MN 〉 � ln N for large N , for any c > 0. This prediction is
verified numerically in Fig. 11, for γ = 1/2 and for several
values of c. In contrast, for γ > 1 and c > 0 (blue shaded
region in the phase diagram in Fig. 9), we have a stationary
phase. In this case, we expect a linear growth 〈MN 〉 � A1(c) N
for large N , with an c-dependent amplitude A1(c) � 1. In
the limit c → ∞, we expect A1(c) → 1, since every entry

FIG. 10. Stretched exponential case: stationary record distribu-
tions q(R) at γ = 2 and for different c. As c gets bigger, q(R)
approaches f (R).

becomes a record in this limit. In Fig. 12 we verify this
prediction for fixed γ = 2 and for several values of c.

VII. OTHER DISTRIBUTIONS

In this section, we study other classes of f (x). First, we
consider the uniform distribution of f (x) over the bounded
interval [0,1] for which we present exact analytical results
for all three observables 〈MN 〉, qk (R), and πk (n). We then
consider more general bounded distributions. Bounded dis-
tributions belong to the family of f (x) with a “faster than”
exponential tail, hence we anticipate and demonstrate below
that both qk (R) and πk (n) allow stationary limiting distribu-
tions as k → ∞ for bounded f (x). We then consider another
class of unbounded distribution, which we call the Weibull
class

fWeibull(x) = γ xγ−1 e−xγ

for γ > 0 (70)

with FWeibull(x) = 1 − e−xγ

. It turns out that this f (x) is easier
to sample numerically using the inverse Transform method,

FIG. 11. Stretched exponential case: logarithmic growth of the
mean number of c-records for different c and γ = 0.50. The dashed
line is a guide to the eye.
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FIG. 12. Stretched exponential case: linear growth of the mean
number of c-records for different c and γ = 2.

as explained in Appendix G. We present detailed numerical
results for all three observables 〈MN 〉, qk (R) and πk (n) for this
case.

A. Bounded distributions

The c-record process associated to i.i.d. time series drawn
from bounded distributions has a well-defined stationary limit
for any c > 0. For simplicity we restrict the interval to the
segment [0,1]. This implies that for any c > 1, every entry xi

of the time series is a record.

B. Uniform distribution

We first consider the uniform distribution f (x) = I[0,1](x)
and show that the mean number of records, the stationary
record distribution and their age distribution can be explicitly
computed for 1/2 � c � 1. For 0 < c < 1/2. the calculations
are more cumbersome and we rely on Monte Carlo simula-
tions.

To computed the mean number of records we study
Eq. (25) for the uniform distribution. Its expression simplifies
to

Q̃(R)[1 − z(R − c)θ (R − c)]

= z s + z s
∫ min(1,R+c)

0
Q̃(R′) dR′. (71)

This equation is solved in Appendix D for 1/2 � c � 1 and
the exact mean number of records reads

〈M〉N = [2 − c + ln(c)]N + 1 − c

c
+ ln(c). (72)

Note that when c = 1, we get 〈M〉N = N as expected. In
Fig. 13 we numerically computed 〈M〉N for different values of
c and included the analytical predictions for 1/2 � c � 1/2.

The stationary record distribution q(R) satisfies Eq. (41)
together with the condition that q(R) = 0 for R > 1:

q′(R) =
{

0 1 − c < R < 1
q(R+c)

1−R 0 < R < 1 − c
. (73)

Equation (73) is valid for any 0 � c � 1. For c � 1/2, it
can be simply solved. In particular, imposing the global

FIG. 13. Uniform case: mean number of c-records for different
c. For c � 1/2 we include the analytical predictions in Eq. (72) as
shown by dashed lines. The agreement is excellent.

normalization, one gets

q(R) = 1

2 − c + ln(c)

{
1 1 − c < R < 1

1 − ln 1−R
c 0 < R < 1 − c

. (74)

In Fig. 14 (upper panel) we show q(R) for different values of
c along with the analytical predictions for 1/2 � c � 1.

The stationary age distribution π (n) (for 1/2 � c � 1) fol-
lows from Eqs. (34) and (74):

π (n) = 1 + ln(c)

2 + ln(c) − c
δn,1

+ 1

2 + ln(c) − c

(1 − c)n

n

[
1 − n(1 − c)

n + 1

]
. (75)

π (n) shows a delta peak at n = 1, as in the exponential case.
For large n, π (n) decays exponentially over a characteristic
scale −1/ ln(1 − c) that gets smaller as c → 1. The fact that
π (n) has a well-defined first moment is compatible with the

FIG. 14. Record (upper panel) and age (lower panel) distribu-
tions for various c for the uniform distribution. Analytical results of
Eqs. (74) and (75) are shown by solid lines in the upper panel.
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FIG. 15. Record (upper panel) and ages (lower panel) distribu-
tions for various c for the bounded case with cumulative distribution
F (x) = 1 − (1 − x)2 with 0 � x � 1.

scaling of the average number of records, namely, 〈M〉N ∝ N
as N → ∞.

C. Generic bounded distributions

The c-record process associated to a generic bounded
distribution is more difficult to characterize analytically. How-
ever, some of the features that we found for the case of the
uniform distribution remain valid. In particular for any value
of c the mean number of records grows linearly with N (at
large N) and the stationary distribution of ages displays an ex-
ponential cutoff. As an illustration we studied numerically the
family of distribution with cumulative F (x) = 1 − (1 − x)ν .
The uniform distribution corresponds to ν = 1. In Fig. 15 we
report our results for ν = 2: in the upper panel the study of the
stationary record distribution q(R) and in the lower panel the
age distribution π (n).

D. Numerical results for the Weibull family

In this section we briefly summarize the numerical results
for 〈M〉N q(R), π (n) for the Weibull family. In Fig. 16 we
show the mean number of records 〈M〉N as a function of N
for 103 realizations of the c-record process. For large enough
N the scaling 〈M〉N ∝ N is recovered. In Fig. 17 we show the
stationary record distribution for the Weibull distribution at
γ = 2. We find a stationary distribution for any c > 0. As c
gets bigger, q(R) approaches f (R), as expected. In Fig. 18 we
show the average record 〈R〉γ (c) as a function of c for different
γ . We also insert the scaling as c → 0+ of the average record
value obtained using the argument in Appendix F:

〈R〉γ (c) ≈ (cγ )
1

γ−1 . (76)

Finally Fig. 19 shows the age of record distributions at γ = 2
for different values of c. The distributions have a power-law
decay as n → ∞ with an exponent τ � 2: π (n) ∼ n−τ . This
numerical result is compatible with the scaling 〈M〉N ∝ N of

FIG. 16. Weibull case with γ = 2 mean number of c-records for
various c. As c gets smaller the converges to 〈M〉N ∝ N gets slower.

the average number of records since a power law with τ � 2
has a well-defined first moment.

VIII. GENERALIZATIONS OF THE RECORD PROCESS

Before the conclusion we would like to discuss some pos-
sible generalizations of the c-record problem. For simplicity
here we focus only on the conditions for the existence of
a stationary record distribution and on its form. We let the
calculations of the mean number of records and of the age
statistics to future works. A few protocols can be considered
as a straightforward generalization of the c-record process:

(1) The constant c can be promoted to be a positive ran-
dom variable with distribution g(c). For f (x) = e−xθ (x) the
fixed-point equation for the stationary record distribution, av-
eraged over all possible values of c (annealed average), writes

q′(R) =
∫ ∞

0
g(c)q(R + c) dc − q(R). (77)

Remarkably this equation admits an exponential solution
q(R) = λe−λR if the equation

1 − λ = g̃(λ) ≡
∫ ∞

0
e−λcg(c) dc (78)

FIG. 17. Record distributions for the Weibull family with γ = 2
for various c.

064129-15



SCHIMMENTI, MAJUMDAR, AND ROSSO PHYSICAL REVIEW E 104, 064129 (2021)

FIG. 18. Average record value for various γ and c for the Weibull
family. We plot with the dashed black line the expected scaling of the
average for c → 0+ [see Eq. (76)].

has a positive solution λ. For example if g(c) is an exponential
distribution, a stationary state is reached if its mean is bigger
than 1.

(2) The definition of the c-record can be extended with a
function c(R), namely, Rk is a record if Rk > Rk−1 − c (Rk−1).
As a concrete example one can consider c(R) = c R with c <

1 (for c � 1 all the values of the time series are records):

Rk > (1 − c) Rk−1. (79)

The fixed-point equation for the stationary record distribution
q(R) satisfies

q′(R) = f (R)

1 − F (R)

1

1 − c
q

(
R

1 − c

)

+ f ′(R)

f (R)
q(R). (80)

Equation (80) becomes simple for a Pareto distribution f (x) =
α

xα+1 θ (x − 1):

q′(R) = α

R(1 − c)
q

(
R

1 − c

)
− α + 1

R
q(R). (81)

FIG. 19. Age of record numerical distributions for the Weibull
family at γ = 2 and varying c. All the distributions show a power-law
tail with exponent � 2.

The stationary state exists for c > 1 − e− 1
α and the solution of

(81) still a Pareto distribution q(R) = β

Rβ+1 θ (R − 1) with β the
unique positive solution of the transcendental equation

1 − β

α
= (1 − c)β. (82)

The records generated by this process are equivalent to the c-
records discussed in this paper via the map Rk → ln Rk . Under
this mapping the Pareto distribution becomes the exponential
distribution.

(3) Finally we consider the k-dependent record condition

Rk > Rk−1 − c(k + 1)b−1 (83)

for a constant b > 0. This protocol has been considered in
[22] in the context of evolutionary biology: the quantity
c(k + 1)b−1 is called handicap and the analysis is carried out
for both increasing b > 1 and decreasing b < 1 handicaps.
The case b = 1 coincides with the c-record process. We refer
the reader to the original work [22] for details.

IX. CONCLUSION

In this paper, we have shown that a simple record model
of an i.i.d. series, which we call the c-record model, can be
successfully used to understand and explain several realis-
tic features of avalanche statistics in disordered systems, an
example being the earthquake dynamics in seismicity. This
model has a single parameter c � 0 and the other input is the
distribution f (x) of an entry. We have focused on three natural
observables: (1) the mean number of records 〈MN 〉 up to step
N in an infinite series, (2) the distribution qk (R) of the value
of the kth record and, (3) the distribution πk (n) of the time
interval n between the kth and the (k + 1)-th record.

One of our main conclusions is that if f (x) decays, for
large x, slower than an exponential, both qk (R) and πk (n)
do not have stationary limits as k → ∞ and 〈MN 〉 ∼ ln N
for large N , as in the c = 0 case. Thus the effect of c is
not very significant for f (x) with a slower than exponential
tail. In contrast, if f (x) has a faster than exponential tail,
both qk (R) → q(R) and πk (n) → π (n) approach stationary
limiting forms as k → ∞. In particular, we show that π (n)
decays faster than 1/n2 for large n (indicating that 〈n〉 is
finite). Additionally, in this case, the mean number of records
grows linearly as 〈MN 〉 ∼ A1(c) N for large N with A1(c) � 1.
Thus, for f (x) decaying faster than exponential, the statis-
tics of these three observables for finite c are fundamentally
different from the standard c = 0 case. When f (x) has an
exponential tail, it turns out to be a marginal case where there
is a phase transition at a critical value ccrit . For c < ccrit , the
observables have qualitatively similar behavior as the c = 0
case. In contrast for c > ccrit , both qk (R) and πk (n) have
stationary limits as k → ∞. We have illustrated by an explicit
calculation for f (x) = e−xθ (x) for which ccrit = 1. In this case
we have shown that for c > 1, the stationary avalanche size
distribution π (n) ∼ n−1−λ(c) has a power-law tail for large
n with λ(c) � 1, indicating that the first moment diverges.
Remarkably, the exponent λ(c) depends continuously on c
and is given by the root of the transcendental equation, c =
− ln(1 − λ)/λ. We have also computed exactly the stationary
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record value distribution q(R) for c > 1 and shown that it is a
pure exponential, q(R) = λ(c) e−λ(c) R, for all R � 0.

An important feature of this c-record model is a nontrivial
correlation structure between record values, as well as be-
tween record intervals. In this paper we have explored only
partially this structure, and it would be interesting to charac-
terize this correlation structure in a more complete fashion.

We have also provided some generalizations of this simple
c-record model, where the criteria for record formation, i.e.,
the offset ck depends on the record value Rk as well as on
the record index k. In all these cases, the offset ck remains
constant (albeit k-dependent) as in the lower panel of Fig. 3.
Previously, the linear trend model was studied where the offset
decreases linearly with time during an avalanche (as in the
upper panel of Fig. 3). One can then ask how the record
statistics gets modified for a general decreasing offset function
during an avalanche.

Finally, in this paper, we have considered a series of i.i.d.
variables as a model for the pinning force landscape. It is
natural to consider a model where the landscape is correlated.
For example, in the ABBM model, the entries of the series
correspond to the positions of a random walker. This remains
a challenging open problem.
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APPENDIX A: EXPONENTIAL CASE: PN (M, R)

Our starting point is Eq. (35) for the generating function
Q̃(R) in the exponential case, f (x) = e−x θ (x). We solve it in
terms of H (R) = ∫ R

0 Q̃(R′) dR′. Thus Eq. (35) becomes

H ′(R)[1−z(1−e−(R−c) )θ (R − c)]=z s e−R [1 + H (R + c)].

(A1)

The initial condition for H (R) is H (0) = 0. In order to solve
(A1) we need to distinguish region I with R < c, region II with
R > c, and match the two solutions at R = c. We call HI(R)
the solution for region I and HII(R) the one for region II.

We start with region II (R > c) and use the ansatz

HII(R) =
∞∑

m=0

ame−m R. (A2)

Substituting this in Eq. (A1) and matching terms of e−R on
both sides, we get the following recursion relation for the
coefficients am:

a1 = − zs

1 − z
(1 + a0), (A3)

am = − zec

1 − z

(
m − 1 + se−mc

m

)
am−1. (A4)

By iterating we get

am = (−1)m

(
zec

1 − z

)m 1

m!
bm(s)(1 + a0), (A5)

where

bm(s) =
{∏m

k=1(k − 1 + se−kc) m � 1
1 m = 0

. (A6)

We then rewrite HII(R) as

HII(R) = (1 + a0)
∞∑

m=0

(
− zec

1 − z

)m bm(s)

m!
e−mR. (A7)

The coefficient a0 is a parameter that must be set by imposing
the matching of HI(R) and HII(R) at R = c. In region I, HI(R)
satisfies

(1 − z)
dHI(R)

dR
= zse−R[1 + HII(R + c)]. (A8)

Substituting the solution of HII(R) from Eq. (A7) on the r.h.s.
of (A8) and solving the first-order equation for HI(R), using
HI(0) = 0, gives

HI(R)= sz(1 + a0)
∞∑

m=0

(
− z

1 − z

)m bm(s)

(m + 1)!

(1 − e−(m+1)R)

m + 1
.

(A9)

The continuity at R = c, namely HI(c) = HII(c), fixes a0:

a0 = 1∑∞
m=0

(− z
1−z

)m bm (s)
m!

(
1 − zs(1−e−(m+1)c )

m+1

) − 1. (A10)

In the limit R → ∞, we have H (∞) = ∫ ∞
0 Q̃(R′) dR′. On

the other hand, it follows by taking R → ∞ limit in Eq. (A2)
that H (∞) = a0. Combining these two and using Eq. (27), we
finally identify

∞∑
N=1

∞∑
M=1

PN (M )zN sM = a0 = a0(z, s), (A11)

with a0 given in Eq. (A10). One can check that for c = 0

a0 = 1

(1 − z)s
− 1, (A12)

which reproduces the well-known result for the generating
function of the standard record process [44]. To find the gen-
erating function of 〈M〉N one must study a0 in the vicinity
of s = 1. The expansion around s = 1 from (A10) is not
straightforward. We want to rewrite the denominator of a0 in
a simpler form using b̃(x, s), the generating function of bm(s).
We first introduce an useful identity:

b̃(x, s) =
∞∑

m=0

bm(s)

m!
xm

= 1 +
∞∑

m=1

(m − 1 + se−mc)
bm−1(s)

m!
xm

= 1 +
∞∑

m=1

bm−1(s)xm

(m − 1)!
−

∞∑
m=1

bm−1xm

m!

+ s
∞∑

m=1

bm−1(xe−c)m

m!
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= 1 + xb̃(x, s) −
∞∑

m=1

bm−1xm

m!

+ s
∞∑

m=1

bm−1(xe−c)m

m!
. (A13)

Equation (A13) can be rewritten as

(1 − x)b̃(x, s) = 1−
∞∑

m=1

bm−1(s)xm

m!
+ s

∞∑
m=1

bm−1(s)(xe−c)m

m!
.

(A14)
We now identify x = −z/(1 − z) and thus z = −x/(1 − x).
Using Eq. (A14), the denominator of Eq. (A10) can be rewrit-
ten as

∞∑
m=0

xm

m!
bm(s) + xs

1 − x

∞∑
m=0

bm(s)xm

m!(m + 1)
[1 − e−(m+1)c]

= b̃(x, s) + xs

1 − x

∞∑
m=0

bm(s)xm

(m + 1)!

−xse−c

1 − x

∞∑
m=0

bm(s)(xe−c)m

(m + 1)!

= b̃(x, s) + s

1 − x

∞∑
m=1

bm−1xm

m!
+

− 1

1 − x

[
(1 − x)b̃(x, s) − 1 +

∞∑
m=1

∞∑
m=1

bm−1xm

m!

]

= 1

1 − x

[
1 − (1 − s)

∞∑
m=1

bm−1(s)xm

m!

]
. (A15)

Reintroducing z = −x/(1 − x), we rewrite Eq. (A10) in a
more amenable form to carry out the expansion around s = 1:

1 + a0 = 1

(1 − z)
[
1 − (1 − s)

∑∞
m=1

bm−1(s)
m!

(− z
1−z

)m] .

(A16)

By expanding a0 in s = 1 − ε as ε → 0 we can extract the
derivative of a0 in s = 1. After some algebra we finally arrive
at the generating function of 〈M〉N :

M̃(z) =
∞∑

N=1

〈M〉N zN = ∂a0

∂s

∣∣∣∣
s=1

= − 1

1 − z

∞∑
m=0

bm(1)

(m + 1)!

(
− z

1 − z

)m+1

. (A17)

In accordance to Eq. (28), the average number of records
〈M〉N identifies with the coefficient zN in the series expansion
of M̃(z) at z = 0. The explicit expression of 〈M〉N is given in
Eq. (36).

APPENDIX B: ASYMPTOTICS OF 〈M〉N

From now on bm = bm(1) and b̃(x) = b̃(x, 1). The behavior
of 〈M〉N for N → ∞ is hard to extract from Eq. (36). It is then

useful to restart from Eq. (A17) and introduce the function
g̃(x) such that

M̃(z) = − 1

1 − z
g̃

(
− z

1 − z

)
. (B1)

The function g̃(x) writes

g̃(x) =
∞∑

m=0

bm
xm+1

(m + 1)!
. (B2)

The asymptotics of 〈M〉N for large N is controlled by the be-
havior of M̃(z) when z → 1, which is equivalent to g̃(x) when
x → −∞. By the definition of b̃(x) (A13) it is straightforward
to note that

dg̃(x)

dx
= b̃(x). (B3)

Setting s = 1 in Eq. (A14) gives

(1 − x)b̃(x) = 1 −
∞∑

m=1

bm−1xm

m!
+

∞∑
m=1

bm−1(xe−c)m

m!
. (B4)

We can derive two differential equations for g̃(x) and b̃(x):
The first is obtained by rewriting each term of (B4) using g̃(x):

(1 − x)
dg̃(x)

dx
= 1 − g̃(x) + g̃(xe−c). (B5)

The second is obtained from the derivative of (B4) with re-
spect to x:

db̃(x)

dx
= e−cb̃(e−cx)

1 − x
. (B6)

Note that Eq. (B6) is a first-order nonlocal differential equa-
tion. The representation of b̃(x) given in Eq. (A13) is not
suitable for studying the limit x → −∞. Instead the solution
of (B6) gives us a nice series representation of b̃(x) around
x → −∞ using the following ansatz:

b̃(x) =
∞∑

k=0

Ak (−x)−φ−k . (B7)

By plugging the ansatz in (B6) we find that coefficients satisfy

Ak = k − 1 + φ

eckφ − k − φ
Ak−1 (B8)

with A0 to be determined. The exponent φ is the solution of

φ = (e−c)1−φ. (B9)

At most two solutions exist for (B9):
For c < 1 one solution is φ = 1 and the other is

φ(c) > 1.
For c > 1 one solution is φ = 1 and the other is φ(c) < 1
For c = 1 the two solutions coincide, i.e., φ = 1.

From now on we assume c �= 1 and rewrite the ansatz (B7)
in order to make explicit the existence of two solutions:

b̃(x) = A0

∞∑
k=0

ck

(−x)φ+k
+ B0

∞∑
k=0

c̃k

(−x)k+1
, (B10)
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where

ck =
k∏

m=1

m − 1 + φ

(ecm − 1)φ − m
(B11)

and

c̃k =
k∏

m=1

m

ecm − m − 1
(B12)

with c0 = c̃0 = 1. Both ck and c̃k come from the iteration
of Eq. (B8). To complete the solution we have to find A0

and B0. Before that we note that identifying φ(c) = 1 − λ(c)
Eq. (44) is equivalent to Eq. (B9). The case c > 1 corresponds
to a positive λ(c), to the existence of a stationary state and
when x → −∞ to b̃(x) ∼ A0(−x)−φ , while when c < 1 no
stationary state exists and b̃(x) ∼ B0/(−x).

To set A0 and B0 we need two relations. The first relation
is found by matching at x = −1 the value of b̃(x) in the two-
series representation given by (A13) and (B10):

b̃(−1) =
∞∑

m=0

(−1)m bm

m!
= A0

∞∑
k=0

ck + B0

∞∑
k=0

c̃k . (B13)

From the solution (B10) we can find, up to an integration
constant μ(c), g̃(x):

g̃(x) = A0

∞∑
k=0

ck (−x)−φ−k+1

φ + k − 1
+ B0[− ln(−x)]

+ B0

∞∑
k=1

c̃k
(−x)−k

k
+ μ(c). (B14)

The second relation corresponds to imposing that Eq. (B14)
must be a solution of (B5):

(1 − x)

[
A0

∞∑
k=0

ck (−x)−φ−k + B0

∞∑
k=0

c̃k (−x)−k−1

]

= 1 −
[

A0

∞∑
k=0

ck (−x)−φ−k+1

φ + k − 1
+ B0[− ln(−x)]

]

−
[

B0

∞∑
k=1

c̃k
(−x)−k

k
+ μ(c)

]

+
[

A0

∞∑
k=0

ck (−xe−c)−φ−k+1

φ + k − 1
+ B0[− ln(−xe−c)]

]

+
[

B0

∞∑
k=1

c̃k
(−xe−c)−k

k
+ μ(c)

]
. (B15)

B0 comes from matching the coefficients of order (−x)0:

B0 = 1

1 − c
. (B16)

By matching coefficients (−x)−k and (−x)−φ−k one confirms
the solution (B10). A0 is determined using Eq. (B13):

A0 =
∑∞

m=0(−1)m bm
m! − 1

1−c

∑∞
k=0 c̃k∑∞

k=0 ck
. (B17)

Finally we can write g̃(x):

g̃(x) = A0

∞∑
k=0

ck (−x)−φ−k+1

φ + k − 1
+ 1

1 − c
[− ln(−x)]

+ 1

1 − c

∞∑
k=1

c̃k
(−x)−k

k
+ μ(c). (B18)

The constant μ(c) is up to now undetermined and must be
found by matching g̃(x) at x = −1 with the power series
representation in (B2):

A0

∞∑
k=0

ck

φ + k − 1
+ 1

1 − c

∞∑
k=1

c̃k

k
+ μ(c)

=
∞∑

m=0

bm(−1)m+1

(m + 1)!
. (B19)

Having now a representation for g̃(x) we can invert M̃(z) by
making use of Eq. (B1). For z → 1 it is useful approximate
the series of the generating function with a Laplace transform
by setting z = 1 − s in the limit s → 0:

∞∑
N=1

〈M〉N zN ≈
∫

dN〈M〉N e−sN . (B20)

Using Eq. (B1):

Ls[〈M〉N ] =
∫

dN〈M〉N e−sN ≈ −1

s
g̃

(
−1

s

)
. (B21)

We now make use of two well-known inverse Laplace trans-
forms:

L−1
s

[
1

sα

]
= 1


(α)
Nα−1, (B22)

L−1
s

[
− ln(s)

s

]
= ln(N ). (B23)

For c > 1 we find

〈M〉N ≈ A0

(1 − φ)
(2 − φ)
N1−φ + 1

1 − c
ln N + O(ln N ).

(B24)

For c < 1 we find

〈M〉N ≈ 1

1 − c
ln N − μ(c). (B25)

The particular values for A0(c) and μ(c) used in the main text
were found with Mathematica.

What is left now is the c = 1 case. Since the two solutions
for φ from (B9) coincide at c = 1, we need to solve for b̃(x)
using a different “degenerate” ansatz. In this case Eq. (B6)
becomes

db̃(x)

dx
= 1

1 − x

1

e
b̃
(x

e

)
. (B26)

We use the following ansatz:

b̃(x) = ln(−x)
∞∑

k=1

Ak (−x)−k +
∞∑

k=1

Bk (−x)−k . (B27)
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The coefficients Ak satisfy

Ak = k − 1

ek−1 − k
Ak−1 (B28)

with A1 undetermined. The expression of the coefficients Bk

is more involved:

Ak (ek−1 − 1) − Bk (ek−1 − 1) = Ak−1 − (k − 1)Bk−1 (B29)

with B1 undetermined. The function g̃(x) is obtained integrat-
ing (B27). We report only the first terms:

g̃(x) = μ(c) − A1

2
ln2(−x) + · · · . (B30)

By using Eqs. (B4) and (B5) we can find the undetermined
coefficients as we did for the c �= 1 case. By inverting the
Laplace transform we thus finally obtain the leading asymp-
totic behavior for large N :

〈M〉N ≈ ln2(N ) c = 1. (B31)

APPENDIX C: EXPONENTIAL CASE:
RECORD CORRELATIONS

By using Eqs. (30) and (17) we can find the correlation
between two subsequent records at the stationary state. We
denote by R′ the record and its successive by R. First of
all we compute the conditional average of R given R′. It is
straightforward since we we know q(R|R′) from Eq. (30):

E[R|R′] = 1 + (R′ − c)θ (R′ − c). (C1)

The expected value of RR′ is thus given by

E[RR′] =
∫

dR′q(R′)R′E[R|R′]. (C2)

By substituting q(R′) = λe−λR′
,

E[RR′] = 1

λ
+ (1 − λ)

λ2
[2 − ln(1 − λ)]. (C3)

By subtracting E[R]E[R′] = λ−2 we obtain the covariance
between R and R′:

Cov[RR′] = 1 − λ

λ2
[1 − ln(1 − λ)]. (C4)

Finally the Pearson correlation coefficient takes a simple
form:

ρ(λ) = Cov[RR′]
Var[R′]

= (1 − λ)[1 − ln(1 − λ)]. (C5)

As λ → 1 (or c → 1) ρ(λ) diverges and we recover the
long-range correlation of the classical record process. On the
other hand if λ → 1 (i.e., c → ∞) ρ(λ) → 0 and all records
become uncorrelated.

APPENDIX D: BOUNDED CASE: PN (M, R)

We restrict to the case of bounded distribution in [0,1] and
c � 1/2. For c � R � 1:

Q̃(R) = zs(1 + H )ν(1 − R)ν−1

1 − z[1 − (1 + c − R)ν]
, (D1)

where we denote by H = ∫ 1
0 Q̃(R′) dR′. For 1 − c � R � c,

Q̃(R) = zs(1 + H )ν(1 − R)ν−1. (D2)

For 0 � R � 1 − c,

Q̃(R) = zs

(
1 +

∫ R+c

0
dR′Q̃(R′)

)
=

= zs(1 + K ) + zs
∫ R+c

c
dR′Q̃(R′), (D3)

where K = ∫ c
0 Q̃(R′) dR′. Finally,

Q̃(R) = zs(1 + K )+ +zs
∫ R+c

c

zs(1 + H )ν(1 − R′)ν−1

1− z[1 − (1 + c − R′)ν]
dR′.

(D4)

Q̃(R) has a simple expression in the case of uniform distribu-
tion ν = 1. In this case:,

Q̃(R) = zs(1 + K ) − zs2(1 + H ) ln (1 − zR). (D5)

Now we need to impose self-consistently that

H =
∫ 1

0
Q̃(R) dR. (D6)

We get

H

1 + H
= s(s − 1) ln[1 − (1 − c)z] + sz[(1 − c)s + s].

(D7)

The generating function of PN (M ) is precisely H . The gener-
ating function of 〈M〉N ,

M̃(z) =
∑
N=1

〈M〉N zN , (D8)

is obtained by deriving H by s in s = 1. It is easy to show that

M̃(z) = 2 − c + ln(c)

(1 − z)2
+ z(2 − c)

(1 − z)2
. (D9)

By expanding around z = 0 we recover Eq. (72).

APPENDIX E: CLASSICAL RECORDS DISTRIBUTION

In the case of classical record statistics of i.i.d. continuous
random variables it is straightforward to compute the distribu-
tion of the kth record value in the limit of an infinite sequence.
Equation (31) at c = 0 becomes a local equation with a simple
solution:

qk (R) = {− ln[1 − F (R)]}k−1

(k − 1)!
f (R). (E1)

As a reference, Eq. (E1) has been used in [13] for modeling
record temperatures in the cases of exponential and Gaussian
distributions.

As an explicit example, in the case of a Weibull distribu-
tion, qk (R) has a simple expression:

qk (R) = γ

(k − 1)!
Rγ k−1e−Rγ

. (E2)
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The average record 〈Rk〉γ can be exactly computed:

〈Rk〉γ =



(
k + 1

γ

)
(k − 1)!

→ k1/γ k → ∞. (E3)

As expected, 〈Rk〉γ grows unboundedly as k → ∞.

APPENDIX F: AVERAGE RECORD

In this section we lay down a qualitative argument for esti-
mating the average record x̄ as c → 0+. The equation satisfied
by q(x) is

q(x) = f (x)
∫ c

0
q(y) dy + f (x)

∫ x+c

c

q(y)

1 − F (y − c)
dy.

(F1)

We want to extract the average value. Multiply both sides by
x and integrate by x from 0 to ∞:

x̄ =
∫ ∞

0
x f (x)

∫ c

0
q(y) dy

+
∫ ∞

0
x f (x)

∫ x+c

c

q(y)

1 − F (y − c)
dy. (F2)

We are interested in the limit c → 0+ and we know that in this
limit the typical records become large are narrow distributed.
We then try to solve Eq. (F2) using the ansatz q(x) = δ(x − x̄)
with x̄  c → 0+

x̄ = 1

1 − F (x̄ − c)

∫ ∞

x̄−c
x f (x) dx. (F3)

Here we used that
∫ c

0 q(y) dy = 0 since x̄ > c. We now take a
derivative with respect to x̄ and rearranging the terms:

f (x̄ − c)

1 − F (x̄ − c)
= 1

c
. (F4)

Equation (F4) is an implicit equation for x̄ in the limit c → 0+.

If the ratio f (x)/[1 − F (x)] is, for large x, an increasing
function of x, we expect a diverging x̄ as c → 0+, which is
compatible with the classical record problem. Otherwise if x̄
vanishes as c → 0+ we do not recover the classical record
case behavior, hence we expect no stationary record distribu-
tion in this case.

APPENDIX G: NUMERICAL SIMULATIONS

In this paper we employed two numerical approaches. The
first is the direct simulation of c-record observables from the
time series {xi}. Starting from R1 = x1 we label the records,
we count their number M and we compute the ages of the
series. By repeating this process for different time series
realizations we can study all the observables reported. The
second method is more efficient, but can be used only if the
cumulative distribution F (x) is explicitly invertible. Indeed
given the record value Rk−1, the record Rk and the age nk can
be drawn using (30) and

π (nk|Rk−1) =
{

p(Rk−1)[1 − p(Rk−1)]nk−1 Rk−1 > c

δnk ,1 Rk−1 < c
,

(G1)
where p(Rk−1)=1−F (Rk−1 − c). In particular from Eq. (30)
the kth record is given by

Rk = F−1[uk + (1 − uk )F (Rk−1 − c)]. (G2)

Here uk is a random number uniformly distributed in the
interval [0,1]. From Eq. (G1) the kth age is 1 when Rk−1 < c,
otherwise is extracted from a geometric random variable.

The first method is used to simulate the stretched expo-
nential case, while for the exponential, the Weibbull and the
bounded distribution we employed the second method.
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