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Inspired by the recent viral epidemic outbreak and its consequent worldwide pandemic, we devise a model
to capture the dynamics and the universality of the spread of such infectious diseases. The transition from a
precritical to the postcritical phase is modeled by a percolation problem driven by random walks on a two-
dimensional lattice with an extra average number ρ of nonlocal links per site. Using finite-size scaling analysis,
we find that the effective exponents of the percolation transitions as well as the corresponding time thresholds,
extrapolated to the infinite system size, are ρ dependent. We argue that the ρ dependence of our estimated
exponents represents a crossover-type behavior caused by the finite-size effects between the two limiting regimes
of the system. We also find that the universal scaling functions governing the critical behavior in every single
realization of the model can be well described by the theory of extreme values for the maximum jumps in the
order parameter and by the central limit theorem for the transition threshold.
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I. INTRODUCTION

Percolation is one of the simplest models in probability the-
ory which provides a suitable platform to formulate and model
various natural phenomena that exhibit geometric phase tran-
sitions with universal characteristics [1–4]. Percolation has
been applied to describe a wide range of critical behavior,
such as, among many others, flow through porous media for
connectivity [5,6], networks [7–9], magnetic models [10–17],
colloids [18,19], growth models [20], topography of planets
[21–23], and epidemic models [24]. The concept of univer-
sality lets many microscopically different physical systems
exhibit the same critical behavior with quantitatively identical
features, assigned by a set of critical exponents. Thanks to the
emergence of the powerful conformal field theories (CFTs) in
two dimensions (2D), many exact results have been obtained
for the percolation model in 2D [25].

On the other hand, the theory of random walks, also known
as Brownian motion in the scaling limit, plays an essential
role in many stochastic processes and challenging problems in
probability and statistical physics [26–28]. In two dimensions,
random walks and percolation at its critical point share vari-
ous interesting properties other than their conformal invariant
property. For example, the external perimeters of a critical
percolation cluster and a planar random walk in the continuum
limit are believed to be described by the scaling limit of planar
self-avoiding random walks (SAWs) [29]. Moreover, the trace
of a smart kinetic self-avoiding random walk [30] (i.e., the
trace of a random walker that never crosses itself and never
gets trapped) produces statistically the same fractal path in
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accord with the perimeter (or the hull) of a critical percolation
cluster in 2D.

Here we combine these two fundamental theories with
some modifications to develop a model to study the universal
behavior and dynamics of the spread of infectious diseases
over a 2D square lattice possessing a variable percentage ρ

of nonlocal extra links. In the absence of the nonlocal links,
i.e., the trivial case with ρ = 0, there will be a random walker
(infected person) which randomly visits the lattice sites (the
people prone to disease), and the average linear size of the
visited (infected) sites grows with the number N of walks
as ∼√

N . For a square lattice of linear size L and periodic
boundary conditions, this means that the percolation of the
infected sites is expected to happen after tc = N ∼ L2 steps,
which diverges when the system size L goes to infinity. In the
following we will indeed study the dynamics of the model on
square lattices with nonzero ρ.

We use finite-size scaling (FSS) hypothesis [31] to pre-
cisely locate the critical thresholds in the limit of the infinite
system size L → ∞ and extract various critical exponents of
the model for ρ > 0. Instead of performing a traditional FSS
analysis at the critical phase transition point, we rather follow
the universal framework of a FSS analysis recently developed
in [32] based on the statistics and critical scaling of the size
of the largest gap in the order parameter. The key point of
[32] is the following: Since the size of the largest gap (within
a time series of the evolving largest cluster of the infected
sites) can be regarded as an extreme value of the percolation
process, the corresponding scaling function is believed to be
governed by extreme-value statistics. Such intuition has led
to unify continuous and discontinuous percolation transitions
by identifying the universal critical scaling functions as the
extreme value Gumbel distribution [32]. This framework also
provides an alternative approach to estimate various criti-
cal exponents and fractal dimensions which determine the
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universality class and the type (continuous or discontinuous)
of the transition.

This paper is structured as follows: the following section,
Sec. II, gives the details of our devised model and the dy-
namics. Section III goes over the theoretical backgrounds
and definitions of various percolation observables that we are
going to measure. Section IV presents our numerical results
and their comparison with our analytical arguments. A full
list of the effective critical exponents estimated for finite-size
systems for various choices of ρ is also summarized. The final
section, Sec. V, concludes and provides suggestions for future
research.

II. THE MODEL

Consider a square lattice of size L × L with periodic
boundary conditions in both directions. Initially, each of the
N = L2 sites (or susceptible individuals) has four nearest
neighbors which are connected by local links of a lattice con-
stant a = 1 length. For a given ρ =(number of extra nonlocal
links)/N , we select a pair of randomly chosen sites and con-
nect them together by an extra nonlocal link which effectively
makes them nearest neighbors. This procedure continues until
the desired value ρ is reached. The lattice with the only
parameter ρ is now ready to study our stochastic epidemic
modeling.

To initiate the dynamics of our model, a random walker
(or the infected individual) starts its journey from a randomly
chosen site on the lattice at t = 0. For ease of notation in the
remainder of this paper, we refer to time t as the number
of random walk steps over N , i.e., t := t/N . At each time
step, the random walker moves to one of its randomly chosen
nearest neighboring sites (either the local or nonlocal ones).
Every visited site by the random walker is marked as an
infected site upon visiting (no matter how many times it is
visited) and remains infected forever. A cluster of infected
sites is identified as a set of nearest neighboring infected sites
which are connected only by local links of length a = 1. At
early times t < tc, there will only appear small-size disjoint
clusters all over the lattice (epidemic outbreak phase), and
they gradually merge into a single supercluster at t > tc which
spans the entire lattice (pandemic phase). Figure 1 illustrates
these two phases (left panels) and steps taken in each phase
(right panels) on a lattice of size L = 40 and ρ = 0.8. Char-
acterizing the nature of this phase transition at t = tc and its
universality class by determining the corresponding critical
exponents as well as the critical time tc where the epidemic
prevalence peaks are the main subjects of our present study.

III. THEORETICAL BACKGROUND AND DEFINITION
OF THE OBSERVABLES

The relative size s(t ) of the largest cluster at time t is
known as the standard order parameter in percolation tran-
sitions. Once the random walker starts moving, the infected
clusters form and evolve in time. We monitor the evolution of
s(t ) at every time step �t and record its maximum jump,

� ≡ max
t

[s(t + �t ) − s(t )], (1)

FIG. 1. Illustration of the infected clusters in the epidemic out-
break (left-upper panel) and pandemic (left-lower panel) phases at
time t < tc and t > tc, respectively, on a square lattice of linear
size L = 40 and ρ = 0.8 with periodic boundary conditions in both
directions. Every disjoint infected cluster is shown by a different
color. Uninfected sites are shown in black. The corresponding steps
taken by the random walker in the time interval [0, t] for each phase
are shown in the right panels.

and the time of incidence tc for every single realization. We
also record the size of the largest cluster just at and after the
critical threshold tc and denote them by S−

c = Ns(tc) and S+
c =

Ns(tc + �t ), respectively. All these defined quantities i.e., �,
tc, S−

c , and S+
c , are in fact random variables whose values are

sample dependent. Therefore our observables in this paper are
the probability distribution function, the average, and the root
mean square of these variables. We consider M = 104 number
of independent realizations for every given system size L. We
will then start our analysis with a set of measured variables as

Y = {Y1,Y2, ...,YM}Y =�, tc, S−
c and S+

c
, (2)

with the average

Ȳ (L) = 〈Y 〉 = 1

M

M∑
i=1

Yi, (3)

and the root mean square

χY (L) =
√〈

Y 2
i

〉
. (4)

A. Critical gap exponents

The finite-size scaling hypothesis provides a scaling frame-
work for our observables as a function of the system size L,
giving rise to a number of scaling and critical exponents which
are able to classify the model [32,33]. Various gap exponents
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and fractal dimensions can then be defined by the following
proposed scaling behaviors:

�̄ (L) ∼ L−β1 , χ� ∼ L−β2 , (5)

S̄−
c (L) ∼ Ld−

f1 , χS−
c

∼ Ld−
f2 , (6)

S̄+
c (L) ∼ Ld+

f1 , χS+
c

∼ Ld+
f2 , (7)

t̄ c(L) − t̄ c(∞) ∼ L−1/ν1 , χtc ∼ L−1/ν2 . (8)

The vanishing exponent β1 = 0 can be used to determine
if a percolation transition is discontinuous. However, models
with 0 < β1 < 1 can be either continuous or discontinuous
[34]. It can be also shown that β1 = β2, and the critical largest
clusters share the same fractal dimensions: d−

f1
= d+

f1
= d−

f2
=

d+
f2

. Moreover, the scaling relation β1 = d − d f1 holds for
the gap exponents, which is similar to the known relation
β/ν = d − d f in terms of the standard order parameter and
correlation exponents, i.e., β and ν, respectively [32]. t̄c(∞)
in Eq. (8) denotes for the average critical threshold of the
model in the thermodynamic limit where the system size goes
to infinity, i.e., in the limit 1/L → 0.

B. Universal scaling functions

One may hypothesize that the distributions PY (Y, L) of
the introduced random observables Y = �, S±

c , and tc, for a
system of size L, have to take the following finite-size scaling
forms [35]:

P�(�, L) = Lβ2 f�(� Lβ2 ), (9)

PS±
c

(S±
c , L) = L

−d f ±2 fS±
c

(S±
c L−d±

f2 ), (10)

Ptc (tc, L) = L1/ν2 ftc (δtc L1/ν2 ), (11)

where fY (·) are the universal scaling functions, and δtc = tc −
t̄c(∞). The size of the largest gap � in the order parameter, as
the maximum of random variables drawn from independent
realizations of the entire percolation process, and the corre-
sponding size of the largest cluster S±

c which dominates the
system at tc, can be viewed as the extreme events whose dis-
tributions are predicted by the extreme-value theory [36–38].
The critical threshold tc, on the other hand, is a nonextremal
variable drawn and averaged from independent realizations.
Therefore, according to the central limit theorem, we expect a
Gaussian distribution for tc.

The scaling forms (9)–(11) also suggest an alternative ap-
proach to estimate the involved critical exponents by data
collapse onto the universal scaling curves. In particular, in
order to estimate the exponent ν2, we will use the following
finite-size scaling law:

Ptc (t∗
c , L) ∼ L1/ν2 , (12)

where t∗
c is the mode of the distribution Ptc (tc, L) which is

also very close to t̄c(∞) due to the Gaussian form of the
distribution.

FIG. 2. Plots for the computation of critical gap exponents and
the fractal dimensions for a wide range of nonlocal link densities ρ =
10−3, 10−2, 5 × 10−2, 10−1, 8 × 10−1, 2, 10, and 102. The average
size of the largest gap �̄ (a) and its fluctuation χ� (b), t̄c(L) − tc(∞)
(c), and Pt (t∗

c , L) (d) as functions of L give the exponents β1, β2, ν1,
and ν2, respectively. The average size of the largest clusters S̄− (e)
and S̄+ (g) and their corresponding fluctuations χS− (f) and χS+ (h)
as functions of L to extract the fractal dimensions. One of the solid
lines shows the best fit to our data for ρ = 10−3 (cross symbols), and
the other shows a comparison with the exact predictions available for
the standard 2D percolation, which is believed to explain the limit
ρ → ∞ of our model.

IV. NUMERICAL RESULTS

In this section we are going to present the results of our
numerical simulations of our model previously described in
Sec. II. We have carried out extensive simulations for differ-
ent linear sizes L and various choices of ρ over a range of
f ive orders of magnitude ρ ∈ [10−3, 102] to best estimate the
critical exponents and threshold for every ρ in the asymptotic
limit L → ∞. Figures 2(a) and 2(b) demonstrate the plots of
�̄(L) and χ� as a function of L for various choices of ρ. We
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TABLE I. The summarized asymptotic critical thresholds t̄c(∞), the effective critical gap exponents ν1, ν2, β1, β2, the fractal dimensions
d±

f1
, d±

f2
, and the effective Fisher exponent τ , estimated for various percentage ρ of nonlocal links. The last row presents the same quantities

known for the standard 2D site-percolation model.

ρ t̄c(∞) 1/ν1 1/ν2 β1 β2 d−
f1

d+
f1

d−
f2

d+
f2

τ

0.001 1.50(5) 0.42(3) 0.16(3) 0.07(2) 0.09(2) 1.83(1) 1.86(1) 1.83(1) 1.86(1) 1.03(5)
0.01 1.35(5) 0.58(3) 0.43(3) 0.07(2) 0.09(2) 1.83(1) 1.86(1) 1.83(1) 1.86(1) 1.83(5)
0.05 1.230(5) 0.66(3) 0.61(3) 0.11(2) 0.12(2) 1.84(1) 1.86(1) 1.84(1) 1.86(1) 1.95(3)
0.1 1.170(5) 0.66(3) 0.65(3) 0.12(2) 0.13(2) 1.85(1) 1.86(1) 1.85(1) 1.86(1) 1.99(3)
0.8 1.025(5) 0.74(2) 0.74(2) 0.13(2) 0.13(2) 1.86(1) 1.86(1) 1.86(1) 1.87(1) 2.03(2)
2 0.977(5) 0.75(1) 0.75(1) 0.13(2) 0.13(2) 1.87(1) 1.87(1) 1.87(1) 1.87(1) 2.04(2)
10 0.928(5) 0.75(1) 0.75(1) 0.12(2) 0.12(2) 1.88(1) 1.88(1) 1.88(1) 1.88(1) 2.052(5)
100 0.901(5) 0.75(1) 0.75(1) 0.12(2) 0.12(2) 1.89(1) 1.89(1) 1.89(1) 1.89(1) 2.054(5)
2D site percolation 0.592746 3/4 3/4 5/48 5/48 91/48 91/48 91/48 91/48 187/91

use logarithmic scales on both the horizontal and vertical axes
to extract the critical exponents in all graphs. The exponents
β1 and β2 are measured by examining the scaling relations
defined in Eq. (5). As shown in the figures (and summarized
in Table I) we find a spectrum of exponents which vary with
ρ. The lower solid lines show the best fit to our data for ρ =
10−3, giving β1 ∼ 0.07(1) and β2 ∼ 0.09(1). The upper solid
lines in the graphs show the corresponding exact exponents
predicted for the 2D standard percolation model.

In the limit ρ → ∞, there are infinitely many nonlocal
links which makes the random walk (RW) movement totally
nonlocal, and the model effectively becomes equivalent to a
2D site-percolation model in which every site is randomly
chosen and gets infected. Therefore we expect that in the large
ρ limit, our model falls into the 2D percolation universality
class with exactly known critical exponents. As can be seen in
the figures (and Table I), the agreement with our expectation
is evident for ρ � 1.

In order to measure the exponents ν1 and ν2 by using
Eqs. (8) and (12), we first estimate the asymptotic average
critical threshold t̄c(∞) for every ρ by plotting our data for
the average value of the threshold t̄c(L) obtained for a given
system size L as a function of 1/L and extrapolating to the
infinite system size limit 1/L → 0 (see Fig. 3 and second
column in Table I). Figures 2(c) and 2(d) show the plots
t̄c(L) − t̄c(∞) and Pt (t∗

c , L) as a function of L, yielding the
exponents ν1 and ν2, respectively, also summarized in Table I.
We find 1/ν1 = 1/ν2 ∼ 0.75(1) for ρ > 1, which agrees very
well with the exact exponent 1/ν = 3/4 for 2D percolation.
However, for smaller values of ρ we find that ν1 �= ν2, whose
values increase as ρ decreases (see the third and forth columns
in Table I). This finding is intuitively understandable, since it
is consistent with the known observation that the correlation
exponent increases with increase in the underlying dimen-
sionality, where, in our case, the decrease in ρ decreases the
effective dimensionality from infinity (for ρ → ∞) to a pure
2D (for ρ = 0).

We have also measured the fractal dimensions defined in
Eqs. (6) and (7) for the giant cluster of infected individuals
at the critical threshold which are shown in Figs. 2(e)–2(h).
For higher values of ρ, the sites all over the lattice become
more accessible for the random walker to be visited and
thus leads to formation of more compact clusters with higher
fractal dimension. (Note that despite the local dependencies

introduced by consecutive steps of an ordinary RW, the overall
distribution of the sites visited by the RW in the presence of
the nonlocal extra links is well spread across the system.)

The other geometric exponent that characterizes the univer-
sality class of critical systems is provided by the distribution
of cluster sizes, which appears to follow a power law

n̄(s, t̄c(∞)) ∼ s−τ (13)

for large s, where n̄ gives the average number of clusters of
s connected sites, per lattice site, measured at the asymptotic
critical point t̄c(∞) for each ρ. The Fisher exponent τ is a
universal quantity whose value is the same for all systems of
a given class.

Figure 4 shows our computations for n̄(s, t̄c(∞)) for var-
ious values of ρ on a system of linear size L = 200. The
estimated values of Fisher exponents in the scaling region are
presented in the Inset of Fig. 4 as a function of ρ. The distri-
bution is proportional to the inverse cluster size n̄(s, t̄c(∞)) ∝
1/s, with the exponent τ ∼ 1 for the smallest ρ(= 10−3),

FIG. 3. The average critical threshold t̄c as a function of inverse
size 1/L for ρ = 10−3, 10−2, 5 × 10−2, 10−1, 8 × 10−1, 2, 10, and
102. The dotted-dashed lines show our extrapolations to the infinite
system size at 1/L → 0 to estimate the asymptotic t̄c(∞), listed in
the first column of Table I.
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FIG. 4. Estimation of the Fisher exponent τ at the asymp-
totic critical threshold for ρ = 10−3, 10−2, 5 × 10−2, 10−1, 8 ×
10−1, 2, 10, and 102, extracted from the scaling region of the average
number n̄(s, tc(∞)) of clusters of size s. The averages are taken over
106 independent realizations for a system of linear size L = 200. The
lower solid line shows the best fit to our data for ρ = 10−3, and the
upper solid line compares our data for the largest ρ with the predicted
behavior for the standard 2D percolation model.

while the exponent converges to the exact value τ = 187/91,
known for the standard 2D percolation, in the limit ρ → ∞.
Our estimated Fisher exponents are summarized in the last
column of Table I.

A closer look at Fig. 4 shows that for each intermediate ρ,
the corresponding graph shows a crossover behavior between
two regimes with small (s < sc) and large (s > sc) cluster
sizes, where the crossover point sc vanishes as ρ increases.
The behavior for s < sc is governed by the RWs on a pure
square lattice with τ ∼ 1 and, for s > sc, it is given by τ =
187/91 for the ordinary percolation in two dimensions. This
observation strongly suggests that the dependence on ρ in our
estimated exponents listed in Table I is just a reminiscence of a
crossover behavior that the system undergoes between the 2D
percolation and 2D RW universality classes. This is, however,
due to the finite size of the system, which, due to its high
computational cost, we are not able to perform simulations
for much larger systems. This is why we call our estimated
exponents “effective exponents.”

A remarkable aspect of our model is that it allows us to
define and predict the emergence of a pandemic in a more
precise form as the state of an epidemic where the percolation
threshold t̄c(∞) is reached. This gives the time at which an
epidemic outbreak becomes a pandemic, whose prediction
is of great importance in epidemiology. In our model the
temporal and spatial progress of a global epidemic is totally
governed by the percentage of available nonlocal links in
the sample space controlled by the parameter ρ. In the limit
ρ → ∞, the threshold is given by the critical point of a 2D site
percolation at t̄ site

c (∞) ∼ 0.5927. We find that the difference
time threshold δt̄c(∞) = t̄c(∞) − t̄ site

c (∞) exhibits a scaling

FIG. 5. The difference time threshold δt̄c(∞) = t̄c(∞) −
t̄ site
c (∞) as a function of ρ. The solid line shows the best power-law

fit ∝ ρ−ζ to our data with the exponent ζ = 0.10(2) estimated from
the log-log plot of the data shown in the Inset.

relation with ρ as follows:

δt̄c(∞) ∼ ρ−ζ , (14)

with the exponent ζ ∼ 0.10(2) (see Fig. 5). This relationship
suggests that the onset of a global pandemic can be alge-
braically delayed by reducing the percentage of nonlocal links
in our setting.

In the rest of the present section we are going to establish
a connection between the universal scaling functions fY (·)
mentioned in Eqs. (9)–(11) with the extreme value theory.
This connection was first introduced in [32] for a wide class of
percolation problems in different dimensions, where fY (·) for
Y = � − �̄(L) and S−

c − S̄−
c (L) were shown to be consistent

with the Gumbel distribution [39]. Here by Y we do not
mean the fluctuation of the corresponding random variables
about their average but simply mean the variables themselves,
i.e., Y denotes either �, S−

c , or S+
c directly. This introduces

computational simplicity, in particular for problems in which
the average of the variables is not a priori known.

In order to obtain the universal scaling functions fY (·)
defined in Eqs. (9)–(11), we first compute the distributions of
corresponding variables, i.e., Y = �, S±

c , and tc, for various
system sizes. Figures 6(a)–6(d) show an example of the distri-
butions for ρ = 2 and system sizes L = 40, 80, 100, 120, 150,
and 200. Strong size dependence is evident in these figures.
As shown in subsequent figures, Figs. 6(e)–6(h), when the
horizontal and vertical axes in Figs. 6(a)–6(d) are suitably
rescaled, all data collapse onto a single universal curve. We
find excellent data collapse over the entire range of scaling
variables. The best fits to our data are shown with the solid
(green) lines in Figs. 6(e)–6(h). We find that the universal
function for Y = tc is in perfect agreement with a Gaussian
function with R-square R2

ftc
= 0.9977(10) [see Fig. 6(f)]. For

other variables Y = �, S±
c , we have examined the following

generalized extreme value (GEV) distribution, which unifies
the types I, II, and III extreme value distributions into a single
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FIG. 6. Universal scaling functions for ρ = 2. (a–d) Distribu-
tions of the observables �, tc, S−

c , and S+
c for different system sizes

L = 40, 80, 100, 120, 150, and 200. (e–h) Corresponding universal

scaling functions of rescaled variables �Lβ2 , δtcL1/ν2 , S−
c L

−d−
f2 , and

S+
c L

−d+
f2 . The green solid lines are the best fit to our data compat-

ible with a Fréchet extreme value in Eq. (15) with ξ = +0.064(5),
μ = 0.181(5), and σ = 0.069(5) (e); Gaussian distribution (f); and
Weibull extreme value with ξ = −166(5), μ = 0.0.390(5), and
σ = 0.163(5) in (g); and ξ = −0.360(5), μ = 0.616(5), and σ =
0.212(5) in (h).

family, by allowing a continuous range of possible shapes:

f (z) = 1

σ
t (z)ξ+1 e−t (z), (15)

with

t (z) =
{(

1 + ξ ( z−μ

σ
)
)−1/ξ

if ξ �= 0,

exp
( − (z−μ)

σ

)
if ξ = 0.

It is parameterized with location μ, scale parameter σ , and
a shape parameter ξ . When ξ < 0, the GEV is equiva-
lent to the Weibull (type-III) extreme value. When ξ > 0,
the GEV is equivalent to the Frechet (type-II), and in the
limit ξ → 0 it becomes the Gumbel (type-I) distribution.

FIG. 7. Shape parameters ξ defined in the generalized extreme
value (GEV) distribution [Eq. (15)] as functions of ρ obtained from
the best fits to our data for the universal scaling functions of the ob-
servables � (blue squares), S−

c (red circles), and S+
c (green triangles).

f� is compatible with Fréchet distribution for all ρ, and fS−
c

with
Weibull distribution for all ρ, except for ρ = 10−3, which is more
close to the Gumbel distribution with ξ = 0. fS+

c
is in agreement

with the Weibull distribution for all ρ with negative shape parameters
ξ < 0.

The best fits in MATLAB to the universal scaling func-
tions f�(� Lβ2 ) [Fig. 6(e)], fS−

c
(S−

c L−d−
f 2 ) [Fig. 6(g)], and

fS+
c

(S+
c L−d+

f 2 ) [Fig. 6(h)] are attained with the shape parame-
ters ξ = +0.064(5) [R2

f�
= 0.9958(10)], −0.166(5) [R2

fS−
c

=
0.9927(10)], and −0.360(5) [R2

fS+ = 0.9827(10)], respec-
tively. Our results indicate that the universal function for the
maximum jumps � is compatible with the Fréchet distri-
bution, and those for S±

c can be well described by Weibull
distributions. The shape parameters as a function of ρ for f�,
fS−

c
, and fS+

c
are presented in Fig. 7. Despite a slight change,

almost the same behavior can be observed for the whole range
of studied ρ.

V. CONCLUDING REMARKS

We have introduced a variant of the percolation model
to study the effect of the underlying network topology, con-
trolled by the density ρ of nonlocal links, on the spread of
an infection(information) when an infected(informed) person
performs independent random walks on a graph embedded in
two dimensions. Our model reduces to the ordinary nonequi-
librium diffusion problem in 2D in the limit ρ → 0 and to
the standard site-percolation model in pure 2D in the limit
ρ → ∞ with a known equilibrium geometric phase transition.
Due to finite-size effects, we find a spectrum of effective
universality classes in terms of the single control parameter ρ,
crossing over between these two important prototype models
in the statistical physics. We have carried out extensive nu-
merical simulations to estimate the effective exponents from a
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finite-size scaling analysis of the extreme event records in the
temporal evolution of the largest cluster in an ensemble of in-
dependent realizations. This approach facilitates the practical
applications of our model into realistic situations. We find that
the time threshold at which the onset of a pandemic occurs
exhibits a scaling relation with the control parameter ρ that
is a quantity of great interest in epidemiology. We have also
established a connection between the extreme value theory
and the universal scaling functions describing the probability
distribution of the extreme observables. Our study calls for
further future research to mathematical understanding of our
model to realize the nature of the transitions as well as an exact

description of the crossover behavior in terms of the density
of the nonlocal links.
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