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Percolation on Lieb lattices
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We study site- and bond-percolation on a class of lattices referred to as Lieb lattices. In two dimensions the
Lieb lattice (LL) is also known as the decorated square lattice, or as the CuO2 lattice; in three dimensions it
can be generalized to a layered Lieb lattice or to a perovskite lattice. Emergent electronic phenomena, such as
topological states and ferrimagnetism, have been predicted to occur in these systems, which may be realized
in optical lattices as well as in solid state. Since the study of the interplay between quantum fluctuations and
disorder in these systems requires the availability of accurate estimates of geometrical critical parameters, such
as percolation thresholds and correlation length exponents, here we use Monte Carlo simulations to obtain these
data for LLs when a site (or bond) is present with probability p. We have found that the thresholds satisfy a
mean-field (Bethe lattice) trend, namely that the critical concentration, pc, increases as the average coordination
number decreases; our estimates for the correlation length exponent are in line with the expectation that there is
no change in the universality class.
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I. INTRODUCTION

Fascinating electronic properties such as topological
states [1–4] and ferrimagnetism [5–9] have been highlighted
in connection with lattice geometries leading to flat (or
dispersionless) bands in the noninteracting limit. In two di-
mensions, for instance, flat bands appear in the so-called Lieb
lattices (LLs), also known as CuO2 lattices, where the four-
coordinated sites represent Cu atoms and doubly-coordinated
sites represent O sites; see Fig. 1(a). Robust ferrimagnetism
in the ground state emerges when fermions are allowed to
interact via an on-site repulsive Hubbard coupling [7]. The
possibility of producing this geometry with ultracold atoms
in optical lattices [10–12] has stirred even more interest, due
to the unprecedented experimental control and tunability of
parameters in these systems, such as interaction strength and
particle density [13,14].

Further, it is well known that in the strong coupling limit
and at half-filling (i.e., one fermion per orbital, on average) the
charge degrees of freedom of the Hubbard model are frozen,
so that the dynamics is dominated by the spin degrees of
freedom, whose scale of interaction is set by their exchange
coupling, J ∼ W 2/U , where W (�U ) is the bandwidth. For
instance, on hypercubic lattices the ground state is a Mott
insulating antiferromagnet. Since the ground state (or even
low temperature) properties in these systems are dominated
by quantum fluctuations, an issue which has been the subject
of scrutiny over the years is the interplay between quantum
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fluctuations and random, geometric disorder. Indeed, after a
long lasting debate it was finally settled that the purely geo-
metric percolation threshold [15] coincides with the onset of
antiferromagnetic order in the dilute Heisenberg model [16].
At any rate, one may take the classical percolation threshold
as a lower bound for magnetic order in the Heisenberg model.
This is therefore a clear indication that one must have at
our disposal accurate estimates for the critical concentrations
in these purely geometrical problems. Away from the strong
coupling limit of the Hubbard model it has been established
that the itinerant character of the particles strongly influences
the threshold value for magnetic (or superconducting) order
in the ground state: It can be either larger (as for the square
lattice [17–21]) or smaller (as for the two-dimensional, 2D
LL [22]) than the geometrical (percolation) threshold. Dilu-
tion in these cases is implemented by switching off the on-site
interaction, U , on a fraction x of sites, or, in a notation more
akin to the present context of percolation, by rendering a site
occupied (or active) on a fraction p ≡ 1 − x of sites. In actual
materials, this kind of disorder is acquired in the synthesis
stage, e.g., by randomly replacing atoms with a magnetic
moment by those without.

Interesting extensions of the LL to three dimensions can be
obtained as follows: One can either pile up layers of 2D LLs,
as shown in Fig. 1(b), or one can form a perovskite lattice,
in which a lattice site is introduced along the c axis halfway
between two Lieb layers, so that each face of the cube looks
the same, as in Fig. 1(c). It is important to note that the 3D
layered Lieb lattice (LLL) does not display a flat band [6],
while the perovskite lattice (PL) displays a doubly degenerate
flat band [1]. Indeed, in two dimensions the flat band emerges
due to the existence of localized states associated with the
O sites. However, when we pile these 2D lattices to form
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FIG. 1. The two-dimensional Lieb lattice (a), and its three-dimensional extensions: (b) the layered Lieb lattice, LLL, and (c) the perovskite
lattice, PL. Within the CuO2 analogy, (amber) sites on vertices represent Cu atoms, while (blue) sites linking two Cu sites represent O atoms.

the LLL, the electrons become delocalized along the c axis;
by contrast, when we form the PL there is no delocalizing
channel available, and the flat band is preserved.

In view of the above discussion related to the disordered
Hubbard model in 2D lattices, this difference immediately
raises the question of how the interplay between itinerancy
and lattice geometry is translated to these 3D Lieb lattices.
In this context, it is therefore crucial to have at hand accurate
estimates for the percolation thresholds in these lattices. With
this in mind, here we use Monte Carlo simulations to deter-
mine the critical concentrations for site- and bond-percolation
on LLs. Although, in principle, one should not expect any new
universality classes by changing the lattice structure at fixed
spatial dimensionality, we also present estimates for the cor-
responding correlation length exponents in order to confirm
this. The layout of the paper is as follows: In Sec. II we briefly
describe the way the disorder configurations are generated,
and how finite size effects are used to our benefit to perform
extrapolations to the infinite lattices. In Sec. III we present
and discuss the results obtained, and Sec. IV summarizes our
findings.

II. METHODOLOGY

We generate a disorder configuration by randomly occu-
pying the sites (or bonds) of a lattice, and test whether the
configuration percolates or not. This test is carried out through
the Hoshen-Kopelman algorithm [23], according to which the
lattice is scanned while clusters of connected nearest neighbor
sites acquire labels; if later in the scanning process a cluster is
found to be connected to another cluster, the labels are merged
by keeping the smallest amongst the two clusters. When the
whole scan is completed, and if the cluster labels in opposite
extremes of the lattice are the same, the system is said to
percolate; we discard nonpercolating configurations. In this
way, we generate an ensemble of M percolating lattices, with
a distribution of concentrations peaked near the percolation
threshold. A typical example of such distribution, f (p), is
shown in Fig. 2, in which the interval [0, 1] is divided into
bins of width δp = 0.025, and for each bin, i, we define

f (pi ) ≡ N (pi )

M
, (1)

where N (pi ) is the number of samples whose threshold lie
within an interval δp centered at pi. In this way,

∑
i f (pi ) = 1,

as it should. We evaluate the average value of p in this ensem-
ble and its standard deviation, which respectively become our
estimate for pc(L) and its error bar.

According to finite-size scaling (FSS) theory, these pc(L)
are expected to behave as [15,24,25]

pc(L) = pc + AL−1/ν, L � 1, (2)

where pc is the percolation threshold in the thermodynamic
limit, A is a nonuniversal amplitude, and ν is the correlation
length exponent. One should note that the lattices considered
here have bases, so that the relation between L and the number
of sites is not the same as for hypercubic lattices; see Sec. III.
Fitting our data for pc(L) to this form provides estimates for
pc and ν in each of the different cases described below.

III. RESULTS AND DISCUSSIONS

We first gauge the accuracy of our method by examining
site- and bond-percolation on the standard square and (simple)

FIG. 2. Distribution of concentrations for M= 5000 randomly
generated percolating two-dimensional Lieb lattices with L = 20:
The full (red) curve is a gaussian fit through the data points.
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TABLE I. Estimates obtained for the critical concentration, pc,
and for the correlation length exponent, ν; see text. LLL and PL,
respectively, stand for layered Lieb lattice and perovskite lattice; see
Fig. 1. The numbers in parentheses are the uncertainties in the last
digit(s).

Lattice s or b pc ν Comments

Square s 0.5920(5) 1.30(6) pc = 0.59274598(4)a; ν = 4/3b

b 0.4993(5) 1.29(5) pc = 1/2c; ν = 4/3b

Lieb s 0.7396(5) 1.35(4)
b 0.6438(3) 1.30(5)

Simple s 0.3118(5) 0.90(7) pc = 0.311681(13)d,e

cubic ν = 0.88(2)e,f

b 0.2484(5) 0.89(6) pc = 0.24881182(10)f

ν = 0.8764(15)f

LLL s 0.3919(5) 0.86(5)
b 0.3338(5) 0.88(4)

PL s 0.5225(5) 0.89(3) pc = 0.52465(5)g

b 0.4010(5) 0.87(4)

aRef. [26];
bExact, Ref. [27];
cExact, Ref. [15];
dRef. [28];
eRef. [29];
fRef. [30];
gRef. [31].

cubic lattices. For the square lattice, we have used between
M = 10 000 runs for the smallest L × L lattices, L = 24, and
M = 3000 for the largest, L = 160, lattices; for the cubic
lattice, we have used between M = 8000 runs for the small-
est L × L × L lattices, L = 10, and M = 800 for the largest,
L = 48, lattices. The extrapolated values for pc and ν obtained
through the FSS ansatz, Eq. (2), are displayed in Table I, from
which we see that our results compare very well with previous
estimates (simulations and series expansions) or exact results,
where available. This gives us confidence that the procedure
outlined above is indeed able to provide accurate estimates for
the different LLs considered here.

For the 2D LL, we note that the unit cell contains three
sites (one Cu-like and two O-like), so that the linear lattice
size, L, actually contains 2L sites; that is, the computational
effort is measured by the total number of sites, while the rele-
vant FSS parameter is L. Accordingly, we have used between
M = 10 000 runs for the smallest L × L lattices, L = 5, and
M = 1000 for the largest, L = 90, lattices. The FSS plots
for the average thresholds for site- and bond-percolation are
shown in Figs. 3(a) and 3(b), respectively. The extrapolated
data are shown in Table I, from which we see that the thresh-
olds for the 2D LL are higher than the corresponding ones
for the square lattice. Indeed, in the case of site percolation
the O sites have smaller connectivity than the Cu sites, so that
one needs a larger overall concentration of sites to make up for
this; a similar argument holds far the case of bond-percolation.
Further, this is also consistent with the mean-field result (see,
e.g., Ref. [15]), pc = (z − 1)−1, if we interpret z as an average
coordination number. At this point we should also note that
the site-percolation problem on the 2D Lieb and perovskite
lattices is connected to the site-bond percolation problem

FIG. 3. Site (a) and bond (b) percolation thresholds, pc(L),
as functions of the inverse linear lattice size, 1/L, for the two-
dimensional Lieb lattice. The (red) curves are fits of the data to the
FSS scaling form, Eq. (2), from which one infers the L → ∞ value
for pc and ν, and the amplitude A; the error bars supplied in the box
arise from the fitting process.

on the square and simple cubic lattices, respectively. In this
percolation problem, each site is present with probability ps,
and each bond is independently present with probability pb;
thus, when ps = pb one has the site-percolation problem on
the Lieb or perovskite lattices. Phase diagrams pb × ps have
been obtained for several lattices in Ref. [32], but thresholds
for the cases ps = pb are not available in accurate tabular
form. Table I also shows that the correlation length exponent,
ν, is the same, within error bars, as for the square lattice, thus
confirming our expectation that the modified geometry of the
Lieb lattice is unable to change the universality class.

We now discuss the results for the 3D lattices. The geome-
try of the LLL we consider consists of 2L sites along each of
the x̂ and ŷ directions, and L layers along the ẑ direction. We
have used between M = 4000 runs for the smallest lattices,
L = 5, and M = 800 for the largest, L = 28, lattices. The fits
to the FSS ansatz, Eq. (2), are shown in Fig. 4, the main results
of which appear in Table I. We see that the critical concentra-
tions lie above the corresponding ones for the simple cubic
lattice, again due to the smaller connectivity of the O sites in
the layers. The correlation length exponents for the cases of
site- and bond-percolation agree, within error bars, with each
other and with those for the simple cubic lattice, indicating
again that this geometry does not affect the universality class.

Finally, let us discuss the results for the PL, whose geom-
etry is such that one has 2L sites along each of the cartesian
directions. Similarly to the LLL, we have used between M =
4000 runs for the smallest lattices, L = 5, and M = 800 for
the largest, L = 28, lattices. The fittings to the FSS ansatz,
Eq. (2), are shown in Fig. 5, the main results of which appear
in Table I. We see that the critical concentrations are largest
for the PL than for the LLL, since a doubly-coordinated O
site now lies between every six-coordinated Cu sites, thus
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FIG. 4. Same as Fig. 3, but for the three-dimensional layered
Lieb lattice.

leading to the smallest average coordination number of all
lattices considered here. On the other hand, the correlation
length exponents for both site- and bond-percolation cases
agree, within error bars, with each other and with those for
the other 3D lattices.

IV. CONCLUSIONS

Motivated by recent findings on magnetic and transport
properties of fermions in pure and disordered flat band
systems, we have used Monte Carlo simulations to study
percolative critical behavior on the 2D LL, as well as on its
3D extensions, the LLL and the PL.

We have determined thresholds, pc, for both site and bond
percolation on these lattices, as well as correlation length
exponents. The accurate values for pc thus obtained allow us

FIG. 5. Same as Fig. 3, but for the three-dimensional perovkite
lattice.

to cast the lattices in order of increasing pc:

psc
c < pLLL

c < pPL
c < psquare

c < pLieb
c ,

which follows the mean-field trend, p(Bethe)
c = (z − 1)−1, with

z being interpreted as an average coordination number.
Notwithstanding the fact that each threshold for site perco-
lation is larger than the one for bond percolation, the above
ordering is applicable to either type of percolation. The cal-
culated correlation length exponent in each case is consistent
with universal behavior for a given lattice dimensionality, d;
one must therefore expect asymptotic universality in other
quantities such as cluster size distribution, and so forth.
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