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Quantum entanglement and criticality in a one-dimensional deconfined quantum critical point
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We investigate the ground-state quantum entanglement in a one-dimensional incarnation of deconfined
quantum critical point by making use of the finite-size density matrix renormalization group method. We observe
two distinct behaviors of two-site entanglement calculated on odd and even bonds, and the difference OE

is shown to obey conventional scaling relations for order parameters. Accurate deconfined critical point and
associated critical exponents are numerically extracted from finite-size scaling analyses. We further notice a
close similarity between OE and the valence-bond-solid order parameter and same observations are also obtained
for quantum coherence and trace distance. Furthermore, the deconfined critical point is suggested to possess rich
quantum entanglement other than the two-site entanglement from the residual entanglement perspective. Our
work explores the critical characteristics of the one-dimensional deconfined quantum critical point from the
quantum information aspect and provides insights for its ground-state entanglement structure.
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I. INTRODUCTION

Identifying different quantum phases and understanding
the quantum phase transitions (QPTs) among them represents
one of the most essential tasks in the field of statistical and
condensed matter physics [1]. Traditionally, this task can be
done within the Landau-Ginzburg-Wilson (LGW) paradigm
by recognizing the associated local order parameter and the
corresponding symmetry breaking. This approach works well
for a large amount of continuous QPTs, while there are also
several exceptions that cannot be captured by the LGW de-
scription, including topological QPTs [2,3] and deconfined
quantum critical points (DQCPs) [4,5]. Therefore, in the
past few decades, much research interest has been focused
on figuring out the nature of these QPTs and many theo-
retical as well as numerical tools were developed for this
purpose.

The DQCP theory was originally proposed to describe
the continuous QPT between an antiferromagnetic phase and
a valence-bond-solid (VBS) phase in two-dimensional (2D)
quantum Heisenberg magnets [4], which, however, is pre-
dicted to be a first-order phase transition according to the
LGW theory. As indicated by its name, the DQCP is featured
with the deconfined degrees of freedom emerged at the quan-
tum critical point. Although much effort has been put into the
numerical simulation of concrete 2D lattice models expected
to exhibit DQCP physics [6–21], the nature of the deconfined
critical point is still under debate, and the possibility of a
weakly first-order QPT with a large correlation length cannot
be ruled out due to the observed deviations from finite-size
scaling relations [10–13,15]. To investigate more about the
essence of the DQCP, it may be necessary to consider physi-
cal quantities other than the conventionally studied ones like
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magnetization and classical correlation functions. Recently,
the frequent communication between quantum information
science and condensed matter physics has benefited both areas
a lot. Specifically, the concepts from quantum information,
such as quantum entanglement [22–24], fidelity [25,26], quan-
tum coherence [27–29], and trace distance [30], have been
successfully used to study different QPTs and have provided
further perspective on the quantum criticality. Thus it should
be worthwhile to explore the behaviors of these quantum
information quantities at the deconfined critical points.

On the other hand, several 1D systems [31–36] were also
recently shown to share many similarities, like the deconfined
degrees of freedom and emergent symmetries occurring at the
critical point, with the 2D DQCPs, and the powerful matrix
product state (MPS) techniques [37–39] can be fully utilized
in these cases. In the present paper, we will focus on the
1D spin chain proposed in Ref. [31], which is predicted to
undergo a continuous QPT between a ferromagnetic phase
with a broken Z2 symmetry and a VBS phase with a broken
translation symmetry. By working directly in the thermody-
namic limit, two research groups [40,41] independently used
the recently developed variational uniform MPS technique
[42] combined with the finite entanglement scaling approach
[43,44] to study the critical behaviors of the order parameters
and classical correlation functions in this 1D DQCP model,
from which they extracted accurate values of critical point
and critical exponents. It is noted that the simulation results
obtained are consistent with the field theory prediction in
Ref. [31] and provide strong evidence that the DQCP found
in this 1D model is continuous. Later, more investigations
were also provided by finite-size scaling analyses of the or-
der parameters and the fidelity susceptibility performed in
Refs. [45,46]; the conventional scaling behaviors observed
therein make this 1D continuous DQCP even more convinc-
ing. However, most of the works mentioned above concentrate
mainly on the behaviors of the order parameters and classical
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correlation functions, and it may be necessary to consider
other physical quantities.

Therefore, in this work, we revisited the 1D DQCP put for-
ward in Ref. [31] from a quantum information perspective by
performing finite-size density matrix renormalization group
(DMRG) calculations in the language of MPS. We computed
the quantum entanglement between nearest-neighbor sites and
found distinct behaviors for odd and even bonds, from which
one can identify the breaking and restoring of the translation
symmetry. Based on this observation, a quantity OE , the dif-
ference of the two-site entanglement on odd and even bonds,
was later constructed to study the quantum criticality of the
1D DQCP model by applying a standard finite-size scaling
analysis. The numerically obtained quantum critical point and
correlation length critical exponent are consistent with previ-
ous works. Interestingly, it is shown that this quantity behaves
quite like the VBS order parameter in two aspects. First, OE

decreases from a finite value continuously to zero as the sys-
tem is tuned from the VBS phase into the ferromagnetic phase.
Second, the critical exponent which describes the vanishing
pace of OE was estimated almost identical with the one for
VBS order parameter within numerical accuracy. The same
phenomena was also observed when we replaced quantum
entanglement with other quantities like quantum coherence
and trace distance. Finally, we further explore multipartite
entanglement in this 1D DQCP system. The performance of
the multipartite entanglement in the thermodynamic limit can
be obtained by a simple polynomial fitting based on finite-size
systems. It is found that the multipartite entanglement shows
a sharp peak at the deconfined critical point, which might be
explained by the strong quantum fluctuation and the emerged
deconfined degrees of freedom. Our work provides an investi-
gation of the 1D DQCP physics from the quantum information
perspective and similar methods may also be applicable to 2D
DQCP systems.

This paper is organized as follows. In Sec. II, we describe
the model under investigation and briefly review the quantum
information concepts used in our work. Then these concepts
are applied to study the quantum criticality of the 1D DQCP
and the numerical results are presented and analyzed in Secs.
III and IV. Finally, we end the paper with a conclusion pro-
vided in Sec. V.

II. MODEL AND METHODS

The 1D DQCP model considered here is a linear chain with
one spin-1/2 on each site, which was recently proposed in
Ref. [31] with the Hamiltonian

H =
L∑

i=1

( − Jxσ
x
i σ x

i+1 − Jzσ
z
i σ z

i+1

+ Kxσ
x
i σ x

i+2 + Kzσ
z
i σ z

i+2

)
. (1)

Here σα
i are Pauli operators on the ith site and Jα (Kα) are

the nearest-neighbor ferromagnetic (next-nearest-neighbor
antiferromagnetic) coupling strengths with α = x, z. For
simplicity, we fix Kx = Kz = 1/2, Jx = 1, and leave the cou-
pling Jz to be the only driving parameter. It is shown in
Refs. [41,46] that the system exhibits a direct continuous
QPT from a translation symmetry-breaking VBS phase into

a Z2 symmetry-breaking ferromagnetic phase by varying the
driving parameter across the critical point Jc

z ≈ 1.465. It is
also noted that the point Jz = 1 (in the VBS phase) represents
an exact dimer ground state, called the Majumdar-Ghosh state
[47,48],

|MG〉 =
L/2⊗

m=1

|↑〉2m−1|↑〉2m + |↓〉2m−1|↓〉2m√
2

, (2)

where |↑〉 and |↓〉 are the two eigenstates of the Pauli operator
σ z.

As mentioned in Sec. I, this 1D DQCP has been exam-
ined from many different aspects [40,41,45,46] and fruitful
results have been obtained. However, investigating physical
quantities other than the conventionally used order parameters
and correlation functions may still be necessary for further
research. To this end, we exploit specifically the concepts
borrowed from quantum information [49], like quantum en-
tanglement, quantum coherence, and trace distance, to further
study the 1D DQCP Hamiltonian (1) in the following.

Since the early 2000s, the connection between quantum in-
formation science and QPTs has received much attention and
stimulated a large amount of fascinating works. Specifically,
this topic begins with the observation of the scaling behav-
iors of two-site entanglement near quantum critical points
[22–24]. Inspired by these pioneering works, different mea-
sures of bipartite entanglement were later widely employed
in the field of quantum many-body physics to map out the
ground-state phase diagrams [50]. Although we have learned
a lot from the bipartite entanglement, it is also natural to
consider multipartite entanglement, which is believed to re-
veal a much-richer structure of entanglement in many-body
states. In this direction, several works [51,52] have shown
the possibility of characterizing topological quantum states
with multipartite entanglement. In order to understand the
entanglement structure of the 1D DQCP more thoroughly, we
not only consider bipartite entanglement but also multipartite
entanglement in our work. Concretely, we adopt the log-
negativity [53] and residual entanglement [54] as the measure
of bipartite and multipartite entanglement, respectively. The
log-negativity describing the quantum entanglement between
two subsystems A and B is computed by

Eln(ρ) = log2 ‖ρTA‖1, (3)

where ρ represents the density matrix of the total system, ρTA

is the partial transpose of ρ with respect to subsystem A and
‖ · ‖1 denotes the trace norm. Unlike the log-negativity, the
residual entanglement involves N qubits and originates from
a monogamy relation of the entanglement of formation [54].
Based on this monogamy relation, the residual entanglement
is defined by

τi ≡ E2
f (ρAi|Āi

) −
N∑

j 	=i

E2
f (ρAiA j ), (4)

where Ef (ρAi|Āi
) represents the entanglement of formation

[55] between the ith qubit and the rest of the system, and
Ef (ρAiA j ) quantifies the entanglement in the two-qubit system
AiAj . It is noted that the residual entanglement can charac-
terize the quantum entanglement not stored in qubit pairs and
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the calculation of Ef (ρAi|Āi
) can be simplified to be the von

Neumann entropy S(ρAi ) when the many-body state ρA1···AN

considered is a pure state [56].
On the other hand, quantum coherence is another impor-

tant concept in quantum information and its connection with
quantum entanglement has been established in some recent
works [57,58]. For this reason, it would also be worthwhile to
explore quantum coherence in the 1D DQCP model. Specif-
ically, the l1 norm and relative entropy of coherence are two
commonly used measures for quantifying quantum coherence
[59]. By fixing a particular reference basis {|i〉}i=1,...,d (in the
present work, we specifically choose the direct products of the
eigenstates of the Pauli operator σ z as the reference basis), the
l1 norm of coherence is defined as [59]

Cl1 (ρ) ≡
∑

i 	= j

|ρi j |, (5)

which is simply the sum of the magnitudes of the off-diagonal
elements of the density matrix ρ. Staying in the same basis,
the relative entropy of coherence, however, involves the con-
cept of von Neumann entropy S(ρ) and is given by [59],

Cre(ρ) = S(ρdiag) − S(ρ), (6)

where ρdiag is obtained from ρ by keeping only diagonal
entries. In addition to these two measures, there exists other
more complicated quantifiers and one can refer to the review
in Ref. [60] for more information.

Finally, we also provide some description of the trace dis-
tance approach. For two quantum states ρ1 and ρ2 in the same
Hilbert space, the trace distance is defined by [49]

D(ρ1, ρ2) ≡ 1
2 Tr|ρ1 − ρ2|, (7)

where |M| =
√

M†M. It is obvious that the trace distance can
be used to quantify the distance between the states ρ1 and
ρ2. Therefore, it is intuitive to suggest that the trace distance
between a bipartite system ρAB and the direct product of its
two reduced subsystems ρA ⊗ ρB should be able to capture
the correlations between the subsystems [61]. Further con-
sidering the key role played by correlations in QPTs, one
may thus characterize QPTs by employing the trace distance
D(ρAB, ρA ⊗ ρB) [30]. Slightly different from the strategy fol-
lowed by Ref. [30], where the trace distance method is applied
on the whole lattice, we, however, only focus on the central
spin pairs in the following to avoid the boundary effect and
reduce the computation resource.

So far, we have briefly reviewed the application of quantum
information concepts for characterizing quantum phase tran-
sitions. It is noted that the methods enumerated above are far
from complete and only the concepts relevant to the present
work are mentioned. Now we can turn to the investigation
of the 1D DQCP physics from a pure quantum information
perspective. The DMRG algorithm has been proved to be
the most powerful numerical tool for extracting the low-lying
physics of 1D lattice systems over the past several decades
[37,62,63]. Therefore, to accurately solve the ground state
of the Hamiltonian (1) and efficiently obtain the relevant
quantities, we perform a finite-size DMRG calculation based
on the MPS framework with an open boundary condition.
In practice, we consider relatively large system sizes rang-

FIG. 1. The log-negativity on the central odd (blue solid line)
and even (purple dashed line) bonds as a function of the coupling
strength Jz. Different system sizes are denoted by different symbols.
The schematic diagrams roughly describe the ground states in the
VBS and ferromagnetic phases.

ing from L = 128 to 384 with bond dimensions m = 200 to
400 to apply reliable finite-size scaling analyses. Specifically,
we adopt a sweeping strategy in which the bond dimension
is increased from a small value gradually up to the target
maximum value in the DMRG processing and the final 30
sweeps are retained for the target bond dimension. The MPS
is regarded to have converged to the true ground state of the
system once the corresponding energy converges up to the
order 10−8. The code of the algorithm is mainly implemented
using the ITensor Library [64].

III. SCALING ANALYSES OF QUANTUM INFORMATION
QUANTIFIERS FOR 1D DQCP

In this section, we explore the bipartite entanglement in the
1D DQCP model and then study the corresponding critical
characteristics by performing a finite-size scaling analysis.
Specifically, we calculate the log-negativity of the odd and
even bonds in the center of the system to reduce the boundary
effect. We first obtain the two-site reduced density matrix
of the odd or even bond by tracing out other degrees of
freedom in the spin chain from the DMRG ground state and
then apply the formula (3) to the reduced density matrix
(analogous for other quantities). It is obvious from Fig. 1
that the log-negativity exhibits two distinct behaviors for odd
and even bonds as a function of the coupling strength Jz.
Since the chain length is chosen to be even, one can expect
that the dimers shown in the VBS phase should be built on
the odd bonds. In particular, for the Majumdar-Ghosh point
(Jz = 1), the odd bond is an exact Bell state with maximal
entanglement Eln = 1, whereas the reduced density matrix of
the even bond is I4/4 with Eln = 0. By increasing the coupling
Jz from the Majumdar-Ghosh point, the log-negativity of the
odd bond gradually decreases while the log-negativity of the
even bond remains on the zero value in a large parameter
range of the VBS phase and shows a rapid enhancement until
the critical point is nearly approached. As the positivity of the
log-negativity is a sufficient and necessary condition for the
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FIG. 2. The breaking and restoring of the translation symmetry
can be characterized by the difference of the two-site entanglement
on odd and even bonds OE . Other quantifiers can also be constructed
in a similar way by using quantum coherence (OCl1

and OCre ) and
trace distance (OD).

existence of entanglement in two-qubit mixed states [53,65],
the vanishing of the log-negativity indicates a strict absence
of quantum entanglement on the even bonds. This suggests
that the dimer pattern shown in the VBS phase is rather robust
and the dimer picture depicted in Fig. 1 reveals the structure of
the underlying two-site entanglement. However, the vanishing
of the quantum entanglement of the even bond in the range
Jz ∈ [1, 1.4] is still a nontrivial and interesting result since
the ground state is no longer an exact dimer state for Jz > 1.
We find that the reduced density matrix of the odd and even
bonds in the VBS phase can be interpreted as the mixture
of the four Bell states, and the behavior of the quantum en-
tanglement in this phase can be explained by the change of
the mixing weights of the Bell states, which is detailed in
the Appendix.

On the other hand, the log-negativity of the odd and even
bonds finally converge in the ferromagnetic phase reflecting
the restoring of the translation symmetry. Based on this ob-
servation, we introduce the quantity OE , which is simply the
difference of the two-site entanglement on the odd and even
bonds, and its performance as a function of the coupling Jz is
displayed in Fig. 2. As one can expect, the quantity OE de-
creases continuously from a finite value to zero as the system
is driven from the VBS phase into the ferromagnetic phase,
which is reminiscent of the way that order parameters behave
in continuous QPTs. This similarity motivates us to consider
the following questions: First, how much does this quantity
behave like the VBS order parameter? Second, does the quan-
tity OE obey finite-size scaling relations? To this end, we need
to apply a finite-size scaling analysis to the observable OE .
Theoretically, an order parameter Ox characterizing the nature
of the associated phase transition follows a universal relation
[66]

L�xOx = Fx
[
L1/ν

(
Jz − Jc

z

)]
. (8)

Here �x is the critical exponent describing the vanishing pace
of the order parameter, ν is the correlation length critical ex-
ponent, Fx is a homogeneous function, and the subscript “x” is

(a) (b)

(c) (d)

FIG. 3. The confirmation of the universal relation (8) for (a) OE ,
(b) OCl1

, (c) OCre , and (d) OD within the parameter range Jz ∈
(1.3, 1.7). By choosing proper values of critical point and exponents,
the rescaled quantity L�xOx versus the rescaled driving parameter
L1/ν (Jz − Jc

z ) for different system sizes can collapse into a single
curve, which is consistent with the finite-size scaling theory. The
critical point Jc

z and critical exponents ν and �x obtained in this
processing are summarized in Table I.

used to distinguish different quantities. Therefore, we can plot
the rescaled entanglement L�EOE as a function of the rescaled
coupling L1/ν (Jz − Jc

z ) to confirm the validity of the universal
relation (8). By properly choosing the critical point Jc

z =
1.465 and critical exponents ν = 1.50 and �E = 0.35 (also
see the summary in Table I), we can indeed realize a good
collapse of all rescaled curves as shown in Fig. 3(a), which is
consistent with the scaling relation (8) for order parameters.
Some data in the left part of the plot, however, deviate from
the universal relation and our strategy is to make the collapse
of the right part as perfect as possible. It is noted that the
critical point and the correlation length critical exponent ob-
tained are agreed with the values reported in previous works
[41,46]. Thus far, we can answer the questions raised above
that the quantity OE behaves like an order parameter obeying
conventional scaling relations, and furthermore, OE has an
almost identical critical exponent �E = 0.35(1) with the VBS
order parameter (compared with �VBS ≡ β/ν = 0.344(2) in
the Table I of Ref. [46]). Actually, OE can be obtained from
the VBS order parameter OVBS ≡ 〈σ1 · σ2〉odd − 〈σ1 · σ2〉even,
where σ1 (σ2) is the Pauli operator on the first (second) site
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TABLE I. The critical point Jc
z and associated critical exponents ν, �x , and �̄x extracted from the scaling relations (8), (9), and (10)

are collected here for comparison. Specifically, the true values obtained from the relations (8) and (10) are estimated by performing full
collapses (by adjusting the value of critical point and exponents) of the DMRG data for different system sizes as shown in Figs. 3 and 5, and
the uncertainties are determined by detecting the onset of a visible imperfection of the curve collapse. For the �̄x in Eq. (9), the true value is
estimated by performing a linear fitting (based on the least-squares method) using the data for L = 208, 288, 336 and the uncertainty is roughly
bounded by the fitting using the data for L = 128, 208, 288, 336.

From Eq. (8) From Eq. (9) From Eq. (10)

Observables Jc
z ν �x �̄x Jc

z ν �̄x ν(�x + �̄x )a

OE 1.465(1) 1.50(4) 0.35(1) 0.340(5) 1.459(1) 1.49(4) 0.338(2) 1.04
OCl1 1.465(1) 1.49(5) 0.34(2) 0.369(10) 1.453(1) 1.50(2) 0.367(1) 1.06
OCre 1.465(2) 1.53(6) 0.34(2) 0.326(5) 1.458(1) 1.52(5) 0.325(2) 1.02
OD 1.464(2) 1.50(5) 0.33(2) 0.363(9) 1.453(2) 1.54(3) 0.360(3) 1.04

aThe ν, �x , and �̄x involved come from Eqs. (8) and (9).

of the lattice bonds, by replacing the classical correlations
with the two-site entanglement. This connection between the
quantity OE and the VBS order parameter may be used to
understand the universal relation followed by the former,
while the fact that the critical exponent �E determining the
vanishing pace of OE is nearly identical with the one for VBS
order parameter �VBS is still a nontrivial observation and one
might treat it as an accident at first sight.

Therefore, our next step is to replace the classical cor-
relations in the VBS order parameter with other quantities,
such as quantum coherence and trace distance, to see whether
similar phenomena occur in these cases. In Fig. 2, we display
the difference of the l1 norm of coherence OCl1

, the relative
entropy of coherence OCre , and the trace distance OD on the
odd and even bonds as a function of the coupling strength
Jz. Obviously, all these three quantities can characterize the
breaking and restoring of the translation symmetry, respec-
tively, in the VBS and ferromagnetic phases as OE does.
Moreover, we also confirm the existence of the universal
relation for OCl1

, OCre , and OD independently by performing
curve collapses in Figs. 3(b)–3(d) according to the Eq. (8).
All the information about the quantum criticality, namely the
critical point and associated critical exponents, used in the col-
lapses are collected in the Table I for comparison. There are
three points that we would like to note here. First, the curve
collapses of quantum coherence and trace distance are better
than the one for quantum entanglement, especially for the left
part of the function Fx, which is due to the distinctive behavior
of log-negativity on the even bonds. Second, the results of
the critical point Jc

z and correlation length critical exponent ν

extracted independently from the universal relation of all the
four quantum information concepts are consistent with each
other, which makes our results more reliable. Third, we also
notice that the four critical exponents �E , �Cl1

, �Cre , and �D

are all nearly identical with �VBS within numerical accuracy,
which seems not to be an accident. This phenomenon may
suggest that the nature of the VBS order parameter could still
be retained even when the classical correlations in its formula
are replaced by other quantifiers. One way to explain this
observation may lie in the fact that the main task of VBS order
parameter is to characterize the breaking of the translation
symmetry, which can be captured by the difference between
the odd and even bonds, and thus the use of the classical
correlation may not be necessary. To have a more deeper

understanding, however, one may still have to resort to the
description of field theories.

Until now, we have explored the quantum criticality of the
model by using the universal relation (8) and found a nontriv-
ial similarity between the quantities we used and conventional
order parameters. It is noted, however, that this similarity and
the universal relation of OE may only exist in QPTs having
VBS order parameters and the analyses described above may
not apply to other QPTs. Nevertheless, the derivative of the
two-site quantum entanglement and other quantifiers with
respect to the driving parameter seems to be a more useful
approach for the study of quantum criticality [22,28,67,68].
Therefore, it would be appealing to investigate the scaling
behaviors of |∂Eln/∂Jz| calculated on the odd or even bond
to study the 1D DQCP model. However, in the following,
we still choose to apply the finite-size scaling analysis on
quantities |∂Ox/∂Jz| to be an independent examination of the
results obtained from Fig. 3. Of course, there should be some
connections between the scaling behaviors of |∂Eln/∂Jz| and
|∂OE/∂Jz|, which will be discussed later.

By numerically calculating the first derivative of the quan-
tities Ox with respect to the coupling Jz for various system
sizes, we can observe sharp peaks of |∂Ox/∂Jz| near the
critical point and the peak value |∂Ox/∂Jz|m is enhanced and
the position of the peaks Jm

z moves gradually from the VBS
phase toward the critical point as the system size is increased.
In the spirit of the finite-size scaling theory, we describe the
divergent behavior of |∂Ox/∂Jz| near the critical point by a
power law,

|∂Ox/∂Jz|m ∼ L�̄x , (9)

where �̄x is a critical exponent characterizing the diverging
pace of |∂Ox/∂Jz|m with respect to the system size L. Hence,
in Fig. 4, we perform linear fittings for ln (|∂Ox/∂Jz|m ) ver-
sus ln L by the least-squares method. It is obvious that
|∂Ox/∂Jz|m shows a perfect logarithmic divergence with re-
spect to the system size and the critical exponents determined
by the slop of fitting lines are collected in Table I for later
reference. It is noted that, in the linear fitting processing,
we have dropped the data for the smallest L = 128 and only
make use of the data for the largest three L = 208, 288, 336
to obtain more accurate critical exponents �̄x.
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(d)(c)

(b)(a)

FIG. 4. Logarithmic divergences of the first derivative of (a) OE , (b) OCl1
, (c) OCre , and (d) OD with respect to the system size. Note that

the axes are plotted in a log scale. The solid straight fitted lines are obtained by the least-squares method. The DMRG data used in the fitting
processing are marked by open circles while the data abandoned for the smallest L = 128 are marked by open triangles. The critical exponents
�̄x obtained are summarized in Table I.

Additionally, the scaling behavior of |∂Ox/∂Jz| near the
critical point could also be described by another universal
relation

L−�̄x |∂Ox/∂Jz| = Gx
[
L1/ν

(
Jz − Jc

z

)]
, (10)

where Gx should be the first derivative of the universal func-
tion Fx, and we note the additional minus sign before �̄x

compared with Eq. (8). Therefore, in Fig. 5, we apply the
universal relation (10) to all |∂Ox/∂Jz| independently within
the coupling range Jz ∈ (1.3, 1.7). To systematically make
a full collapse of the rescaled derivatives L−�̄x |∂Ox/∂Jz| as
a function of the rescaled coupling L1/ν (Jz − Jc

z ) for dif-
ferent system sizes, we first adjust the critical point Jc

z to
vertically align the peaks, then vary the exponent �̄x to
have same peak values for all L, and finally fine tune the
exponent ν to achieve the curve collapse. All the critical
points and critical exponents obtained from the application of
Eq. (10) are summarized in Table I. We also note that only
the data for L = 208, 288, 336 are used in the curve collapses
to have a better comparison with the results acquired from
Fig. 4.

Now we can focus on the information collected in the
Table I to have some discussion about the results obtained
so far. First, we can see that the critical exponents extracted
independently from Eqs. (8), (9), and (10) are fairly consistent
with each other. In order to measure this consistency in a more
quantitative way, we further notice an underlying connection

between the critical exponents ν, �x, and �̄x. Since the uni-
versal relation (10) could be actually derived from Eq. (8) by
taking a first derivative with respect to Jz, the associated criti-
cal exponents should obey a simple relation ν(�x + �̄x ) = 1.
It is clear from the last column of the Table I that the relation
shown here is satisfied by our numerical results, indicating the
finite-size scaling analyses performed are trustworthy. Sec-
ond, however, we also note that the critical points obtained
from Eq. (10) are slightly smaller than the ones acquired
from Eq. (8). In fact, a similar situation can be found in the
scaling analysis of the fidelity susceptibility performed in the
Ref. [45] with a slightly larger obtained critical point. We sus-
pect that this small deviation is caused by the finite-size effect
and could be reduced in a controlled way by considering larger
system sizes. Finally, we mention that the scaling relations
(9) and (10) should also be valid for the first derivatives of
the two-site entanglement and other quantifiers calculated on
the odd or even bond. Specifically, the critical exponent �̄odd

x
(�̄even

x ) for |∂Eln/∂Jz| (the log-negativity can be replaced by
other quantifiers) on the odd (even) bond could be related with
�̄x through the scaling law (9) by L�̄x ∼ αL�̄odd

x + βL�̄even
x ,

and we have �̄x = max (�̄odd
x , �̄even

x ) in the thermodynamic
limit. It is noted that �̄x (and �̄odd/even

x ) differs from the
conventional scaling dimension by an additional minus sign,
and thus the smaller dimension associated operator is more
relevant now becomes the larger one between the odd and even
bond is more relevant.
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(d)(c)

(b)(a)

FIG. 5. The application of the universal relation (10) to (a) OE ,
(b) OCl1

, (c) OCre , and (d) OD within the parameter domain Jz ∈
(1.3, 1.7). The critical points Jc

z and associated critical exponents �̄x

and ν used in the collapses are gathered in Table I.

IV. MULTIPARTITE ENTANGLEMENT
IN THE 1D DQCP MODEL

In the above, we have investigated the two-site entangle-
ment in the 1D DQCP model and found some interesting
results. However, this two-site entanglement is not sufficient
to capture the entanglement structure of the ground state and
an exploration of the multipartite entanglement seems to be
necessary. Therefore, in this section, we further provide an
examination about the residual entanglement to have some
idea of the entanglement distribution at the deconfined critical
point.

Specifically, we apply the residual entanglement on the
whole spin chain and, for simplicity, only consider τL/2 with
the partition AL/2|ĀL/2, where the definition of Ai can be seen
in Eq. (4). It is observed in Fig. 6 that the states deep in
the VBS and ferromagnetic phases possess a small residual
entanglement as expected, while the states near the critical
point show a much richer multipartite entanglement. In ad-
dition, we also recognize an obvious L-independent behavior
of τL/2 at both sides of the critical regime. To understand this
observation, we need to examine each term of the expression
(4). We note that the calculation of the first term E2

f (ρAL/2|ĀL/2
)

can be simplified as S2(ρAL/2 ), and it is also numerically found
that the second term

∑L
j 	=L/2 E2

f (ρAL/2Aj ) almost only contains

FIG. 6. The residual entanglement τL/2 as a function of the
coupling Jz for different system sizes. To extrapolate to the thermody-
namic limit, a second- (third-) degree polynomial function is used to
fit the sufficiently converged data in the VBS (ferromagnetic) phase.
The quantum critical point Jc

z is roughly estimated by the crossover
of the fitted lines.

the contribution from nearest terms. Therefore, the residual
entanglement τL/2 in our case is in some sense a local quantity
which depends only on the density matrix of the central spins.
Then for a sufficiently large system size L, adding degrees of
freedom at the edge of the spin chain should bring negligible
influence to the residual entanglement τL/2 as long as the
correlation length is much less than the chain length. This
argument could be used to explain not only the L-independent
behavior of τL/2 but also the expanding of the corresponding
parameter region toward the critical point as the increase of L.
Based on these observations, we can expect to obtain a good
approximation of the behavior of τL/2 in the thermodynamic
limit by extrapolating the finite-size results. Specifically, by
comparing data for different L, we can determine the pa-
rameter region where τL/2 has sufficiently converged to the
infinite L limit. In Fig. 6, these converged data in the VBS and
ferromagnetic phases are, respectively, fitted by a second- and
third-degree polynomial function and the deconfined critical
point is roughly determined as Jc

z ≈ 1.462 by the crossover
of the fitted lines. It is noted that a second-degree polynomial
fitting is not good enough for the ferromagnetic region and
this is why we adopt a third-degree one there.

Now we can find from Fig. 6 that the deconfined critical
point Jc

z displays a large amount of residual entanglement
compared with typical VBS and ferromagnetic states, which
might be accounted by the strong quantum fluctuation and
the gapless deconfined degrees of freedom. Moreover, as
mentioned, the residual entanglement can characterize the
quantum entanglement not stored in spin pairs, so a large τL/2

at the critical point indicates the existence of rich entangle-
ment other than the two-site entanglement, like the three-site
and four-site entanglement. Hence, it would be appealing to
study these various types of entanglement separately in the
1D DQCP model. One way to achieve this is to apply the
residual entanglement on the central three or four sites. In
this approach, however, the first term in Eq. (4) can no longer
be simplified to the von Neumann entropy since the state of
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the central three or four spins is in general a mixed state, and
the calculation of the residual entanglement would involve an
expensive optimization [54]. Due to this restriction, we did
not perform such an analysis in the present work. However,
we still notice that there exists a related work [67], in which
the multipartite entanglement in three or four spins of the 1D
XY model is investigated by employing the concept, genuine
multiparticle negativity. We expect that this multipartite en-
tanglement measure could be used to figure out more details
about the structure of quantum entanglement in 1D and 2D
DQCP in further studies.

V. CONCLUSION

To summarize, we have investigated the quantum entangle-
ment in the ground state of the 1D DQCP model proposed in
Ref. [31] by making use of the large-scale finite-size DMRG
algorithm. We have found two distinct behaviors of two-site
entanglement on odd and even bonds, and the difference OE

has been employed to study the critical characteristics. By
performing finite-size scaling analyses of OE and |∂OE/∂Jz|,
we extracted accurate deconfined critical point and associated
critical exponents separately from several different aspects.
These results were shown to be self-consistent with each other
and in agreement with previous works. Meanwhile, we also
noticed a similarity between OE and the VBS order parameter,
and the same observation can be obtained for quantum coher-
ence and trace distance. In addition, the deconfined critical
point was argued to possess rich quantum entanglement other
than the two-site entanglement from the residual entanglement
aspect. Finally, we discussed a possible approach to explore
the details of the entanglement structure in this 1D DQCP.
Our work provides some insight into the 1D DQCP physics
from the quantum information perspective. Recently, a nu-
merical study of the second Rényi entanglement entropy has
been performed in a 2D DQCP lattice model [69] and the
associated scaling behavior was investigated to understand the
underlying DQCP theory. We hope that the methods used in
the present work could also be useful for studying 2D DQCPs.

In this work, we have only focused on the ground-state
quantum entanglement at the transition. Recently, however,
there are also several interesting works [19,70,71] exploring
the dynamical aspects of 1D and 2D DQCPs. To expand our
current work, an investigation of the quench dynamics of the
quantum entanglement in the 1D DQCP spin chain would be
a suitable direction for further research.
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APPENDIX: THE BEHAVIOR OF QUANTUM
ENTANGLEMENT IN THE VBS PHASE

In this Appendix, we aim to provide an intuitive explana-
tion to the behavior of the even bond quantum entanglement
in the VBS phase observed in Fig. 1. We note that the physical

picture shown here only works for the VBS phase with open
boundary condition (nondegenerate ground state) and fails
in the ferromagnetic phase (doubly degenerate ground state).
The degeneracy of the ground state in each phase can be seen
explicitly in Fig. 5(a) of the Ref. [46].

1. Exact form of the reduced density matrix

We first derive an exact form of the two-site reduced den-
sity matrix in the VBS phase following the argument given in
Ref. [72]. In general, the two-site reduced density matrix can
be written as

ρi j = 1

4

3∑

α,β=0

ci j
αβ

(
σα

i ⊗ σ
β
j

)
, (A1)

where i and j denote the site position, σ 0 is the identity ma-
trix I2, σ 1,2,3 = σ x,y,z, and ci j

αβ = Tri j[ρi j (σα
i ⊗ σ

β
j )]. As the

reduced density matrix ρi j is obtained from the ground state
of the Hamiltonian, it is natural to expect that the symmetries
of the Hamiltonian may give some constraints on the coef-
ficients ci j

αβ . For the Hamiltonian studied here [see Eq. (1)],

we define three operators U α ≡ ⊗L
i=1 σα

i with α = x, y, z.
For convenience, we also split these operators into two parts,
U α = U α

i j ⊗ U α

i j
with U α

i j = σα
i ⊗ σα

j and U α

i j
= ⊗

k 	=i, j σ
α
k . It

is obvious that the Hamiltonian is invariant under the trans-
formation of U α , namely U αHU α = H , and it is easy to show
that the unique ground state ρ = |g〉〈g| (|g〉 denote the ground
state) has the same property, U αρU α = ρ. By tracing out the
degrees of freedom other than the i, j sites (denoted by i j), we
can extract the symmetries of the reduced density matrix,

ρi j = Tri j

[(
U α

i j ⊗ U α

i j

)
ρ
(
U α

i j ⊗ U α

i j

)]

= Tri j

[(
U α

i j ⊗ U α

i j
U α

i j

)
ρU α

i j

]

= Tri j

[
U α

i jρU α
i j

] = U α
i jρi jU

α
i j . (A2)

This constraint greatly simplifies the form of the two-site
reduced density matrix. For example, U z

i j (σ
x
i ⊗ σ 0

j )U z
i j =

−σ x
i ⊗ σ 0

j requires a zero ci j
10 and U z

i j (σ
x
i ⊗ σ z

j )U z
i j = −σ x

i ⊗
σ z

j requires a zero ci j
13. After a complete examination of all

terms in Eq. (A1), we find there are only four nonzero coeffi-
cients ci j

00 = 1, ci j
11, ci j

22, and ci j
33. This means that the two-site

reduced density matrix is a Bell diagonal state [73,74], which
can be written as the mixture of the four Bell states (from now
on, we omit the site indices i and j),

ρ = p1|
+〉〈
+| + p2|
−〉〈
−|
+ p3|�+〉〈�+| + p4|�−〉〈�−|, (A3)

where pk are normalized mixing weights, |
±〉 = (|↑↑〉 ±
|↓↓〉)/

√
2, and |�±〉 = (|↑↓〉 ± |↓↑〉)/

√
2. The quantum en-

tanglement of the Bell diagonal states has been understood
quite well [73,75] and the main conclusion is that the neces-
sary and sufficient condition for a Bell diagonal state to be
entangled is max(p1, p2, p3, p4) > 1/2.

2. Perspective from the Bell diagonal state

Now we can use the concept Bell diagonal state to explain
the behavior of two-site quantum entanglement in the VBS
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FIG. 7. The mixing weights (left axis) and log-negativity (right
axis) of ρodd and ρeven as a function of the coupling Jz ∈ [1., 1.6] in
the VBS phase with L = 128. The red dash-dotted line marks out
the point J∗

z , at which the mixing weight pe
1 of the Bell state |
+〉 in

the density matrix ρeven has increased from 1/4 up to 1/2. Eln (ρeven )
becomes finite for Jz > J∗

z .

phase shown in Fig. 1. According to the above discussion,
the reduced density matrix ρodd (ρeven) of the odd (even) bond
should be a Bell diagonal state which has also been confirmed
by the DMRG numerical results for Jz ∈ [1, 1.62] with L =
128. For Jz > 1.62, the ground state becomes doubly degen-
erate and the associated reduced density matrix is no longer
a Bell diagonal state and we do not discuss this parameter
range in the following. However, we still numerically find
that ρodd and ρeven have a simple structure for Jz > 1.62 and
the inversion symmetry [31] may help to determine the exact
form.

To analyze the quantum entanglement of the odd and even
bonds in the VBS phase, we start with the exact Majumdar-
Ghosh point Jz = 1. At this point, the density matrix ρodd

only has the contribution from the component |
+〉 (po
1 = 1),

while ρeven is a mixture of all Bell states with equal weights
(pe

k = 1/4). By increasing the coupling Jz, the translation
symmetry will be restored gradually. In the Bell diagonal
state picture, we can expect that the change of the mixing
weights po

k and pe
k should reflect this symmetry restoring.

Therefore, we plot the mixing weights of ρodd and ρeven as
a function of the coupling Jz within the VBS phase. It is
obvious from Fig. 7 that the distribution of the mixing weights
po

k and the distribution of pe
k become more and more closed

to each other with the increasing of Jz, which implies the
restoring of the translation symmetry. Moreover, it is noted
that all mixing weights pe

k of the reduced density matrix
ρeven remain smaller than 1/2 in the range Jz ∈ [1, 1.4]. This
means that there is no quantum entanglement between the
two spins on the even bond, which is consistent with the
vanishing of the log-negativity Eln(ρeven) shown in Figs. 1 and
7. These two spins are entangled only when the mixing weight
pe

1 becomes larger than 1/2 (Jz � 1.41). This completes our
discussion of the two-site quantum entanglement in the VBS
phase.

To summarize, we have provided an intuitive explanation
to the absence of the quantum entanglement on the even bond
shown in Fig. 1. The Bell diagonal state picture used here
may not work for general quantum spin models; however, it
shows the possibility of employing the quantum information
concepts to investigate the physics of quantum many-body
systems, like the restoring of broken symmetry and the closing
of the energy gap. On the other hand, we also show a potential
connection between the symmetries of the Hamiltonian and
the reduced density matrix obtained from a nondegenerate
ground state. However, many interesting quantum phases are
generally gapless, therefore, finding a systematic way to ex-
tract the symmetry of the reduced density matrix from the
Hamiltonian symmetry for gapless phases would be an inter-
esting problem to be solved.
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