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Phase diagram and critical properties of a two-dimensional associating lattice gas

I. Ibagon ,1,* A. P. Furlan ,1,† T. J. Oliveira ,2,‡ and R. Dickman 3,§

1Departamento de Física, ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30123-970, Belo Horizonte, Minas Gerais-Brazil
2Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil

3Departamento de Física and National Institute of Science and Technology for Complex Systems, ICEx,
Universidade Federal de Minas Gerais, C.P. 702, 30123-970 Belo Horizonte, Minas Gerais-Brazil

(Received 4 October 2021; accepted 1 December 2021; published 15 December 2021)

We revisit the associating lattice gas (ALG) introduced by Henriques et al. [Phys. Rev. E 71, 031504 (2005)] in
its symmetric version. In this model, defined on the triangular lattice, interaction between molecules occupying
nearest-neighbor sites depends on their relative orientation, mimicking the formation of hydrogen bonds in
network-forming fluids. Although all previous studies of this model agree that it has a disordered fluid (DF),
a low-density liquid (LDL), and a high-density liquid (HDL) phase, quite different forms have been reported
for its phase diagram. Here, we present a thorough investigation of its phase behavior using both transfer matrix
calculations and Monte Carlo (MC) simulations, along with finite-size scaling extrapolations. Results in striking
agreement are found using these methods. The critical point associated with the DF-HDL transition at full
occupancy, identified by Furlan et al. [Phys. Rev. E 100, 022109 (2019)] is shown to be one terminus of a
critical line separating these phases. In opposition to previous simulation studies, we find that the transition
between the DF and LDL phases is always discontinuous, similar to the LDL-HDL transition. The associated
coexistence lines meet at the point where the DF-HDL critical line ends, making it a critical-end-point. Overall,
the form of the phase diagram observed in our simulations is very similar to that found in the exact solution of
the model on a Husimi lattice. Our results confirm that, despite the existence of some waterlike anomalies in this
model, it is unable to reproduce key features of the phase behavior of liquid water.

DOI: 10.1103/PhysRevE.104.064120

I. INTRODUCTION

The importance water has to life on Earth is perhaps com-
parable to the degree of unusual behavior this liquid displays.
In fact, when compared with other substances, liquid water
presents a number of anomalies (such as in density, diffusivity,
and so on), which are believed to originate in the particular
manner in which H2O molecules interact, through hydrogen
bonds forming a local, approximately tetrahedral network
[1]. The three main scenarios proposed to understand water,
viz. the stability-limit [2], the singularity-free [3], and liquid-
liquid critical point (LLCP) [4] hypotheses, are all consistent
with the presence of such a network. The later scenarios are
based on the fact that just as ice becomes glassy and can exist
in low- and high-density amorphous phases [5], the continua-
tion of these phases (increasing the temperature T above that
of spontaneous crystallization) may give rise to a low-density
liquid (LDL) and a high-density liquid (HDL) phase [1,6].
Although there is some indirect experimental evidence for the
existence of the LLCP [7–9], including some coming from
water in nanopores [10–13], a definitive proof is still lacking
[14], mainly because the LLCP would exist in the metastable,
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deeply supercooled region, which is very difficult to access
experimentally in bulk water.

In this context, much of this debate has been based on
computational studies, with several realistic models for water
confirming the LLCP hypothesis (see Ref. [15] for a re-
cent review). A number of simplified associating lattice gas
(ALG) models, designed to possess two liquid phases, have
also been introduced in two [16–22] and three dimensions
[3,23–33]. These ALG models usually feature an attractive,
orientation-dependent interaction between molecules occupy-
ing nearest neighbor (NN) sites—mimicking the hydrogen
bonding in network forming fluids—competing with a repul-
sive excluded-volume interaction. Phase diagrams displaying
a LLCP have been reported for some of these models
[21,22,27–30,32,33], though latter works on some these mod-
els have demonstrated a phase behavior without a LLCP
[21,22,33].

An example of this is the symmetric version of the Bessel-
ing and Lyklema model [26], firstly analyzed by Girardi et al.
[33]. This model is defined on the body-centered cubic lattice,
where each molecule can form up to four hydrogen bonds with
NNs, similar to H2O. While these bonds lower their energy,
nonbonding molecules at NN sites experience a repulsive “van
der Waals” interaction. Beyond the GAS-liquid coexistence
line ending at a critical point, a LDL-HDL coexistence line
ending at a second critical point was also reported in Ref. [33],
yielding a phase diagram qualitatively similar to the one in
Fig. 1(a). (As an aside, we remark that the phase commonly
called GAS in the literature related to these models will be

2470-0045/2021/104(6)/064120(14) 064120-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2558-6207
https://orcid.org/0000-0002-9994-5383
https://orcid.org/0000-0001-5675-7430
https://orcid.org/0000-0003-2378-9393
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.064120&domain=pdf&date_stamp=2021-12-15
https://doi.org/10.1103/PhysRevE.71.031504
https://doi.org/10.1103/PhysRevE.100.022109
https://doi.org/10.1103/PhysRevE.104.064120


IBAGON, FURLAN, OLIVEIRA, AND DICKMAN PHYSICAL REVIEW E 104, 064120 (2021)

0.00 0.25 0.50 0.75 1.00 1.25
T̄

−4

−2

0

2

4

μ̄

c2

c1

(a)

LDL

HDL

DF

0.00 0.25 0.50 0.75 1.00 1.25
T̄

−4

−2

0

2

4

μ̄

tp

(b)

LDL

HDL

DF

0.00 0.25 0.50 0.75 1.00 1.25
T̄

−4

−2

0

2

4

μ̄

tc2

tc1

(c)

LDL

HDL

DF

FIG. 1. Qualitative phase diagrams for the symmetric H&B model in the (reduced) μ̄-T̄ plane adapted from Refs. [22,34,35] in panels (a),
(b), and (c), respectively. Solid and dashed lines represent continuous and discontinuous phase transitions, respectively. The coexistence points
at T = 0 are exact, while the loci of the critical points c1 and c2, of the triple point tp, and of the tricritical points tc1 and tc2 are those found
numerically in the references cited above.

regarded as a disordered fluid (DF) here, since it may extend
to large chemical potentials and so, high densities.) Subse-
quent studies of this ALG [36–38], notwithstanding, revealed
a much more complex phase behavior, with the LLCP [c2 in
Fig. 1(a)] being actually a tricritical point, while c1 is disputed
as being a critical-end-point [36,37] or a bicritical point [38].
These works also uncovered a critical line separating the HDL
and DF phases [36–38].

A similar sequence of events marks the history of the ALG
model introduced by Henriques and Barbosa (H&B) [21]
which is a nonsymmetric two-dimensional (2D) version of the
3D model analyzed by Girardi et al. [33]. The H&B model is
defined on the triangular lattice, in which each molecule has
four bonding arms (two donors and two acceptors of protons),
beyond two inert arms separated by 180◦. In their original
Monte Carlo analysis, H&B [21] reported a phase diagram
analogous to that in Fig. 1(a), with two coexistence lines and
two critical points. Further work on this model indicated, how-
ever, a different and richer phase diagram, with two additional
continuous transition lines: DF-LDL and DF-HDL [39]. In
this phase diagram, the DF-LDL coexistence line ends at a
tricritical point where it meets the DF-LDL continuous line;
and the LDL-HDL coexistence line ends at a bicritical point
where it meets the continuous DF-LDL and DF-HDL lines
[39].

Several modifications of the H&B model have been pro-
posed [22,35,40]. Of particular interest here is the symmetric
version introduced by Balladares et al. [22], in which no
distinction is made between donor and acceptor arms. The
literature on this symmetric ALG is also marked by contro-
versy. For example, the original MC simulations of Ref. [22]
again suggested the phase behavior of Fig. 1(a), consistent
with the LLCP hypothesis. The semi-analytical mean-field
solution of this simplified version of the H&B model on a
Husimi lattice built with hexagonal plaquettes [34] revealed
a qualitatively different phase diagram, with three coexistence
lines (DF-HDL, DF-LDL and LDL-HDL) meeting at a triple
point (tp), as shown in Fig. 1(b). Later MC simulations [35]
supported the phase behavior of Fig. 1(c), with two coexis-
tence lines (DF-LDL and LDL-HDL) ending at two tricritical
points (tc1 and tc2), which are linked by a critical DF-LDL

line. No transition between the HDL phase and the disordered
fluid was reported in Ref. [35].

More recently, this symmetric H&B model was inves-
tigated in the limit of full occupancy (corresponding to a
chemical potential μ → ∞) using MC simulations and semi-
analytical solutions on Husimi lattices [41]. The simulations
yielded a continuous transition between the HDL and the
DF phase at a (reduced) temperature T̄c = 0.9525(5), with
critical exponents and Binder cumulant in good agreement
with those of the three-state Potts model in 2D [42]. However,
the Husimi lattice solutions furnish a discontinuous transition,
as a continuation of the DF-HDL coexistence line found for
finite μ [34] to the limit of μ → ∞. All these results raise
important questions on the phase behavior of this model: (i)
Does it indeed exhibit a LLCP as in Fig. 1(a)? (ii) What is the
true nature of the DF-LDL transition? Is it discontinuous as
in Fig. 1(b) or does it have a tricritical point and a continuous
part like in Fig. 1(c)? (iii) Assuming that a transition line does
indeed exist separating the DF and HDL phases: Is it always
discontinuous but ends at a critical point in the limit μ → ∞?
Or does it start discontinuous and change to continuous at
some finite μ? Or, even, is the entire line continuous?

In this work we address these points through an extensive
numerical study of this ALG model using both transfer-
matrix analysis and MC simulations in the grand-canonical
ensemble. Consistent results are obtained from both methods,
demonstrating that the correct topology of the phase diagram
is that of Fig. 1(b). However, in contrast with the mean-field
result [34] shown in this figure, we find that the transition
between the DF and HDL phases is always continuous and
the critical DF-HDL line ends at a critical-end-point, where
it meets the DF-LDL and LDL-HDL coexistence lines. The
critical properties of the continuous transition line—an in-
teresting problem scarcely tackled in the literature of lattice
models for water (see Ref. [41] for a discussion)—are also
investigated and an intriguing behavior is found, with some
quantities presenting a close agreement with the three-state
Potts class, while others have a large deviation from it.

The paper is organized as follows. In Sec. II, we present
the investigated model. The transfer-matrix method and the
associated results are discussed in Sec. III. A similar thing is
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FIG. 2. Possible orientational states η ≡ êk , with k = 1, 2, and 3.
Bonding arms are represented by thick black lines and the generators
of the triangular lattice ê1, ê2, and ê3 are indicated by tiny coloured
arrows. For this configuration no hydrogen bond is formed between
these molecules.

done in Sec. IV for the Monte Carlo simulations. The compar-
ison of the outcomes from both methods and our concluding
remarks are presented in Sec. V.

II. MODEL

We study the symmetric version of the Henriques and
Barbosa (H&B) [21] associating lattice gas (ALG) model,
investigated in Refs. [22,34,35,41]. The model is defined on
the triangular lattice (coordination number z = 6), where each
site i can be either empty (σi = 0) or occupied by a sin-
gle molecule (σi = 1). A chemical potential μ is associated
to each particle in the system, since we will work in the
grand canonical ensemble. Whenever two molecules occupy
nearest-neighbor (NN) sites, they experience a repulsive “van
der Waals” interaction, gaining an energy ε > 0. In addition,
two NN molecules can form a hydrogen bond, which de-
creases their energy by a factor −γ < 0, provided that their
bonding arms point toward each other. In fact, a key feature
of the model analyzed here (and of other ALGs as well) is
the existence of orientational degrees of freedom and related
interactions introduced by bonding arms. In our case, each
molecule has four bonding arms and two inert (nonbonding)
arms, as shown in Fig. 2. The four bonding arms are all
equivalent and always interact with those of NN molecules in
the same manner, i.e., there is no distinction between donors
and acceptors (of protons) here, in opposition to the original
(nonsymmetric) H&B model [21]. The inert arms of a given
molecule are in diametrically opposed lattice edges (forming
an angle 180◦), which results in three orientational states for
each molecule (see Fig. 2.) Following Ref. [41], we may con-
veniently define an orientational variable, ηi, pointing along
one of the nonbonding directions of the molecule at site i. In
this fashion, it is simply given by the generators of the trian-
gular lattice, êk with k = 1, 2 and 3, which are also depicted

in Fig. 2. Namely, ηi ≡ êk , where ê1 = ı̂, ê2 = + 1
2 ı̂ +

√
3

2 ĵ and

ê3 = − 1
2 ı̂ +

√
3

2 ĵ.
With these definitions, we may write the Hamiltonian of

this ALG model as

H(η, r) =
∑
〈i, j〉

σiσ j[ε + ui j] − μ
∑

i

σi, (1)

where r = ri − r j is a unit vector in the set {±ê1,±ê2,±ê3}.
The second sum gives the total number of particles, N , while
the first sum runs over all NN pairs (i, j), whose orientational
interaction is enconded in variable ui j , given by [41]

ui j = −γ

(
4

3

)2

[1 − (ηi · r)2][1 − (η j · r)2]. (2)

Note that whenever r is parallel or antiparallel to ηi and/or η j ,
molecules (i, j) do not form a hydrogen bond and ui, j = 0;
otherwise, ui, j = −γ . Following most of the previous studies
of the ALG model [22,34,35], we will use the parameter ε

as the energy scale and set γ /ε = 2. In this way, the net
interaction between two NN molecules forming (not forming)
a hydrogen bond is attractive (repulsive). We therefore have
as free parameters the dimensionless temperature T̄ = kBT/ε

and chemical potential μ̄ = μ/ε. We remark that in Ref. [41]
the temperature (called τ there) was defined in units of γ , so
that τ = T̄ /2.

As already discussed in the Introduction [Sec. I], from
previous studies of the ALG model [22,34,35], one knows that
its phase diagram exhibits three phases: disordered fluid (DF),
low-density liquid (LDL), and high-density liquid (HDL). In
the ground state (T̄ = 0), the DF phase has particle density
ρ = 0 (the reason it is usually called GAS) and is the most
stable phase for μ̄ < −2. For −2 < μ̄ < 2 the LDL phase
is the one with the lowest free energy. In this phase, one of
the four sublattices is empty while each of the other three is
occupied by molecules in one of the orientational states, such
that each molecule participates in four hydrogen bonds [see
Fig. 3(a)]. Hence, the LDL phase has ρ = 3/4 and a fourfold
degeneracy. For μ̄ > 2 the HDL phase is the most stable, with
the lattice fully occupied (ρ = 1) and all inert arms aligned
along the same direction, as illustrated in Fig. 3(b). The HDL
phase is threefold degenerate. It is quite simple to show that
the DF-LDL and LDL-HDL phases coexist at μ̄ = −2 and
μ̄ = 2, respectively, when T̄ = 0 [22,34].

III. TRANSFER-MATRIX ANALYSIS

A. Preliminaries

We define the transfer matrix, M̃L, of the model on strips
of infinite length and finite width L. As illustrated in Fig. 4,
we consider square lattice strips with diagonal edges, with pe-
riodic boundary conditions in the finite (horizontal) direction.
As usual, each possible state for a given row of the strip will be
associated with a row and a column of M̃L. Since each lattice
site can be in four different states, we have a total of 4L states
for a strip of width L, so that M̃L has dimension 4L × 4L. To in-
vestigate the full-occupancy case (μ̄ → ∞), where only three
states are possible for each site, we can work with reduced
matrices of dimension 3L × 3L. In any case, the element (i, j)
of M̃L is obtained by setting the row n in state i, the row n + 1
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(a)

(b)

FIG. 3. Illustration of a ground state configuration of the (a) low-
density liquid (LDL) phase and (b) high-density liquid (HDL) phase.
Different colors represent molecules in distinct orientational states.
The bonding arms are indicated by thick lines.

in state j and determining the statistical weight of this con-
figuration. Then, M̃L(i, j) = exp[(Npμ̄ + 2Nhb − NvdW )/2T̄ ],
where Np is the total number of particles on both rows (note
that we are dividing this by 2), and Nhb and NvdW counts
the effective number of hydrogen bonds and van der Waals
interactions (i.e, first neighbors) in these rows, respectively.
By “effective,” we mean that we are counting once (twice)
interactions along the horizontal (diagonal and vertical) direc-
tion and, then, dividing them by 2. In this way, the “internal”
interactions, along the vertical and diagonal directions, are
counted once, while each one in the horizontal contribute with
1/2 in each state, since they appear in two states.

FIG. 4. Illustration of the approach to the triangular lattice used
in our transfer-matrix calculations. A strip of width L = 5 is shown.

It is hard to deal directly with M̃L, because all of its ele-
ments are nonnull. Therefore, to save computer RAM memory
and speed up the calculations, we replace the procedure of
adding an entire row, by the procedure of adding a single
elementary cell (formed by squares with a diagonal edge).
Working in this way, we have to deal with L + 1 matrices,
T̃ (s)

L , so that M̃L = T̃ (L)
L · T̃ (L−1)

L · · · T̃ (0)
L . Here, T̃ (0)

L creates a
new site in row n + 1 above a complete row n; the matrices
T̃ (s)

L , with 1 � s � L − 1, add new elementary cells to row
n + 1; and finally T̃ (L)

L completes the row n + 1 by imposing
the appropriated (periodic here) boundary conditions (see,
e.g., Refs. [43,44] for more details). The advantage of this
method relies on the fact that the matrices T̃ (s)

L are very sparse.
In fact, the total number of nonnull terms summing over all
matrices T̃ (s)

L is only (16L − 8)4L.
If �

(k)
L denotes the eigenvalues of M̃L, for given values of

μ̄ and T̄ , with �
(0)
L > |�(1)

L | > |�(2)
L | > . . ., then the (dimen-

sionless) negative free energy density is

f (L) = ζ

L
ln �

(0)
L , (3)

where ζ is a geometric factor given by the thickness of the
added row when its circumference is L, which in our case is
ζ = 2/

√
3. The correlation length ξk (L) associated with the

kth subleading eigenvalue is given by

ξ−1
k (L) = ζ ln

�
(0)
L∣∣�(k)
L

∣∣ . (4)

From these correlation lengths, we may defined the scaled
gaps Xk (L) = L/[2πξk (L)]. Note that all these quantities ob-
viously depend also on μ̄ and T̄ . Close to a critical point (T̄c

or μ̄c), from finite-size scaling [45], we expect that

Xk (L; T̄ , μ̄) = X ∗
k + attLyt + a1Ly1 + a2Ly2 + · · · , (5)

where yt > 0 is the temperature exponent, yi < 0 (i =
1, 2, . . .) are irrelevant exponents, and t = T̄ − T̄c if μ̄ is kept
fixed or t = μ̄ − μ̄c when T̄ is the fixed parameter.

In conformally invariant systems, the critical free energy
density is expected to follow

f (L) = f∞ + πc

6L2
+ p1Lz1 + · · · , (6)

where c is the conformal anomaly [46] and z1 is a negative
exponent.

B. The full-occupancy limit

Let us start analyzing the limiting case μ̄ → ∞, where all
lattice sites are occupied by molecules. Here, we can work
with smaller transfer matrices, as noticed above, which al-
lows us to investigate strip widths up to L = 16. As recently
demonstrated by some of us, in such a limit the system dis-
plays only the DF and HDL phases, separated by a critical
point in the class of the 2D 3-state Potts model [41].

If a critical point exists at some critical temperature T̄ ∗
c ,

from Eq. (5), then one may expect that curves of the scaled
gaps Xk (L − �; T̄ ) and Xk (L + �; T̄ ) versus T̄ (e.g., with � =
1) cross at pseudocritical temperatures T̄c,k (L), which shall
converge to T̄ ∗

c as L → ∞. Therefore, T̄c,k (L) can be deter-
mined from the condition Xk (L − 1, T̄c,k ) = Xk (L + 1, T̄c,k ) ≡
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TABLE I. Finite-size estimates of the pseudocritical temperature T̄c,k and scaling dimension Xc,k from the condition Xk (L − 1, T̄c,k ) =
Xk (L + 1, T̄c,k ) for k = 1 (left) and k = 2 (right). The central charges c(k), calculated at T̄c,k (L), are also shown.

L T̄c,1 Xc,1 c(1) T̄c,2 Xc,2 c(2)

3 0.9630812528 0.1153561805 0.9439481004 0.9831360600 0.1951137102 0.9400187288
4 0.9581778321 0.1122361525 0.9019637901 0.9689256192 0.1810700192 0.8996045252
5 0.9546313471 0.1090076877 0.8651449784 0.9611962232 0.1708572156 0.8639745823
6 0.9530663416 0.1071998513 0.8438815963 0.9575263053 0.1648349316 0.8433113197
7 0.9524498263 0.1063326346 0.8322698047 0.9557272984 0.1612950160 0.8319934887
8 0.9522229606 0.1059533630 0.8256760684 0.9547690621 0.1590849673 0.8255533747
9 0.9521529738 0.1058159572 0.8216678338 0.9542109914 0.1576018062 0.8216323836
10 0.9521470966 0.1058006641 0.8190595772 0.9538600720 0.1565417468 0.8190774634
11 0.9521675217 0.1058493262 0.8172623591 0.9536256433 0.1557459461 0.8173147797
12 0.9521981542 0.1059325169 0.8159665891 0.9534614919 0.1551257762 0.8160423453
13 0.9522318614 0.1060345131 0.8149983146 0.9533421966 0.1546283056 0.8150903408
14 0.9522654200 0.1061464695 0.8142535202 0.9532528474 0.1542199764 0.8143571526
15 0.9522974007 0.1062632003 0.8136666597 0.9531842311 0.1538784508 0.8137787074

Xc,k (L), from which a pseudocritical estimate [Xc,k (L)] of the
asymptotic scaling dimension X ∗

k is also obtained. The values
of these quantities for k = 1 and k = 2 are shown in Table I.
The first thing to note there is that T̄c,1 has a nonmonotonic
behavior, initially decreasing and then increasing with L. This
prevents any reliable extrapolation of this temperature. The
convergence of T̄c,2, however, is monotonic and, so, we will
focus on it to estimate T̄ ∗

c .
In general, from finite-size scaling, one expects that

T̄c,k (L) = T̄ ∗
c + b1L−ω1 + b2L−ω2 + . . . , (7)

whose exponents are related to those in Eq. (5) as ω1 = yt −
y1 and ω2 = yt − y2. Then, by considering bi = 0 for i � 2
and performing three-point (3-pt) extrapolations of the values
of T̄c,2 in Table I [with T̄ ∗

c , b1 and ω1 as unknowns in Eq. (7)],
we find the temperatures displayed in Table II. Note that for
the largest L’s they are varying at the fifth decimal place. A
second round of 3-pt extrapolations (now of the extrapolated
values in Table II) yields 0.952806 � T̄ ∗

c � 0.952818, for the
four largest sets of widths, without any clear tendency to
increase or decrease. Hence, this gives T̄ ∗

c = 0.952812(6).

TABLE II. Extrapolated temperatures, T̄ ∗
c , and corresponding

correction exponents, ω1, from 3-pt extrapolations of the values
of T̄c,2 displayed in Table I, considering Eq. (7) and sets of sizes
(L − 1, L, L + 1). The resulting central charges, c, from analogous
extrapolations of the values of c(2) in Table I are also shown.

L T̄ ∗
c ω1 c

4 0.9397502 1.3793263 –
5 0.9516285 2.6536683 0.7857046
6 0.9529237 3.2158880 0.8086578
7 0.9530776 3.3614896 0.8119752
8 0.9530316 3.2893957 0.8121525
9 0.9529681 3.1489286 0.8117281
10 0.9529211 3.0137856 0.8112940
11 0.9528904 2.9040695 0.8109670
12 0.9528705 2.8173407 0.8107358
13 0.9528570 2.7468393 0.8105667
14 0.9528474 2.6875514 0.8104331

This value differs by only 0.02% from the one estimated from
MC simulations in Ref. [41]: T̄ ∗

c ≈ 0.9526.
The resulting exponents ω1 from the first 3-pt extrapola-

tions are also displayed in Table II. Three-point extrapolations
of them, assuming again a power-law correction, return val-
ues close (and converging toward) to ω1 = 2 for the largest
sets of widths. We remark that, according to Queiroz [47],
the irrelevant exponents in Eq. (5) are given by y1 = −4/5
and y2 = −8/5 for the three-state Potts model, whose critical
thermal exponent is yt = 6/5. This means that ω1 = 2 and
ω2 = 14/5 = 2.8 in this case. By assuming that ω1 = 2 and
bi = 0, for i � 3 in Eq. (7), we estimate the exponents ω2

for different L’s from 4-pt extrapolations; and subsequent
3-pt extrapolations of them yield values close to 14/5 for the
largest L’s. So, the correction exponents of the ALG model
in the full lattice regime are consistent with the ones for the
3-state Potts model.

The finite-size amplitudes Xc,1 and Xc,2 in Table I, however,
do not agree with the ones expected for the 2D 3-state Potts
class. In fact, for conformally invariant models in this class,
the asymptotic values of these quantities are X ∗

1 = 2 − yh =
2/15 and X ∗

2 = 2 − yt = 4/5. However, our values of Xc,1

for the largest L’s are ∼20% smaller than 2/15, though they
display a nonmonotonic convergence and are increasing for
large L’s. So, it may be the case that for very large strip widths
they will attain the expected Potts value. For Xc,2, our values
are smaller than 4/5 by a factor ∼5 and are still decreasing,
without any indication of changing in this behavior. Actually,
the values in Table I extrapolate to X ∗

2 ≈ 0.15, suggesting that
yt ≈ 1.85 and then ν = 1/yt ≈ 0.54. Thereby, we can be ei-
ther dealing with a system displaying very slow convergences
in these quantities (what seems strange in the case of Xc,2) or
the ALG is not a conformally invariant model or it belongs to
a different universality class.

The central charge is somewhat consistent with the 3-
state Potts class, for which c = 4/5. In fact, the values of
c, calculated as c(L) = 3[ f (L − 1) − f (L + 1)](L − 1)2(L +
1)2/2πL at the pseudocritical temperatures T̄c,1 and T̄c,2, are
shown in Table I; and they approximate 4/5 as the system size
increases. However, 3-pt extrapolations of such estimates (as-
suming power-law corrections) return c � 0.81 (see Table II).
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TABLE III. Critical free energies, f , and scaled gaps X1 and X2

calculated at the critical temperature T̄ ∗
c = 0.952812. The central

charges, c, estimated from these free energies are also shown.

L f X1 X2 c

2 5.029729 0.112107 0.180682 –
3 4.960323 0.109445 0.168819 0.944204
4 4.937032 0.107661 0.161966 0.902030
5 4.926737 0.106952 0.158348 0.865111
6 4.921304 0.106774 0.156322 0.843869
7 4.918080 0.106823 0.155076 0.832298
8 4.916008 0.106965 0.154240 0.825738
9 4.914595 0.107143 0.153641 0.821754
10 4.913587 0.107334 0.153189 0.819162
11 4.912844 0.107525 0.152836 0.817377
12 4.912280 0.107713 0.152551 0.816090
13 4.911841 0.107895 0.152317 0.815052
14 4.911494 0.108069 0.152121 0.814293
15 4.911213 0.108237 0.151953 0.813804
16 4.910984 0.108397 0.151809 –

Further 3-pt extrapolations of the extrapolated values in Ta-
ble II, considering the largest L’s available, do not improve
this, once they yield c ≈ 0.809, which differs by ∼1% from
the Potts value.

Table III shows the scaled gaps X1 and X2 calculated at the
critical point T̄ ∗

c = 0.952812. However, these quantities are
very similar to those in Table I, obtained at the pseudocritical
temperatures. The critical free energies at T̄ ∗

c = 0.952812, as
well as the central charges obtained from them (calculated as
indicated above) are also depicted in Table III. Once again, the
values of c present an appreciable difference from c = 4/5
and extrapolations of them have deviations similar to those
observed above.

C. The DF-HDL transition line

Employing the same analysis from the previous subsection,
but for finite μ̄, we find that the critical DF-HDL transition
extends to chemical potentials down to μ̄ ∼ 2, giving rise to a
DF-HDL transition line, as found in the mean-field solutions
of the model on Husimi lattices [34,41]. Given the nonmono-
tonic convergence observed above in the pseudocritical points
estimated from X1, we will focus here only on those calculated
from X2. The pseudocritical transition lines obtained from the
condition X2(L − 1, T̄ ∗

c ) = X2(L + 1, T̄ ∗
c ), for fixed values of

μ̄, are shown in Fig. 5(a), for L � 11. (Here, it is quite hard
to go beyond L = 12, once the TMs have 4L × 4L terms.
Actually, most of our results will be limited to L � 10.) It
is important to notice that such lines never cross each other,
indicating that the DF-HDL transition is always continuous.

Three-point extrapolations of the pseudocritical lines—
assuming the finite-size correction of Eq. (7) for fixed μ̄, with
bi = 0 for i > 1, and considering the sets of widths (5,7,9) and
(7,9,11)—yield lines whose values of T̄ ∗

c always differ by less
than 0.2%. This corresponds to differences (and error bars) at
most at the third decimal place, which is accurate enough for
our purposes.
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(a)
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HDL

0.79 0.8 0.81 0.82 0.83 0.84 0.85
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DF-LDL
LDL-HDL

(b)

HDL

DF

LDL

CEP1CEP2

FIG. 5. (a) Pseudocritical lines separating the DF and HDL
phases, obtained from X2(L − 1, T̄ ∗

c ) = X2(L + 1, T̄ ∗
c ) for fixed

values of μ̄, for the indicated L’s. The outcomes from 3-pt extrap-
olations of these lines considering the sets (5,7,9) (Extrap. 1) and
(7,9,11) (Extrap. 2) are also shown. (b) Detail of the region where
the DF-HDL, DF-LDL, and LDL-HDL transition lines, for L = 7,
meet. The green square and the red circle indicate the two estimates
for the critical-end-point.

Interestingly, the pseudocritical lines have a corner at μ̄ ≈
2, which may be seen as their end-point. An example of
this is shown in Fig. 5(b), in the line for L = 7. As it will
be demonstrated below, the critical DF-HDL line ends at a
critical end-point (CEP). The coordinates (T̄cep,1, μ̄cep,1) of the
CEP, assuming that it is located at the corner, are depicted in
Table IV. Since the DF-HDL transition lines continue below
these corners and finally meet the DF-LDL and LDL-HDL

TABLE IV. Estimates for the critical-end-point from the corner
in the DF-HDL transition lines (leftmost values) and from the point
where such lines meet the other transition lines (rightmost values).

L T̄cep,1 μ̄cep,1 T̄cep,2 μ̄cep,2

3 0.884217 2.264032 0.801210 2.010048
5 0.841799 2.018722 0.812741 1.982581
7 0.828528 1.981947 0.812563 1.972774
9 0.823467 1.970668 0.812692 1.968213

064120-6



PHASE DIAGRAM AND CRITICAL PROPERTIES OF A … PHYSICAL REVIEW E 104, 064120 (2021)

2 4 6 8 10 12 14
μ−

0.8

1

1.2

1.4

1.6

c

L = 3
L = 5
L = 7
L = 9
L = 11

FIG. 6. Central charge c versus μ̄ calculated at the pseudocritical
transition lines from Fig. 5(a), for the indicated widths.

transition lines [see Fig. 5(b)], one obtains another set of esti-
mates (T̄cep,2, μ̄cep,2) for the CEP. As shows Table IV, in this
last case the temperatures oscillate around T̄cep,2 = 0.81266
(considering the three largest L’s). The temperatures of the
corners seem to converge toward this value as L increases;
though a 3-pt extrapolation of them [following Eq. (7), con-
sidering the largest L’s] returns a slightly larger value: T̄cep,1 =
0.81681. This deviation, of ∼0.5%, is certainly due to the
small widths considered here, so that it is reasonable to regard
T̄cep = 0.815(3) as our estimate for the CEP temperature. This
value is close, but a bit smaller than T̄c/tc = 0.825, which was
found in previous MC simulations of the ALG model and
reported as a critical point in Ref. [22] and as a tricritical point
in Ref. [35]. Our estimate is also smaller than the value found
for the triple point (T̄tp = 0.835) in the Husimi lattice solution
of the model [34].

The 3-pt extrapolations of the values of μ̄cep,1(L) and
μ̄cep,2(L) for the largest L’s, assuming power-law correc-
tions similarly to Eq. (7), yield μ̄cep,1 = 1.9589 and μ̄cep,2 =
1.9605, respectively, indicating that μ̄cep = 1.9597(8). This
result agrees with the mean-field value found in Ref. [34] for
the triple point (μ̄tp = 1.959) and differs by ≈3% from the
critical point reported in Ref. [22] (μ̄c = 2.02).

The central charges calculated along the pseudocritical
transition lines from Fig. 5(a) are shown in Fig. 6 as a function
of μ̄. We may note that c(L) is almost independent of the
chemical potential for μ̄c � 10 (similarly to T̄c), having values
very close to those of c(2) in Table I for μ̄ → ∞. When μ̄

approximates μ̄cep, however, one sees that c passes to increase
and to display stronger finite-size corrections. The larger L,
the closer the approximately constant part of the lines get to
μ̄cep before deviating upward. This strongly suggests that for
very large L’s one must have c ≈ 0.8 in the entire DF-HDL
line, indicating that it belongs to the 3-state Potts class.

D. The LDL-HDL transition line

The LDL-HDL transition is the only one for which all
previous studies of the ALG model agree; the phases are
separated by a coexistence line, which exists in a narrow

chemical potential interval near μ̄ = 2 [22,34,35]. Therefore,
in this case, it is convenient to determine the transition lines
by varying μ̄ for fixed values of T̄ . For the strip widths
analyzed here, crossings in the curves of Xk (L; μ̄) versus μ̄

for different L’s are only observed for k � 3. The curves of
X1(L; μ̄) and X2(L; μ̄) only exhibit a maximum in the coexis-
tence region. The transition lines obtained from the condition
X3(L − 1, μ̄c) = X3(L + 1, μ̄c) are depicted in Fig. 7(a). The
lines for the smallest widths present maxima in the region
close to the CEP, which are absent in those for the largest
L’s. This turns the extrapolation of these lines unreliable
in this region, which is the most important part of such
curves, since they are always very close to μ̄ = 2 for low
temperatures.

Motivated by this and also to confirm the first-order nature
of the LDL-HDL transition, we obtain an alternative esti-
mate for the LDL-HDL transition line through the correlation
length ξ−1

k (L), defined in Eq. (4), for k = 6. We remark that,
given the fourfold (threefold) degeneracy of the ground state
of the LDL (HDL) phase, a total of seven possible phases
(divided into two sets with three and four equivalent ones)
coexist at the LDL-HDL transition line. This means that the
seven largest eigenvalues (from �0 to �6) of the TMs shall
be degenerated in the thermodynamic limit (L → ∞). Hence,
curves of ξ−1

6 (L) versus μ̄, for a given T̄ , are expected to
display a minimum at the coexistence [48–51]. As exemplified
in Fig. 7(b) for T̄ = 0.75, such behavior is indeed found in
these curves, confirming that this is a discontinuous transition.
The coexistence lines estimated from the loci of these minima
are depicted in Fig. 7(c). It is noteworthy that μ̄c(T̄ ) decreases
with L in Fig. 7(a), while for these last estimates an increasing
behavior is observed in Fig. 7(c).

To extrapolate these lines, we recall that finite-size scaling
predicts exponential corrections at the coexistence [45], such
that

μ̄c(L) = μ̄∗
c + ae−bL + · · · , (8)

for a given T̄ . For a 3-pt extrapolation this gives μ̄∗
c =

μ̄c (L+1)μ̄c (L−1)−μ̄c (L)2

μ̄c (L+1)+μ̄c (L−1)−2μ̄c (L) . The resulting curve from such a extrap-
olation, for the three largest L’s, is shown in Fig. 7(c).

E. The DF-LDL transition line

The transition lines separating the disordered and LDL
phases were estimated following the same procedures from
the previous subsection, but varying T̄ for fixed values of
μ̄. The curves obtained from the condition X1(L − 1, T̄c) =
X1(L + 1, T̄c) are depicted in Fig. 8(a), where one sees that
T̄c, for a given μ̄ decreases with L. Significantly, these lines
never cross each other, indicating that no tricritical point exists
in the DF-LDL transition, in contrast with the result from
MC simulations reported in Ref. [35]. Since one knows that
this transition is discontinuous at T̄ = 0, and for low T̄ as
well, the absence of the tricritical point implies that the entire
transition line is of first-order nature, in agreement with the
Husimi lattice solution of the model [34].

Additional evidence of this is obtained from the curves of
ξ−1

4 versus T̄ , for a given μ̄, which have minima hallmarking
the coexistence. A behavior analogous to that seen in Fig. 7(b)
for ξ−1

6 at the LDL-HDL transition. Note that in the case of
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FIG. 7. (a) Estimates of the LDL-HDL coexistence line from
the condition X3(L − 1, μ̄c ) = X3(L + 1, μ̄c ) for fixed values of T̄ ,
for the indicated L’s. (b) Inverse correlation length ξ−1

6 versus μ̄

for T̄ = 0.75 and the indicated L’s. (c) LDL-HDL coexistence lines
obtained from the minima in the curves in panel (b) and similarly
ones for other temperatures. The extrapolated curve (Extrap.), from
a 3-pt extrapolation following Eq. (8), is also shown.

the DF phase (one ground state) coexisting with the LDL
phase (which has four equivalent ground states), minima are
indeed expected in ξ−1

4 . From such minima, we estimate the
coexistence lines displayed in Fig. 8(b). Interestingly, in this
case the values of T̄c(μ̄) increases with L, in opposition to the
behavior seen in Fig. 8(a).
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FIG. 8. Finite-size estimates of the DF-LDL coexistence line:
(a) from the condition X1(L − 1, T̄c ) = X1(L + 1, T̄c ), for fixed val-
ues of μ̄; and (b) from the minima in the inverse correlation length
ξ−1

4 . The respective extrapolated curves (Extrap.), from a 3-pt extrap-
olation following Eq. (8), are shown in both panels.

Figures 8(a) and 8(b) present also the asymptotic curves,
obtained from 3-pt extrapolations assuming exponential
finite-size corrections in T̄c(L) similarly to Eq. (8) [i.e.,
T̄c(L) � T̄ ∗

c + ae−bL]. The difference between the values of
T̄ ∗

c (μ̄) along these lines is always smaller than 0.5% and in
the main part of them it is � 0.01%. The turning point in
the coexistence line (i.e., the point where T̄ ∗

c is maximum)
is located at T̄ ∗

c ≈ 0.983 and μ̄∗
c ≈ 0.31.

The complete phase diagram, presenting all the transition
lines found in our MT calculations, will be presented in
Sec. V, where they are compared with the results from the
MC simulations discussed in the next section.

IV. MONTE CARLO SIMULATIONS

A. Simulation details and quantities of interest

The thermodynamic properties of the symmetric ALG
model were also obtained via extensive Monte Carlo (MC)
simulation on the triangular lattice with periodic boundary
conditions. We study system sizes L = 32, 48, 64, 96, 128
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and 192 using the standard Metropolis algorithm in the grand
canonical ensemble.

Following references [22,35], simulations with fixed chem-
ical potential are used to locate the DF-HDL line while
simulations along isotherms in the μ̄-T̄ plane are used to lo-
cate the DF-LDL and LDL-HDL coexistence lines. We study
μ̄ = 1.95, 2.3, 2.4, 2.5, 2.6, 5.0, and 10 in the HDL region
and use a temperature interval 0.50 � T̄ � 0.97 in the LDL
region.

Studies of the HDL region are performed in two steps.
First, broad ranges of temperature are studied to identify
the region of peaks in the response functions. In this step
50 independent realizations are used to compute averages.
After identifying the region of interest for each system size,
additional simulations are performed in a reduced range of
temperatures. The number of points around the maximum
depends on the system size; for L = 64, 128 we use 60 points
while for larger system sizes 30 points are sufficient. In this
step 100 independent replicas are used. In all simulations we
use 106 MC steps for equilibration, followed by 105 − 2 ×
106 MC steps for data production.

The transition between the HDL and the DF phases can be
analyzed using the order parameters [39,41],

θ (T̄ , μ̄; L) ≡ 3

2

[
max(n1, n2, n3)

N
− 1

3

]
(9)

and

Q(T̄ , μ̄; L) ≡ 1

N

√
n2

1 + n2
2 + n2

3 − n1n2 − n1n3 − n2n3,

(10)
where nk denotes the number of molecules in orientational
state k and N = ∑3

k=1 nk is the total number of molecules. In
the DF phase, one has n1 ≈ n2 ≈ n3, so that θ → 0 and Q →
0. However, θ → 1 and Q → 1 in the HDL phase, where, e.g.,
n1 ≈ N and n2 ≈ n3 ≈ 0.

To analyze the transitions we also use the susceptibilities
related to the order parameters,

χX (T̄ ; L) = L2

T̄
[〈X 2〉 − 〈X 〉2], (11)

with X = θ or Q; the specific heat at constant volume [52]

cV (T̄ ; L) = 1

V T̄ 2

[
(〈E2〉 − 〈E〉2) − (〈EN〉 − 〈E〉〈N〉)2

〈N2〉 − 〈N〉2

]

(12)

and the isothermal compressibility

κ (T̄ ; L) = V

kBT̄

( 〈N2〉 − 〈N〉2

〈N〉2

)
. (13)

In Eqs. (11)–(13), 〈·〉 denotes grand canonical averages.

B. Discontinuous transitions

In this subsection we present the results for DF-LDL and
LDL-HDL transitions. As reported in the Refs. [22,35] the
density plays the role of an order parameter for the referred
transitions. Figures 9(a) and 9(b) show the density as a func-
tion of chemical potential for the DF-LDL transition and the
LDL-HDL transition, respectively. The density histograms
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FIG. 9. Density versus chemical potential for distinct tempera-
tures, as indicated, at DF-LDL (a) and LDL-HDL (b) transitions.
Insets show histograms of the density near the DF-LDL and LDL-
HDL coexistence. The system size is L = 64 in panel (a) and L =
128 in panel (b).

for each transition are shown in the insets of Figs. 9(a) and
9(b). In both cases, the histograms are bimodal indicating a
discontinuous transition and confirming the results from the
transfer matrix (TM) calculations (see Secs. III D and III E).
For each temperature, we plotted the histogram for the chem-
ical potential that was closest to the coexistence value within
our resolution (�μ̄ = 10−4 or larger). We take the coexistence
chemical potential as that for which the heights of the two
peaks are equal.

The coexistence chemical potential is estimated as follows:
First we identify the values of the maxima of the probabil-
ity distributions, max[P(ρDF)] and max[P(ρLDL)], for each
chemical potential studied (see blue crosses and red pluses
in Fig. 10). Subsequently, we plot the max[P(ρLDL,DF)] as
function of chemical potential as shown in Fig. 10 for T̄ =
0.55. The crossing point of the curves is estimated through
a polynomial fit in the vicinity of the intersection, using the
reciprocals of the variance (1/σ 2

i ) of the averages computed
over the replicas as weights for the polynomial fit of the
points. In most cases, 7 points around the intersection region
are enough to obtain a satisfactory region of crossing. The
order of the polynomial is chosen as the lowest order that
yields random behavior of residuals; a third-order polynomial
fit was sufficient in most cases. Subsequently, the error of the
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FIG. 10. Main panel: thin black lines represent the probability
distribution of the density ρ for distinct chemical potentials and
T̄ = 0.55. Blue (red) crosses (pluses) indicate the location of the
maximum of probability distributions in the DF (LDL) phase. Inset:
maxima of the probability distributions for the disordered phase (blue
crosses) and the LDL phase (red pluses) versus chemical potential
μ̄. The vertical line indicates the crossing point. The system size is
L = 64.

fit was computed through the root-mean-square error (RMSE)
over the points used in the fit. Finally, the uncertainty in the
crossing-point estimate is computed as the square root of the
RMSE resulting from each polynomial. This procedure yields
the dots in the phase diagram of Fig. 15.

In the region around μ̄ = 0, T̄ > 0.95 the densities ρLDL

and ρDF are very similar and the coexistence temperature
and chemical potential cannot be obtained using the density
histogram [see Fig. 15(b)].

For the LDL-HDL transition, the data for the density
are very noisy for T̄ � 0.75 [see Fig. 9(b)] and it is not
possible to use the procedure described above to deter-
mine the coexistence chemical potential. For these cases, we
adopted the following procedure: for each point on the curve
max[P(ρi )] × μ̄ (see inset of Fig. 10) we sum a Gaussian
random variable proportional to the error bar of that point. We
then fit the curves and estimate the crossing point. An average
is computed over 104 realizations of this procedure and the
error is propagated as described above. The values obtained
using this strategy are the triangles in Fig. 15 and are in good
agreement with the TM results of Sec. III D.

The highest temperature for which we observe LDL-
HDL coexistence is T̄ = 0.816, μ̄ = 1.9498(7), for the next

temperature studied, T̄ = 0.817, we observe LDL-DF coexis-
tence and then a continuous DF-HDL transition. We therefore
take this T̄ , μ̄ pair as an estimate of the critical end point
(CEP) at which the LDL-HDL line meets the DF-HDL and
the DF-LDL lines (see Sec. III C). This value, T̄cep = 0.816,
μ̄cep = 1.9498(7), is in excellent agreement with the esti-
mate from TM calculations, T̄cep,TM = 0.815(1), μ̄cep,TM =
1.9597(8). Our estimate for T̄cep,MC and μ̄cep,TM is smaller
than the values reported in previous MC simulations [22,35]
for c2 and tc2 (see Fig. 1).

C. Continuous transitions

To determine the critical temperatures we use finite-size
scaling (FSS) [52] analysis of the susceptibilities χX (T̄ ; L)
of the order parameters X = θ and Q [Eq. (11)], the specific
heat at constant volume cV (T̄ ; L) [Eq. (12)], and isothermal
compressibility [Eq. (13)].

Figure 11 shows simulation results for the order parame-
ters, Q and θ ; susceptibilities, χQ and χθ , specific heat cV , and
isothermal compressibility κ for chemical potential μ̄ = 2.3.
For clarity, error bars are not shown in the figure. The suscep-
tibility, specific heat and isothermal compressibility exhibit
signatures of a continuous transition. In all cases the peaks
increase systematically with system size. Similar results are
obtained for μ̄ = 2.4, 2.5, 2.6, 5.0, and 10. As the chemical
potential is increased, the maxima shift to higher temper-
atures, approaching the value T̄ ∗

c,μ̄→∞ = 0.9526 reported in
Ref. [41]. This behavior confirms that the DF-HDL line
is continuous, in agreement with the TM calculations from
Sec. III C.

Using the results for χQ, χθ , cV , and κ we estimate the
critical temperature T̄ ∗

c . Initially, we estimate the size depen-
dent pseudocritical temperature T̄c through a polynomial fit
to the data near the maximum, as described in the preceding
subsection.

The pseudocritical temperatures T̄c for μ̄ = 2.3 are plot-
ted versus 1/L in Fig. 12. Similar results were obtained for
μ̄ = 2.4, 2.5, 2.6, 5.0, and 10. The set of pseudocritical tem-
peratures appear to converge as L → ∞ for all the studied
values of μ̄. The global estimate of T̄ ∗

c was obtained though
a weighted average with weight 1/σ 2, where σ represents the
uncertainty of each quantity. The final estimates of T̄ ∗

c are the
squares in the phase diagram Fig. 15.
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FIG. 11. (a) Order parameters Q and θ , (b) susceptibilities χQ and χθ , (c) specific heat cV , and (d) isothermal compressibility versus T̄ for
μ̄ = 2.3. The system sizes [for curves from lower to upper in panels (b–d) and upper to lower in panel (a)] are L = 32, 48, 64, 96, 128, and
192. The order parameter Q and its susceptibility χQ are represented by solid lines, θ and χθ by symbols.

064120-10



PHASE DIAGRAM AND CRITICAL PROPERTIES OF A … PHYSICAL REVIEW E 104, 064120 (2021)

0.00 0.01 0.02 0.03
1/L

0.84

0.85

0.86

0.87

0.88

T̄c

cV

χQ

χθ

κ

FIG. 12. Pseudocritical temperatures associated with, cv , χQ, χθ ,
and κ , with symbols as indicated, versus 1/L for μ̄ = 2.3. Dash lines
are linear fits to the data and the filled black dot indicates the global
estimate for the critical temperature T̄ ∗

c .

D. Critical exponents

For μ̄ = 2.3 and 10, we estimate the critical-exponent ra-
tios β/ν and γ /ν from fits to the data for Q(T̄ ∗

c ), θ (T̄ ∗
c ),

χQ(T̄ ∗
c ), and χθ (T̄ ∗

c ) versus system size (see Fig. 13). From
the linear fits, and including the effect of the uncertainty in
T̄ ∗

c , we obtained the estimates in Table V. The values for these
ratios for the two-dimensional, three-state Potts model are
βPotts/νPotts = 2/15 = 0.1333 · · · and γPotts/νPotts = 26/15 =
1.7333 · · · . In the worst cases, the discrepancy is about 6% for
μ = 2.3 and 8% for μ = 10.

Figure 14 shows the linear fit for ln cv (T̄c) for μ = 10.0,
yielding the estimate α/ν = 0.44(1), i.e., a discrepancy with
the ratio for the two-dimensional, three-state Potts model
α/νPotts = 0.4 of 10%. For μ̄ = 2.3, the discrepancy in this
ratio is 73%. We believe this huge difference is likely due
to finite-size corrections that are more important close to the
CEP (μ̄cep = 1.9498) where the DF-HDL line encounters the
LDL-HDL and DF-LDL lines.
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FIG. 13. (a) Order parameter Q (θ ) versus system size for μ̄ =
2.3. The circles (squares) are the simulation data; dashed lines are
least-squares linear fits of the data. Inset shows the residuals of the
fits. (b) Analogous plots for the susceptibilities χQ (χθ ).

TABLE V. Estimates of the ratios β/ν, γ /ν and α/ν for chemical
potentials μ̄ = 2.3 and 10.

μ̄ βQ/ν βθ/ν γQ/ν γθ/ν α/ν

2.3 0.126(7) 0.136(8) 1.66(4) 1.63(4) 0.11(1)
10.0 0.126(7) 0.122(7) 1.75(5) 1.75(4) 0.44(1)

V. DISCUSSION

Figure 15(a) shows the phase diagram of the symmetric
ALG model in the μ̄-T̄ plane, summarizing the results re-
ported above. The predictions of the TM analysis are in very
good quantitative agreement with MC simulation. In fact, the
maximum difference between the estimates from each method
is smaller than 2% along the LDL-HDL coexistence line and,
notably, is at most 0.1% for the DF-HDL and DF-LDL lines.
The natures of the transitions are also the same in both cases.
This remarkable agreement confirms that we are accessing the
correct thermodynamic behavior of the model.

Our results demonstrate that the DF-LDL transition is
always discontinuous, without any critical or multicritical
point. This is confirmed by the absence of a crossing in
the pseudocritical transition lines from the TM analysis, by
the bimodal histograms in MC simulations and also in the
phase diagram of temperature versus total density (T̄ − ρ),
depicted in Fig. 15(b). This diagram makes it clear that the
densities are discontinuous at the DF-LDL transition line up
to temperatures very close to the turning point (in the μ̄ − T̄
diagram), which is located at T̄t ≈ 0.983 and μ̄t ≈ 0.31. It
is, however, difficult to estimate the densities accurately very
near this point, since ρDF becomes very similar to ρLDL. This
strongly suggests that ρDF = ρLDL at the point (T̄t , μ̄t ) — as
observed in the Husimi lattice solution of this model [34],
which furnishes a (T̄ − ρ) diagram very similar to the one
found here (see Fig. 4(a) of Ref. [34])—even though this
is certainly not a critical point. In fact, the pressure versus
temperature (P̄ − T̄ ) diagram of the model is qualitatively
very similar to the (μ̄ − T̄ ) one in Fig. 15, also displaying
a turning point in the DF-LDL transition line at some pressure
P̄t [22,34,35]. Then, from the Clausius-Clapeyron equation
one has ρDF < ρLDL for μ̄ < μ̄t , and ρDF > ρLDL for μ̄ > μ̄t ,
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FIG. 14. Specific heat cV versus system size at critical temper-
ature for μ̄ = 10.0. The circles are the simulation data; the dashed
line is a least-squares linear fit of the data. Inset shows the residuals
of the fit.
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FIG. 15. Phase diagram for the symmetric ALG model in the
μ̄ × T̄ plane (a) and the T̄ × ρ plane (b). Symbols are results from
Monte Carlo (MC) simulations. Dashed lines represent discontinu-
ous transitions and solid ones continuous transitions. Only in (a) lines
are results obtained using Transfer Matrix (TM) calculations. The
gray triangle marks the location of the critical end point (CEP)
estimated using TM and the gray square marks the location of the
critical point in the limit μ̄ → ∞ obtained via MC simulations in
Ref. [41]. The gray circle in (b) marks the density at μ̄ = 1.95 (for
L = 128), very close to our estimate of μ̄cep,MC = 1.9498(6). The
green dotted line is a conjecture as to how the critical line meets the
CEP.

as indeed observed in Fig. 15(b), provided that the entropies
follow sDF > sLDL, along the coexistence line, as it is quite
expected. This very same condition yields ρDF = ρLDL at
(T̄t , μ̄t ), but, in turn, it indicates that this is not a critical
point, since sDF = sLDL there. Importantly, these results pro-
vide compelling evidence that the entire DF-LDL transition

line is discontinuous, ruling out a critical point at T̄ ≈ 0.55
or a tricritical point at T̄ ≈ 0.65, as claimed in previous MC
analyses in Refs. [22,35], respectively.

Also in contrast with earlier simulations, we find a critical
line separating the DF and HDL phases. This line meets the
LDL-HDL and DF-LDL coexistence lines at a critical end
point (CEP). This shows that the point where the LDL-HDL
coexistence line ends—reported in literature as critical [22],
triple [34], and tricritical [35]—is actually a CEP. Therefore,
although this ALG model has an interesting phase behavior,
beyond displaying some thermodynamic anomalies, it is not
a good model for liquid water, as initially suggested, because
it has neither a liquid-gas coexistence line ending at a critical
point, nor a LLCP. In light of the discussion in the Introduc-
tion, it seems that absence of a LLCP is a general feature of
lattice models with attractive orientational interactions com-
peting with “van der Waals” repulsion between first neighbor
molecules.

Although determining the universality class of the con-
tinuous transitions displayed by models for water is key to
establish a full connection with the actual behavior of water,
this has not been widely investigated, perhaps because the
very nature of these transitions are the subject of contro-
versy. A recent account of these critical properties for realistic
models can be found in Ref. [53]. For lattice models, some
examples include the debate in the literature on the critical
exponents of the liquid-liquid transition in the classic Bell-
Lavis model [54,55], and our previous study of the present
ALG model in the fully occupied limit, where the DF-HDL
transition was found to be in the 3-state Potts class. The
central charge obtained here, deviating by ∼1% from the
Potts value, gives additional evidence of this. The scaled
gaps, however, present a large deviation from those of the
3-state Potts class. The analysis of the central charge for finite
chemical potentials indicates that it converges to the same
value along the entire DF-HDL critical line. Nevertheless,
finite-size corrections become very strong as μ̄ approaches
μ̄cep = 1.9597(8). This certainly explains why some critical
exponent ratios estimated in simulations for μ̄ = 2.3 exhibit
considerable deviations from the Potts values, while for μ̄ =
10 the deviations are much smaller. Despite this, the overall
picture suggests that this order-disorder transition is always in
the 3-state Potts class, as is expected from its threefold (S3)
symmetry breaking.
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