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Invasion percolation in short-range and long-range disorder background
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In the original invasion percolation model, a random number quantifies the role of necks, or generally
the quality of pores, ignoring the structure of pores and impermeable regions (to which the invader cannot
enter). In this paper, we investigate invasion percolation (IP), taking into account the impermeable regions,
the configuration of which is modeled by ordinary and Ising-correlated site percolation (with short-range
interactions, SRI), on top of which the IP dynamics is defined. We model the long-ranged correlations of
pores by a random Coulomb potential (RCP). By examining various dynamical observables, we suggest that
the critical exponents of Ising-correlated cases change considerably only in the vicinity of the critical point
(critical temperature), while for the ordinary percolation case the exponents are robust against the occupancy
parameter p. The properties of the model for the long-range interactions [LRI (RCP)] are completely different
from the normal IP. In particular, the fractal dimension of the external frontier of the largest hole is nearly 4

3
for SRI far from the critical points, which is compatible with normal IP, while it converges to 1.099 ± 0.04 for
RCP. For the latter case, the time dependence of our observables is divided into three parts: the power law (short
time), the logarithmic (moderate time), and the linear (long time) regimes. The second crossover time is shown
to go to infinity in the thermodynamic limit, whereas the first crossover time is nearly unchanged, signaling the
dominance of the logarithmic regime. The average gyration radius of the growing clusters, the length of their
external perimeter, and the corresponding roughness are shown to be nearly constant for the long-time regime in
the thermodynamic limit.
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I. INTRODUCTION

Invasion percolation (IP) [1,2] was first introduced in 1983
by Wilkinson and Willemsen (WW) to describe the slow
displacement of one fluid by another invader in porous me-
dia [2]. IP is the invasion phenomenon during which one
phase invades the other one in a porous medium. Invasion
percolation is divided into two general categories: trapping
invasion percolation and nontrapping invasion percolation, in
which the defender fluid is incompressible and compressible,
respectively [3]. In a lattice setup, this model is simple to
define: One fills the system with the defender fluid and then
the invader fluid (displacement) is injected into the environ-
ment. In the original version of this model, an uncorrelated
uniform random number r quantifies the quality of the pores
and necks without taking into account the configuration of
impermeable regions. Therefore, the stochasticity of fluid
movement (due to stochastic properties of the voids in the
porous media) is realized by {ri}N

i=1, where i shows the sites
on the lattice and N is the system size. The main difference
between IP and ordinary percolation is that it automatically
organizes itself in a critical point, for which one uses the
term self-organized criticality [4,5]. Many aspects and prop-
erties of IP are known in the community. The most important
example is the well-known fact that the fractal structure of
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IP clusters (the cluster that is formed by invaded sites) is
just similar to the one for the standard (site) percolation;
e.g., the fractal dimension of the external frontier of the
largest hole is D f = 4

3 [6–8]. The other examples are three-
dimensional IP [9], IP in correlated porous media [10,11],
fractal growth dependence on the coordination number [12],
and many applications in reservoir engineering [13]. Re-
cently it was demonstrated that, apart from the dynamical
power-law behaviors, IP shows a dynamical crossover during
which the autocorrelation change sign [14]. For a good review
of the theoretical and experimental development of IP, see
Ref. [15].

Despite the intense focus on the various variants of IP and
exploring its features and properties [12,14,16,17], the effect
of the pattern of the background has not been understood well
yet. By “the pattern of background,” we mean the pattern
of impermeable sites. Its impact on the statistical properties
of the growing invasion cluster is a question that has not
been addressed yet in the literature. The important fact that
makes the IP model far from real situations (and the useful
reservoir models like the Darcy model) is that it ignores the
structure of media involving impermeable pores, especially
the effect of the correlations, the effect of which is not known
a priori [18–20]. It is the aim of this paper to consider a wider
range of models to capture the correlations in the support
for two categories: short-range interaction (SRI) models and
long-range interaction (LRI) models. One may call our model
the hierarchical percolation: the invasion percolation on top
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of the percolation lattice. Three kinds of configurations are
considered: (1) uncorrelated percolation, (2) Ising-correlated
percolation, and (3) imperfections with long-range interac-
tions (RCP). The interactions in the first two models are of
short-range nature, while the third model is pretty long range.
When the correlated lattices are constructed, we run the IP
dynamics on top of them, avoiding the fluid entering the
impermeable regions (sites in our model). The coupling of
two independent statistical models (one dynamical model on
top of another host model) has been previously done for sand
piles on uncorrelated percolation lattice [21,22] and Ising-
correlated percolation lattice [23,24], Gaussian free field on
percolation lattices [25,26], Ising model on percolation and
Ising-correlated percolation lattices [24,27], and self-avoiding
walk on correlated lattices [28]. The main question from this
point of view is the universality class that the resulting models
belong to.

The paper has been organized as follows: In the next
section, the simulation performed is described. In the third
section, we will describe and present numerical details and
simulation results. We will close the paper with a conclusion.
The paper includes an Appendix.

II. GENERAL SETUP OF THE PROBLEM

In the original version of the IP model, one distributes a
uniform random number r throughout the lattice and lets the
interface of the invader grow according to the configuration
of r on the boundary of the invasion cluster: The invader con-
tinues to move from a site with a minimum r value. As WW
discusses, when one requires that the invader goes ahead from
all sites on the boundary of the invasion cluster, with r < p
(p being a fixed number), then one retrieves the ordinary per-
colation model with the occupancy number p. To strengthen
the relation to the ordinary percolation, the authors study a(r),
which is the number of sites included in the invasion cluster
in the interval [r, r + dr], divided by dr, and show that it
undergoes a transition at pc (the critical threshold of ordinary
percolation). In fact, in the original version of the invasion
percolation, the properties of porous media are coded in the
configuration of r field.

A. The IP model on imperfect systems

In experiments, correlations are due to the formation pro-
cess (slow dynamics) during which the various parts of the
host system interact. Consider, for example, the sedimentation
process where the constituents interact with each other via
the interface relaxation process [29]. As a well-known fact,
the porous media is formed by the sedimentation process
during which some parts become permeable to the fluid and
some others are impermeable, which we call the permeability
field (PF). This process can be accompanied by long-range
or short-range interactions, resulting in a quenched disorder
system after millions of years, for which there are correlations.
It is not physically reasonable to use one kind of model (e.g.,
the uncorrelated percolation) for all the porous medium. To
realize the physics of this system, it is necessary and important
to use models with various kinds of interactions. The state of
a porous media is then partially described by PF, and knowing

the pattern of it helps in any prediction of the model that
is employed to simulate the fluid propagation. The effect of
the correlated configuration of PF has not been convincingly
understood yet in the literature and very limited attention
has been paid to this issue, like IP in fractional Gaussian
noise [10,11,30,31].

To describe our model, suppose that in addition to the
necks or the quality of the pores, there are some impermeable
regions to which the invader cannot enter. These forbidden
areas are neglected in the original IP model, the effect of
which is not known a priori. Let us call these regions im-
perfections. The configuration of the imperfections matters,
as we show in the paper. Three kinds of configurations are
considered: (1) uncorrelated percolation, (2) Ising-correlated
percolation, and (3) imperfections with long-range interac-
tions (RCP). The first two cases are short-range interactions,
while the third contains long-range interactions. The host
lattice is the infiltration lattice for each statistical model de-
fined on it. These studies have many natural and objective
examples in which the dynamics of the influence lattice are
defined [18–20]. Our model is defined on an L × L square
lattice with permeable and impermeable sites. The pattern
of impermeable sites (imperfections) is determined by three
models in this paper: percolation, Ising, and RCP models.
For the percolation and Ising models (SRI supports), the sites
can have two possible states, represented by si = +1 or −1,
showing that the site i is permeable or impermeable, respec-
tively, whereas for the RCP si = +1 for all sites. The fluid
can only pass through permeable sites, i.e., the clusters com-
prising sites with si = +1. For the SRI supports (Ising- and
percolation-correlated lattices), the configuration of {si}L2

i=1 is
fixed using the Ising and site percolation models respectively,
whereas for the LRI the configurations of ris are given by
RCP. We describe these models in the following subsection.
IP is run over the largest percolating connected cluster (PCC,
comprised of s = +1 sites) with total N sites, which is a
cluster that connects two opposite boundaries of the lattice
(for the RCP case, it is actually the original lattice). Once a
PCC is extracted, the IP growth model is defined on top of it,
defined as follows: N uncorrelated random numbers r in the
range [0,1] are distributed over the PCC so that the state of
the porous media is identified by {ri}N

i=1. The dynamics start
from a middle point of the lattice i0 (if it does not belong to
the percolating cluster, we move in a random direction and
consider the first site belonging to the PCC as the starting
point) where the fluid is injected. At the next step, the invader
moves to a neighbor of the injected point (say the site j) with
the smallest r, i.e., r j = min{ri}i∈∂S(1), where S(m) is the set
of the infected (filled by the invader) sites up to the step m,
and ∂S is the set of neighbors of the infected sites S. If two
or more neighbors are equal in the parameter r, one of these
minimums is randomly chosen. In the step m + 1, the fluid
enters the site j ∈ ∂S(m), which is identified by the condition
r j = min{ri}i∈∂S(m) (if there are more, it is selected randomly
between the set of neighboring sites with minimum r). The
“time” is defined as the integer part of m

10 . The process goes
ahead until two opposite boundaries are touched by S(mmax).
In the ordinary IP, a phase transition occurs at this point to
a phase where the invader fills the space, where IP shows
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FIG. 1. The procedure of calculating the fractal dimensional
(box-counting).

power-law behavior [14]. This IP has the same properties as
the ordinary site percolation at the critical point. IP shows also
power behavior with respect to time for various observables,
and there are some scaling relations between the quantities.

The quantities that we analyze here are as follows:
(1) The loop length (l) is defined as the length of the loop

surrounding the cluster, so that l (t ) ≡ ∑N
j=1 δ j,∂S(t ), where

δ j,∂S = 1 when j ∈ S, and zero otherwise; i.e., it is the number
of sites on the boundary of S(t ).

(2) The loop and mass gyration radii [rl (t ) and rm(t ) re-
spectively] are defined by

rl (t )2 = 1

l (t )

∑
i∈∂S(t )

[(xi − x̄l )
2 + (yi − ȳl )

2],

rm(t )2 = 1

S(t )

∑
i∈S(t )

[(xi − x̄m)2 + (yi − ȳm)2], (1)

where xi and yi are the Cartesian coordinates of the site i,
(x̄l , ȳl ) is the loop center, and (x̄m, ȳm) is the mass center,
defined as

(x̄l , ȳl ) ≡ 1

l (t )

∑
i∈∂S(t )

(xi, yi ), (x̄m, ȳm) ≡ 1

S(t )

∑
i∈S(t )

(xi, yi ).

(2)

(3) The roughness (w) is defined by

w(t )2 = 1

l (t )

∑
i∈∂S(t )

(ri − r̄)2, (3)

where ri ≡ (x2
i + y2

i )
1
2 and r̄ ≡ 1

l (t )

∑
i∈∂S(t )(x

2
i + y2

i )
1
2 .

(a) (b)

(c)

FIG. 2. The numerical results for percolation background: (a) The numerical results of the fractal dimension, which is the slope of the
l − Lb graph in the log-log plot; (b) log-log plot of l − rl graph, where slope is the fractal dimension; and (c) DS

f and DD
f in term of 1/L for

p = pc (pc = 0.59275).
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(a) (b)

(c) (d)

FIG. 3. (a) The time dependence of the average of l . (b) The time dependence of the average of rl . (c) The time dependence of the average
of rm. (d) The time dependence of the average of w.

In the standard IP model x, x = w, l, rl , rm shows
power-law behavior with time, reflected in the following
relation,

〈x〉 ∝ tαx , (4)

where αr accounts for the type of diffusion; i.e., for αr < 1
2

(> 1
2 ) we are in the sub- (super-) diffusion regime, whereas

for αr = 1
2 we are right in the normal diffusion regime. Two

types of fractal dimension can be defined: dynamic fractal
dimension (DFD, shown by DD

f ) and static fractal dimension
(SFD, shown by DS

f ). The former is defined via the dynamical
relation between l and r, i.e., 〈log10 l (t )〉 = DD

f 〈log10 rl (t )〉 +
cnt (〈...〉 being the ensemble average). For the latter case
(SFD), we consider the largest hole of the system in the
percolation time (tperc) and extract the fractal dimension of
the boundary of the largest hole using the box-counting (BC)
scheme to find DS

f , shown schematically in Fig. 1. The holes
of the system are obtained using the Hoshen-Kopelman (HK)
algorithm [32]. Importantly, using the HK algorithm, we ex-
tracted and analyzed the largest hole for which the fractal
dimension is obtained to be DS

f (ordinary IP) = 1.33 ± 0.01 as
expected [14].

In the next subsection, we explain the models used to
generate the correlated disorder pattern.

B. Supports: Percolation, Ising, and RCP correlated lattices

Let us give a brief description of the models which are used
to simulate the correlated lattices served as the support of IP.
The models are listed below.

One-site percolation, which is one of the most important
and yet simply defined examples in the critical phenomena,
here is employed to fix the impermeable site configuration
{si}N

i=1. In this model, we set this configuration at random
with an external parameter 0 � p � 1: For each site i, we
set si = +1 with probability p and si = −1 with probability
1 − p. Many properties of this model are known [33–36],
like the facts that it belongs to c = 0 conformal filed the-
ory [37] and its relations to Coulomb gas [38] and Q-state
Potts model [39–41]. In this model, for p values lower than a
critical threshold pc, there is no percolation cluster, whereas
for the case p � pc almost definitely we have a percolation
cluster. The critical and not-critical properties of this model
have been investigated widely in the literature [33,34]. For
the square lattice, it is known that pc ≈ 0.5927 [42,43]. In
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(a) (b)

(c)

FIG. 4. The numerical results for Ising background: (a) the numerical results of the fractal dimension, which is the slope of the l − Lb

graph in the log-log plot; (b) log-log plot of l − rl graph, where slope is the fractal dimension; and (c) DS
f and DD

f in term of 1/L for T = Tc

(Tc = 2.26918).

our paper, we consider only the percolated clusters as a host
for the IP dynamics. The dynamical aspects of some statisti-
cal models have been already studied on the site percolation
systems, like sand piles [21,22], self-avoiding walks [28],
loop-erased random walks [44], and the Ising model [27]. The
case p � pc is considered in this paper, where the fluid moves
through the largest percolating cluster.

Two-Ising model has originally been developed for mag-
netic systems, but we use it to model the impermeable site’s
configuration. It is a good choice for this study since it (1)
is a binary variable, (2) minimally makes the lattice corre-
lated, and (3) has a tuning parameter (artificial temperature T )
that controls the correlations. The variables in this model are
s = +1 and s = −1. The interactions in this model are short
range (the first neighbor). This model, in the zero magnetic
field limit, is described by the following:

H = −J
∑
〈i j〉

sis j, (5)

where 〈i j〉 shows that the summation is over the nearest
neighbor sites. The coupling constant J identifies the type of
interactions; we consider the ferromagnetic interaction Ji j >

0. The correlations in this model are tuned by the (here artifi-
cial) temperature T . In two dimensions, this model undergoes
the magnetic phase transition (from para- to ferromagnetic
phase, T > Tc and T < Tc respectively) [27,45,46]. This

phase transition is along with a percolation phase transition
in two dimensions; i.e., for T < Tc a percolation geomet-
ric cluster is formed which is composed of connected sites
with the same spin. We identify such clusters using the HK
method [32] and define the IP model on top of this cluster.
The dynamical aspects of many statistical models have been
already studied on the Ising-correlated lattices, like the sand
piles [23,24], self-avoiding walks [28], loop-erased random
walks [47], and the Ising model [27]. In all cases, a power-law
behavior is seen for the exponents in the vicinity of the crit-
ical point, which is called “secondary power law” behavior.
To generate the Ising samples, we used the Swendsen-Wang
algorithm [48] to avoid the critical slowdown problem. In
this algorithm, instead of a single spin flip, which is done
in the Metropolis method, one flips a connected cluster of
Fortuin-Kasteleyn (FK) clusters, which is a geometric con-
nected cluster with the same oriented spins for which the
spins are connected with the probability Plink = 1 − e−2/T .
This approach is proved to be more efficient in the vicinity
of the critical points [48].

Three-random Coulomb potential (RCP) is used to make
the interactions of the correlated lattice long range. In fact,
we consider a quenched correlated system through which the
IP dynamics occur. In this model, we generate a Coulomb
potential φ(�x) (�x represents the points in the system) and use
it instead of the uncorrelated random variable r which was
introduced in the description of the ordinary IP model. Here
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(a) (b)

(c) (d)

FIG. 5. (a) The time dependence of the average of l . (b) The time dependence of the average of rl . (c) The time dependence of the average
of rm. (d) The time dependence of the average of w.

we give a brief description of RCP model which is a solution
of the Poisson equation. RCP is governed by the following
time-independent equation,

∇2φ̃(�x) = −ρ(�x), (6)

which represents the Poisson equation with the dielectric
constant ε ≡ 1. In this equation, ρ is a normal distribution
time-independent noise with the properties

〈ρ(�x′)〉 = 0, 〈ρ(�x)ρ(�x′)〉 = (nia)2δ2(�x − �x′). (7)

Also, a is the lattice constant and ni is the density of Coulomb
disorders. We normalize RCP as

φ(�x) = 1

2

(
φ̃(�x)

φ̃max
+ 1

)
, (8)

where φ̃max ≡ max{φ̃(�x)}�x∈lattice, so that φ(�x) becomes cor-
related variable in the range [0,1]. It is worthy to note that
a Gaussian distribution cannot be bounded from above or
below. This distribution is approximately Gaussian; i.e., for
φ � φmax it is close to Gaussian distribution. We emphasize
that once the solution φ(�x) is numerically found, we use it
as the quenched random variable (instead of r) for the IP
dynamics. For generating samples we first, distribute random
charges (ρ variable) throughout the square lattice and solve

Eq. (6) using the self-consistent iteration method. The RCP
has often been employed as a model to be combined with
many other dynamical models, like the percolation [26] and
Ising [25] models. For a good review of the RCP model, see
Ref. [49].

III. THE NUMERICAL DETAILS AND RESULTS

In this section, we present the results of IP dynamics
on the short-range (percolation and Ising) as well as the
long-range (RCP) correlated supports. The lattice sizes con-
sidered in this work are L = 32, 64, 128, 256, 512, and we
produced over 104 samples for each system size and any
control parameter (T for the Ising and p for the percola-
tion). For the Ising model, we considered the temperatures
T = 1.8, 2.0, 2.1, 2.2, 2.26918, and for the percolation case
we have taken into account the occupation probabilities p =
0.59275, 0.6, 0.65, 0.75, 1.0. We implemented the model in
two separate geometries: L × L square lattice with free bound-
ary conditions and the cylinder geometry which is used to
extract the fractal dimension of the largest hole.

For generating the RCP samples, we used the self-
consistent iteration method. In the square lattice, we consider
open boundary conditions in both directions, whereas in the
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FIG. 6. The numerical results for random Coulomb potential (RCP) background: (a) the numerical results of the fractal dimension, which
is the slope of the l − Lb graph in the log-log plot, and (b) log-log plot of l − rl graph, where slope is the fractal dimension. (Note that in all
these insets, x represents the horizontal axis and y represents the vertical axis.)

cylinder geometry we consider the open boundary conditions
in one free direction.

1. IP in percolation and Ising-correlated support

The fractal dimension of the boundaries of the largest hole
(which is 4

3 for the regular IP) is the first quantity that we
consider here. For the IP percolation, the results are shown in
Fig. 2 for p > pc and all of the L that we use in simulation.
The L dependence of the exponent [DS

f (L)] is shown in the
upper inset, whereas the lower inset shows the exponent in
the thermodynamic limit [DS

f (∞)], which is obtained using
the extrapolation relation

DS
f (L) = DS

f (∞) + A

L
, (9)

where A is a nonuniversal proportionality constant. We see
that this exponent (DS

f ) does not significantly run with p
being fixed on the theoretical prediction 1.32 ± 0.03, even
in the vicinity of the critical point for which the error bars
are higher. In Fig. 2(b), the DFD is reported, for which DD

f
is robust against p and is fixed to 1.9 ± 0.2. This is due to
the fact that a host media with impermeable sites modeled
with uncorrelated site percolation is expected to be in the
universality class of IP. To understand this, we first notice
that an impermeable site does not correspond precisely to an
active site with highest r value, i.e., r = 1, since the latter can
ultimately be occupied with fluid under some rare circum-
stances where there is no other choice for the fluid, e.g., the
site with r = 1 is completely surrounded by the fluid. Ignoring
these rare configurations, which are expected to take place
in the very long-time limit (ending time of the process), we
can approximately replace an impermeable site with a site
with r = 1 in the dynamical process. Given this, a host with
uncorrelated site percolation corresponds approximately to a
media for which we set r = 1 for some random sites.

To investigate this more deeply and observe if this robust-
ness is general, we have considered the time dependence of l ,
rl , rm, and w, which are represented in Fig. 3, showing that
they behave in a power-law fashion. From Figs. 3(a) and 3(b),
we see that the system is in the normal diffusion regime, which
is detected by the r − t exponent αr = 0.5 ± 0.05 for all p
values. The exponent αl should be compatible with the scaling
argument

l ∝ tαl ∝ [tαr ]
αl
αr ∝ r

αl
αr
l , (10)

so that αl = DD
f αr = 0.9 ± 0.05, which is compatible with

Fig. 3(c).
In the conventional growth models, the roughness shows

power-law behavior in early time stages and enters a station-
ary regime after a crossover time. In the latter regime, the
absolute value of roughness varies with the system size in a
power-law form [50,51]. In our model, shown in Fig. 3(d), the
roughness exhibits a power-law behavior, and before entering
the stationary phase, the process finishes, no matter what the
system size is. The exponent of this power-law behavior is
αw = 0.45 ± 0.05, which is almost constant for all p values.

Interestingly we have observed that the correlations due to
the short interactions in the Ising model do not change this
behavior. The same analysis has been carried out in Figs. 4
and 5. This time, the exponents show robust behavior against
T < Tc, which controls the range of correlations. The ex-
ponents do not significantly change even in the vicinity of
the critical temperature. In Figs. 4(a) and 4(b), although the
estimated fractal dimensions bind downward in the vicinity
Tc, they lie within the error bars of the estimated values at
the lower temperatures in the thermodynamic limit [L → ∞
shown in the lower insets, which has been obtained using
the extrapolation relation Eq. (9)]. The extrapolated exponents
(thermodynamic limit, shown in the lower insets) that are re-
ported in Figs. 5(a)–5(c), and 5(d) show more robust behavior.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. The numerical results for random Coulomb potential (RCP) background: (a) The time dependence of the average of rl in the first
phase that renormalizes to one. (b) The time dependence of the average of rl in the crossover area. (c) The time dependence of the average of
rl in the third phase. (d) The time dependence of the average of l in the first phase that renormalizes to one. (e) The time dependence of the
average of l in the crossover area. (f) The time dependence of the average of l in the third phase.

Our calculations show that the introduction of uncorrelated
(percolation) and correlated (Ising) lattice imperfections with
short-range interactions does not change the universality class
of the IP model; i.e., it is an irrelevant perturbation for the IP
class.

2. IP on random Coulomb potential (RCP) correlated support

The fact that the critical behaviors of IP for p > pc and
T < Tc are similar to the IP model is expected since in these
intervals the properties of the host media are identical to
the perfect (regular) support in large scales. The only case
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FIG. 8. (a) αx in term of 1/L for T = Tc (Tc = 2.26918). (b) αx in term of 1/L for p = pc (pc = 0.59275). (Note that x = rl, rm, l,w.)

where the model has a chance to behave in a different way
is right at the critical points, since in this case the host is
self-similar and the features of it repeat by rescaling the
space. The analysis in the previous section showed, however,
that the properties of the model do not change even in the
critical points. In RCP (and generally scale-invariant rough
surfaces with scale-invariant Lagrangian) the system is always
self-similar, and consequently, the correlations are power-law
having no referred scale. The difference between the two
studied cases (percolation- and Ising-correlated supports) at
the critical point is that, here in addition to the long-ranged
correlations, the interactions are also long-range (Coulomb
interactions).

In this section, the pore quality is supposed to be described
by relation (8), whose correlations are proved to be [25,26]

〈h(�x + �x0)h(�x)〉 ∝ log10 |x0|, (11)

which is long range. This model is equivalent to a scale-
invariant rough surface with zero roughness exponent. The
properties of some dynamical models on RCP-correlated sup-
ports are already done [25,26].

Here consider IP in support, where r quantity is selected
from the solution of Eq. (8). In this case, the critical properties
of IP change significantly. Figure 6(a) shows that the SFD
in the thermodynamic limit is DS

f (L → ∞) = 1.099 ± 0.040
(see the inset). The dynamic fractal dimension is DD

f (L →
∞) = 1.207 ± 0.1. In this figure, we have used normalization
to one, where the numbers on each axis are divided by their
maximum (end point). Note that each graph including x̃ or

ỹ symbol is normalized to one. Both of these exponents are
significantly different from the ordinary IP model. This leads
us to an important conclusion: Long-range correlations for
SRI models is necessary for bringing it out from the ordinary
IP universality class (see the results in the vicinity of the crit-
ical points for the percolation and Ising-correlated supports),
while for the LRI case, the properties of the system are very
different from those of the ordinary IP universality class.

To be more precise, let us consider the dynamic aspects of
the model. We have observed three distinct temporal regimes
in the system. For sufficiently small times (power-law regime
where t < t∗

1 ), the observables show power-law behavior with
time, whereas for intermediate times (logarithmic regime
where t∗

1 < t < t∗
2 ) it varies with the logarithm of time, and

for long times (linear regime where t > t∗
2 ) it changes linearly

with time with a slope tending to zero in the thermodynamic
limit.

Figure 7(a) shows the gyration radius versus time in
the power-law regime, in which it is interestingly seen that
αRCP

rl
(L → ∞) = 0.73 ± 0.04; i.e., the system is superdif-

fussive. This should be compared with ordinary IP, which is
diffusive (see the previous section). We call the second regime
the logarithmic regime since the observables behave like the
following relation in this regime

〈x〉 = a( log10(t + b))cx , (12)

where a and b are some unimportant constants, and cx is an
exponent. Figure 7(b) shows the results for rl in this regime,
from which we observe that crl becomes 0.77 ± 0.2 in the

(a) (b) (c)

FIG. 9. The numerical results for random Coulomb potential (RCP) background: (a) The time dependence of the average of w in the first
phase that renormalizes to one. (b) The time dependence of the average of w in the crossover area. (c) The time dependence of the average of
w in the third phase.
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thermodynamic limit. The lower inset shows that t∗
2 goes to

infinity faster than t∗
1 as L → ∞, showing that this regime

dominates in the thermodynamic limit. The linear regime is
described by the linear relation

〈x〉 = γxt + b, (13)

where γx is the slope, shown in the upper inset of Fig. 7(c)
which extrapolates to zero in the L → ∞ limit for rl . In this
figure, we have plotted renormalized Ỹ = Y

Ymax
versus X̃ =

X
Xmax

, where Y ≡ y−y∗
γrl

, X ≡ x − x∗, and (x∗, y∗) is crossover

point. This analysis shows that the linear regime is actually
a stationary regime in the thermodynamic limit. The reason
is that, as the slope of the graphs tends to zero [see, for
example, the inset of Fig. 9(c)] in the thermodynamic limit (in
a power-law fashion) the observables become asymptotically
nearly constant for the third regime, signaling a stationary
regime.

The same features are seen for l in Figs. 7(d), 7(e) and 7(f),
from which we see that αRCP

l → 0.82 ± 0.03, cl → 1.09 ±
0.35, and γl → 0 in the limit L → ∞. The same analysis
for w shows the same behaviors, with the exponents αRCP

w →
0.76 ± 0.05, cw → 0.4 ± 0.2, and γw → 0 in this limit.

IV. CONCLUSION

In the present paper, to get closer to the real fluid dynamics
in a porous medium, we considered the effect of the pattern
of the impermeable pores of the background on top of which
the invasion percolation (IP) is defined. For the model for the
sedimentation process, we defined three different models to
obtain the pattern of impermeable sites. Ordinary and Ising-
correlated percolation models were exploited which include
short-range interactions (SRI; note that for the uncorrelated
percolation the interaction range is zero, while for the Ising-
correlated the interaction is limited to the first neighbor), and a
random Coulomb potential was employed as a representative
of models with long-range interactions (LRI). Various statis-
tical observables were studied, among which are the gyration,
the loop length, and the mass of the external perimeter of
the growing cluster. The critical exponents for SRI are nearly
identical to the values for ordinary IP far from the critical
points. For the uncorrelated percolation, up to our estimations,

the exponents do not show a serious change even in the vicin-
ity of the critical point pc, while for the Ising-correlated case,
the exponents show deviations in the vicinity of the critical
point T = Tc. The situation is completely different for the LRI
case, for which the exponents are very different with respect
to the ordinary IP case. For example, the fractal dimension of
the external perimeter of the largest hole (which is 4

3 for the
ordinary IP) reduces to D f = 1.099 ± 0.04. This shows that
the response of the dynamical model to the structure of the
background depends on the range of interactions and also the
correlation length of the spatial configuration of impermeable
regions so that larger range of interactions corresponds to
stronger effect of background pattern and higher deviations
of the exponents with respect to the ordinary IP. The correla-
tion length of the background permeability field is largest in
the vicinity of the critical points, where the deviation of the
exponents are high for the Ising-correlated case.

We tested also the dynamical properties of the model. For
the uncorrelated percolation case, the growth exponents are
robust against p, but for the Ising model, the exponents are
significantly different only in the vicinity of the critical point.
For the RCP, the situation is different and the exponents are
completely different. Three regimes were found for the latter
case: the power law (small time), the logarithmic (moderate
time), and the linear (long time) regimes. While the first
crossover time is shown to be finite in the thermodynamic
limit, the second crossover time goes to infinity, which reveals
that the logarithmic regime is dominant in the thermodynamic
limit. Some of the observables become nearly constant in the
thermodynamic limit for the long-time regime, although this
regime disappears in the thermodynamic limit.

APPENDIX: SOME OF THE GRAPHS

For more details on short-range notion background, you
can refer to Fig. 8 to see the fit αx in terms of 1/L for Tc

and pc. Also, because of the similar behavior of all dynamic
processes in the random Coulomb potential background, we
present graphs of the roughness and radius of mass gyrus for
all three elementary, middle, and final times in this Appendix
(Figs. 9 and 10).

(a) (b) (c)

FIG. 10. The numerical results for random Coulomb potential (RCP) background: (a) the time dependence of the average of rm in the first
phase that renormalizes to one; (b) the time dependence of the average of rm in the cross-over area; and (c) the time dependence of the average
of rm in the third phase.
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