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Avoided crossings and dynamical tunneling close to excited-state quantum phase transitions
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Using the Wehrl entropy, we study the delocalization in phase space of energy eigenstates in the vicinity
of avoided crossings in the Lipkin-Meshkov-Glick model. These avoided crossings, appearing at intermediate
energies in a certain parameter region of the model, originate classically from pairs of trajectories lying in
different phase-space regions which, contrary to the low-energy regime, are not connected by the discrete parity
symmetry of the model. As coupling parameters are varied, a sudden increase of the Wehrl entropy is observed
for eigenstates participating in avoided crossings that are close to the critical energy of the excited-state quantum
phase transition. This allows us to detect when an avoided crossing is accompanied by a superposition of the
pair of classical trajectories in the Husimi function of eigenstates. This superposition yields an enhancement of
dynamical tunneling, which is observed by considering initial Bloch states that evolve partially into the partner
region of the paired classical trajectories, thus breaking the quantum-classical correspondence in the evolution
of observables.

DOI: 10.1103/PhysRevE.104.064116

I. INTRODUCTION

Semiclassical approximations in phase space are very use-
ful to gain intuitive insights about the behavior of quantum
systems [1–3]. The correspondence between classical tra-
jectories and phase-space representation of quantum states,
together with the knowledge of large (or even whole) en-
ergy portions of the classical phase-space dynamics, usually
accessible in systems with few degrees of freedom, allow
us to understand many aspects of the quantum model. For
instance, critical phenomena as excited-state quantum phase
transitions (ESQPTs) [4] are associated to unstable fixed
points appearing in the classical dynamics [5–7]; also the
exponential growth of out-of-time-ordered correlators can be
understood from the classical. exponential sensitivity to initial
conditions [8].

Likewise, crossings and avoided crossings of energy levels
can be studied from a semiclassical perspective. In one-
degree-of-freedom Hamiltonians, as the Lipkin-Meshkov-
Glick (LMG) model studied here, crossings and avoided
crossings may appear when there exist different classi-
cal trajectories for the same energy. According to the von
Neumann-Wigner theorem [9], crossings between states be-
longing to the same symmetry sector are rather rare and what
semiclassically would be expected to be a crossing becomes
an avoided crossing. The relation of this phenomenon with
tunneling was established since the seminal papers by Landau
and Zener [10,11] and continues to be a topic of current
interest [12–14].
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In this contribution we use semiclassical phase-space
methods to shed some light in the avoided crossings that
appear at intermediate energies of the LMG model. Among
many-body quantum systems, the LMG model has been
widely used to test many-body phenomena since it is one
of the simplest models that can be reduced to invariant sub-
spaces with only one degree of freedom. The LMG model
was originally proposed to mimic the behavior of closed-shell
nuclei [15]. However, it has been shown to be useful in other
branches of physics like quantum spin systems [16], ion traps
[17], and Bose-Einstein condensates in double wells [18] and
cavities [19] and has also been employed to study quantum
phase transitions [20–22] and decoherence [23].

The LMG model has a discrete parity symmetry which
is spontaneously broken for large-enough couplings at low
energy (in some cases also at high energy). This spontaneous
breaking yields a quasidegeneracy between pairs of states with
different parity [24]. Classically, this is manifested as pairs of
trajectories moving in different phase-space regions that are
connected by the parity transformation. At the critical ESQPT
energy, the parity symmetry is restored which is classically
expressed as trajectories which are mapped into themselves
by the parity transformation. For a particular sector of the pa-
rameter space, classically disconnected and no parity-related
phase-space regions of degenerate trajectories appear at in-
termediate energy. This manifests in the quantum model as
crossings between states of different parity and avoided cross-
ing between states of the same parity for specific values of the
coupling parameters.

We use the Wehrl entropy (the Shannon entropy of the
Husimi function) to measure the phase-space localization of
energy eigenstates and determine its relation with the avoided
crossings and the superposition of classical trajectories that is
observed in the Husimi function of eigenstates participating
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in avoided crossings close to the ESQPT. Other Shannon
entropies in avoided crossing have been discussed in atomic
systems [25,26] and also in billiards [13], whereas the Wehrl
entropy itself has been used as a reliable indicator of quantum
phase transitions [27] and ESQPTs [6] in several models in-
cluding the LMG model and for analyzing the transition order
to chaos in the kicked Harper map [14]. A first approach to the
study of the Wehrl entropy at the vicinity of avoided crossing
in the LMG model was reported in Ref. [28], where two kinds
of singular behaviors were observed: a spikelike maximum
and a sudden interchange of localization values between the
states involved in the avoided crossings. In the same reference,
the relation of this behavior with exceptional points was also
discussed.

In this paper, additionally, we consider the evolution of
initial Bloch coherent state located on one of the degenerate
classical orbits at intermediate energy. With this, we establish
a relation among the sudden increase of the Wehrl entropy,
the enhancement of dynamical tunneling, and the consequent
breaking of the quantum-classical correspondence in the evo-
lution of several observables, such as the survival probability
and the expectation value of the population operator.

The article is organized as follows. In Sec. II we briefly re-
view the LMG model, its classical limit, and the classification
of its parameter space according to the behavior of the energy
density of states and the different trajectories appearing in the
classical limit. In Sec. III, the Wehrl entropy is introduced as a
measure of delocalization in phase space [29] and our results
for the eigenstates’ Wehrl entropies are discussed focusing
on what happens for states involved in avoided crossings. In
Sec. IV, the consequences of the sudden increase of the Wehrl
entropy for dynamical tunneling and breaking of the classical-
quantum correspondence are analyzed. Our conclusions are
given in Sec. V.

II. THE LIPKIN-MESHKOV-GLICK MODEL

The Lipkin-Meshkov-Glick Hamiltonian can be written in
terms of pseudospin operators

Ĥ = ε0Ĵz + V

2
(Ĵ2

+ + Ĵ2
−) + W

2
(Ĵ+Ĵ− + Ĵ−Ĵ+), (1)

which satisfy the SU(2) algebra, [Ĵz, Ĵ±] = ±Ĵ± and
[Ĵ+, Ĵ−] = 2Ĵz. The Hamiltonian commutes with the operator
Ĵ2, and therefore one can easily perform exact diagonalization
in the basis of eigenstates |Jm〉 for a given value of J . The
LMG Hamiltonian has a parity symmetry associated to the
operator

�̂ = e−iπ (Ĵz+J 1̂) (2)

with eigenvalues ±1, and which is proportional to a rotation
by an angle π around the z axis.

For convenience we use the parametrization

γx =
(

2J − 1

ε0

)
(W + V ), γy =

(
2J − 1

ε0

)
(W − V ), (3)

which allows to write the LMG Hamiltonian as

Ĥ = ε0

[
Ĵz +

( γx

2J − 1

)
Ĵ2

x +
( γy

2J − 1

)
Ĵ2

y

]
, (4)

where Ĵ± = Ĵx ± iĴy. For simplicity, from now on we set ε0 to
the unity.

A. Classical Hamiltonian

A classical Hamiltonian can be derived from the previous
quantum operator by considering its expectation value respect
to Bloch coherent states [30]

|α〉 = 1

(1 + |α|2)J
eαĴ+|J − J〉

= 1

(1 + |α|2)J

J∑
m=−J

(
2J

J + m

)1/2

αJ+m|Jm〉, (5)

where α is a complex number that, when defined in terms of
the angular spherical coordinates α = tan(θ/2)e−iφ , leads to

H ≡ 〈α|Ĥ |α〉 = J
[
z + γx

2
x2 + γy

2
y2 + C

]
, (6)

where C = 1
2(2J−1) (γx + γy) and

z = − cos θ, x = sin θ cos φ, y = sin θ sin φ, (7)

thus defining the surface of the Bloch sphere z2 + x2 + y2 =
1. Observe that the constant C is of order O(1/J ) and becomes
negligible in the limit J → ∞. The number of degrees of
freedom of the model is 2. In terms of the set of canonical
variables z and φ, the Hamiltonian reads

H = J

[
z + 1 − z2

2
(γx cos2 φ + γy sin2 φ) + C

]
. (8)

Another convenient set of canonical variables well suited
to parametrize the surface of the Bloch sphere is given by
variables

Q =
√

2(1 − cos θ ) cos φ, P = −
√

2(1 − cos θ ) sin φ, (9)

which map the surface of the Bloch sphere to a disk of radius
2,

√
Q2 + P2 � 2, and are related to the coherent parameter

through α = Q−iP√
4−(Q2+P2 )

. With these coordinates, the south

pole of the Bloch sphere is mapped to the center of the disk,
the north pole to the disk’s perimeter, and the sphere’s equator
corresponds to an inner circle of radius 1.

B. Characterization of the LMG parameter space

The classical Hamiltonian (8) allows to identify the phases
of the LMG model according to the properties of its ground
state. The LMG model parameter space can be classified
[20] by means of the order parameter 〈Ô〉 ≡ 〈Ĵz + J 1̂〉 and
the ground-state energy Egs. For γx > −1 and γy > −1,
the order parameter 〈Ô〉 = 0 and Egs/J = −1 + C, whereas
〈O〉 = J (γm + γ −1

m ) and Egs/J = γm + γ −1
m + C for γx � −1

or γy � −1, where γm = min(γx, γy). The latter phase is char-
acterized by a spontaneous breaking of the parity symmetry.
By looking at the entire spectrum of the model, a richer phase
diagram is obtained [22]. Four different sectors in parameter
space appear, which are characterized by their distinctive en-
ergy density of states (EDoS).
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FIG. 1. Panel (a) depicts the parameter space of the LMG model classified according to the different semiclassical profiles that can be
found for the energy density of states. Typical energy densities of states (ρ) are shown in panels I–IV; the colors of the lines indicate different
energy regimes. Inside these panels, typical classical trajectories are shown with colors specifying their respective energies. In panels II, III,
and IV the logarithmic divergences in the energy density of states are indicated by vertical lines. The separatrices in phase space associated to
these divergences are indicated by dashed lines and hyperbolic fixed points by stars. Dots in panel (a) indicate the cases shown in panels I to
IV (to obtain the parameters of panel III the coordinates of the dot have to be scaled by a factor 3).

The EDoS can be approximated semiclassically as

ρsc(E ) = J

2π

∫
dzdφ δ[H (z, φ) − E ], (10)

whose explicit evaluation is presented in Appendix B. These
sectors and representative energy densities of states are de-
picted in Fig. 1. The sector around the noninteracting case
(|γx| < 1 and |γy| < 1, labeled as I in Fig. 1) presents a
simple EDoS which behaves monotonically as a function
of energy. The other three sectors present singularities in
the EDoS. In sector II (|γx| > 1 with |γy| < 1 or |γy| >

1 with |γx| < 1) a logarithmic divergence is observed at
E/J = −1 + C or E/J = 1 + C depending on the sign of the
coupling with larger absolute value. In sector IV (|γx| > 1,
|γy| > 1 with different signs for γx and γy) two such diver-
gences occur at E/J = −1 + C and E/J = 1 + C. Finally, at
sector III (|γx| > 1, |γy| > 1 with same signs for γx and γy),
besides a logarithmic divergence occurring at E/J = γM +
γ −1

M + C [with γM = sgn(γx ) min(|γx|, |γy|)], a discontinuity
is observed at E/J = sgn(γx ) + C. The observed logarithmic
singularities in the EDoS define what is called ESQPT for
one-degree of freedom systems [31]. The logarithmic diver-

gences are a consequence of the hyperbolic fixed points in
the underlying classical system, which in turn are associated
to separatrices of the classical dynamics. The separatrices
for typical phase-space portraits of sectors II, III, and IV
are indicated in the panels of Fig. 1 by dashed lines. Ob-
serve that in the case of sector III, the separatrix contains
two hyperbolic fixed points, differently from the separatices
of the other sectors which possess only one. On the other
hand, the discontinuity in the EDoS observed in sector III has
to do with a local maximum (located at Q = P = 0) in the
classical energy surface which marks the end of the family of
central orange trajectories shown in panel III of Fig. 1. In the
panels of the same figure, typical trajectories of the classical
Hamiltonian are also shown for other energy regimes and
regions in parameter space. The energy of each trajectory is
indicated by the same color code used for plotting the EDoS
and the variables Q-P are used to represent the Bloch sphere.

In this article we focus on the parameter sector III of
Fig. 1 with γx, γy < 0, i.e., in the region where the EDoS ex-
hibits a logarithmic divergence at E/J = γM + γ −1

M + C (with
γM = − min(|γx|, |γy|) and a discontinuity at E/J = −1 + C.
Classical trajectories with energies between these two critical
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FIG. 2. Energy spectrum as a function of coupling parameter |γx| with γx < 0 and γy = 3γx . Panel (a) shows the whole positive-parity
spectrum for J = 50. Color lines correspond to the classical energies for the ground-state (orange), ESQPT energy (blue) and E/J = −1 + C
where a discontinuity in the EDoS occurs (dashed). Panel (b) is a zoom into the rectangle of panel (a), where avoided (vertical solid line) and
real (vertical dashed line) crossings take place. For panel (b) a larger J = 100 was used and the spectrum include positive-parity (black lines)
and negative-parity (gray lines) states. Vertical lines were evaluated with Eq. (11) using N = 172 (even) for the avoided crossings condition
(|γ AC

x | = 4.10331) and N = 173 (odd) for the real crossings (|γ C
x | = 4.25529). Indexes k of some positive-parity states are indicated at the left

axis of panel (b). Panel (c) shows the energy difference between levels in avoided crossings of positive- (black dots) and negative- (gray dots)
parity states along the solid vertical line of panel (b).

energies are shown by orange lines in panel III of Fig 1. These
trajectories come in degenerate (same energy) pairs formed
by an inner trajectory in the center of the phase space and a
second trajectory in the outer region. Notice that differently
to the pairs of degenerate blue trajectories at low energy, at
intermediate energies the trajectories are invariant under the
parity transformation of Eq. (2) (a π rotation around a per-
pendicular axis through the origin in the plane Q-P). We will
show next that these pairs of degenerate classical trajectories
are manifested in the quantum model as avoided and real
crossings of energy levels.

C. Crossings and avoided crossings

The semiclassical formula for the EDoS (10) describes the
trend of the energy spectrum, but it is blind to details as
avoided and real crossings that may appear in the spectrum.
Fig. 2 shows the exact spectrum as a function of coupling |γx|
for γy = 3γx. By varying γx from 0 up to γx = −5, sectors
I, II, and III are traversed, which is reflected by changes in
the density of states that can be appreciated in the energy
levels. Figure 2(b) shows a zoom into the intermediate en-
ergy interval for couplings in the sector III of interest. The
lines clearly show simultaneous crossings between states with
different parity (dashed vertical line) and avoided crossing be-
tween states of the same parity (solid vertical line). The energy
gaps of the avoided crossings, hardly visible in Fig. 2(b), are

depicted in Fig. 2(c), which also shows that the gaps increase
as energy does.

From the Einstein-Brillouin-Keller (EBK) quantization
rule, it is possible to determine the values of the coupling
constants where crossings or avoided crossings take place at
the intermediate energy regime. As mentioned above, at this
energy region, there exist, for a given energy, two discon-
nected classical trajectories z±(φ, E ). From these degenerate
trajectories, we derive (see Appendix B) the condition for
crossings (C) and avoided crossings (AC), which reads

γC(AC)
x γC(AC)

y =
[

2J − 1

2J − No(e)

]2

, (11)

with No(e) an integer satisfying 0 < No(e) < 2J . We have nu-
merically verified that, indeed, for couplings satisfying this
condition, crossings between states of different parity take
place for No odd, whereas for Ne even the crossings predicted
by the semiclassical EBK rule become avoided crossings be-
tween pairs of states with the same parity. Condition (11) was
already reported in Ref. [32] and also in Ref. [33] from an-
alyzing the LMG model as an integrable Richardson-Gaudin
model.

In the next section we present a phase-space study of
the avoided crossings discussed here. We will use the
Husimi function to represent the quantum states. The Husimi
function allows not only to study the classical-quantum
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FIG. 3. Density plots of Husimi functions Qk (α) for different
eigenstates at γx = −4 (γy = 3γx) with J = 100. Solid lines are
classical trajectories. For states k = 64 and k = 65, dashed lines
depict classical separatrices with associated hyperbolic fixed points
indicated with stars.

correspondence but also to measure the delocalization of the
states in phase space through the Wehrl entropy [34].

III. LOCALIZATION MEASURES IN PHASE SPACE

A. Husimi function and localization measures

The Husimi representation of a pure state is nothing but its
squared projection on the coherent states (5). For eigenstates
of the Hamiltonian (1) they are

Qk (α) = |〈α|Ek〉|2. (12)

In Fig. 3, we show the Husimi representation of some
eigenstates using the canonical variables Q-P of Eq. (9).
We select four positive-parity eigenstates in the parameter
region III of Fig. 1 (γx = −4 and γy = 3γx). The eigen-
states with indexes k = 10 and k = 90 sit, respectively, in
the low-energy region of blue trajectories and in the high-
energy region of green trajectories of panel III in Fig. 1,
while eigenstates k = 64 and k = 65 have intermediate energy
in the region of degenerate orange trajectories. We can ob-
serve that the Husimi representations are distributed along the
respective classical trajectories corresponding to the energy
of each state H = Ek . The intensity of the Husimi function
reflects the dynamical properties of the classical trajectory:
The Husimi function is more intense in the regions where
the classical dynamic is slower. This is clearly seen in states
k = 64 and k = 65 whose dynamics become slow close to
the position of the indicated hyperbolic fixed points located,
respectively, at (Q = ±1.225, P = 0).

Figure 4 focuses on the Husimi functions of states involved
in two different avoided crossings of those occurring along the
vertical solid line in Fig. 2(b). In both avoided crossings, one

FIG. 4. Density plots of Husimi functions Qk (α) in the vicin-
ity of avoided crossings (γ AC

x = −4.10331, with γy = 3γx) between
states k = 64–65 (bottom), and k = 72–73 (top), located along the
vertical solid line of Fig. 2(b).

can notice that there is an exchange of the Husimi representa-
tion between the two levels right after the avoided crossing.
However, it is noticeable that in the case of the avoided
crossing with energy closer to the ESQPT energy (bottom),
one can observe superpositions in the Husimi functions of
the two avoided states. These superpositions are located atop
of the two classical trajectories with the same energy. Such
superpositions occur only for avoided crossings at energies
close to the ESQPT critical energy. For the avoided crossings
at higher energies we only observe the exchange in the Husimi
representation but not a superposition, as it is illustrated by the
top avoided crossing of Fig. 4.

The superposition of the two classical trajectories in the
Husimi functions entails a delocalization in phase space of
the eigenstates involved in the avoided crossings. To measure
this delocalization, any Rényi entropy in phase space can be
employed [35]. Here we use one of the most known, the Wehrl
entropy (the Rény entropy of order one) which in our case is
given by

WEk = −
∫

Qk (α) lnQk (α)d�

= −
∫

Qk (Q, P) lnQk (Q, P)dQdP, (13)

where d� is the solid angle of the Bloch coherent states and
in the second line we have written the integral in terms of
variables Q-P of Eq. (9).

B. Wehrl entropy and avoided crossings in the LMG model

The Wehrl entropy (13) of several pairs of states involved
in avoided crossing are plotted in Fig. 5 as a function of
γx (with γy = 3γx) for intervals around the coupling satis-
fying the condition for avoided crossings γ AC

x γ AC
y = ( 2J−1

2J−N )
with J = 100 and N = 172 [the same coupling indicated by
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FIG. 5. Wehrl entropy WEk as a function of the coupling parameter |γx| (γy = 3γx) for several positive-parity eigenstates involved in the
avoided crossings shown along the solid vertical line of Fig. 2(b). The dashed vertical lines indicate the position of the avoided crossings at
|γx| = 4.1033108. Different horizontal scales were used in the panels.

the solid vertical line in Fig. 2(b)]. As it was reported in
[28], we can notice that there is an exchange in the entropy
corresponding to each pair of states involved in the avoided
crossings. However, two distinctive kinds of exchanges can
be observed depending on the energy of the pair of levels.
For avoided crossings with lower energy which are closer
to the ESQPT critical energy, the exchange is accompanied
by an abrupt rise and fall of the Wehrl entropy. The lo-
cal maxima of the Wehrl entropy diminishes and the peaks
become narrower as we move away from the ESQPT en-
ergy and higher-energy avoided crossings are considered. In
Fig. 5, the spikelike behavior of the Wehrl entropy is clearly
seen in the avoided crossing of levels k = 62–63 up to k =
68–69, while for the avoided crossing of levels k = 70–71 the
spike is barely visible. For the rest of the avoided crossings
the spike has completely disappeared. The sudden increases
in the entropy observed for the set of avoided crossings close
to the ESQPT energy are direct manifestations of the super-
position in the Husimi functions, similar to the one shown at
the bottom of Fig. 4.

In order to have a broader picture of the behavior of the
Wehrl entropy, we show in Fig. 6 the Wehrl entropies of all the
positive-parity eigenstates |Ek〉 for two different couplings.
The left panel corresponds to the same coupling γ AC

x con-
sidered before, satisfying the condition of avoided crossings,
and the right panel is for a coupling away of this condition.
To better visualize the behavior of the Wehrl entropy we use
different colors for states with even and odd indexes k. The
behaviors of the Wehrl entropy in the two couplings show
some similarities: (1) For energy states below the ESQPT
energy (which is indicated by leftmost vertical dashed line),
even and odd indexed states follow the same trend with Wehrl
entropy increasing as a function of energy; (2) a change in
the behavior of the Wehrl entropy is observed for states ap-
proaching the ESQPT energy; (3) for states between the two

vertical dashed lines and energy far enough of the ESQPT
energy, the even and odd labeled states accommodate in two
different lines decreasing at different rates, those with odd
indexes, whose Husimi functions concentrate around inner
classical degenerate trajectories, have lower Wehrl entropy
than even indexed states, these latter ones have Husimi func-
tions that concentrate around the outer classical trajectories;
and (4) since the inner trajectories disappear classically above
E/J = −1 + C (energy indicated by the rightmost vertical
dashed line), the low line of Wehrl entropy values disappear
for large energies, and only the upper line remains at energies
above E/J = −1 + C.

However, striking differences in the behavior of the Wehrl
entropy between the two couplings can be observed for states
close to the ESQPT energy. For coupling satisfying the con-
dition of avoided crossings, states with energies just above
the ESQPT energy have higher Wehrl entropies than the cor-
responding states of right panel (see blue shaded region in
the left panel of Fig. 6). These higher Wehrl entropy values
are the same as those in the peaks of all the plots in the top
row of Fig. 5 and come from the superposition of the two
degenerate classical trajectories that take place in the avoided
crossings. These states with higher Wehrl entropies disappear
as energy is further increased. We conclude that the avoided
crossings observed in the spectrum lead to a superposition of
classical degenerate trajectories but only for a small number
of eigenstates inside an energy interval above the ESQPT
energy. This energy interval is indicated by the blue shaded
rectangle in the left panel of Fig. 6. The dependence of this
energy interval on the system size (J) and the way in which it
changes as we move in the parameter space of the model are
issues that deserve a further study. Recently, a behavior similar
to the shown in the right panel of Fig. 6 for the Wehrl en-
tropy was reported for the entanglement entropy in the LMG
model [36].
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FIG. 6. Wehrl entropy as a function of the energy Ek/J for the whole set of eigenstates with positive parity. In left panel the parameter γx is
chosen at the avoided crossings condition while in the right panel the parameter γx is chosen away of this condition. In both cases γy = 3γx and
J = 100 as in Fig. 2(b). The vertical dashed lines indicate the ESQPT energy and E/J = −1 + C, respectively. Colors are used to distinguish
states with index k even (pink) and odd (green). The blue shaded rectangle indicates the interval of energy where the eigenstates involved in
avoided crossing show a superposition of classical trajectories in their respective Husimi functions. Vertical solid lines indicate the energies of
the coherent states (a)–(d) of Fig. 7. Lines in left panel are for states (a) and (b), whereas vertical lines in right panel are for states (c) and (d).

IV. PHYSICAL MANIFESTATIONS OF THE WEHRL
ENTROPY INCREASE

A. Enhancement of dynamical tunneling

In this section we will show that the superposition of de-
generate classical trajectories that is observed in the avoided
crossings of states just above the ESQPT energy yields an
enhancement of dynamical tunneling between regions of the
phase space associated to the pair of degenerate classical
trajectories.

To this end we consider initial Bloch coherent states cen-
tered in a point (Qo, Po) on one of the degenerate classical

trajectories and study its unitary evolution. Figure 7 shows the
evolution of the Husimi function for such initial states

Qαo (α, t ) = |〈α|Û (t )|αo〉|2, (14)

where Û (t ) is the time-evolution operator. Figure 7(a) shows
a case when the couplings satisfy the condition of avoided
crossings and the initial state has an energy Eαo = 〈αo|Ĥ |αo〉
slightly above the ESQPT critical energy, inside the energy in-
terval where the eigenstates show a superposition of classical
trajectories. Figure 7(b) shows a case with the same couplings
but for an initial state with larger energy. Figures 7(c) and 7(d)

γAC
x γC

x

t = 0 t = 2 t = 20 t = 50 t = 0 t = 2 t = 20 t = 50

(a) (c)

(b) (d)

0

 0.15

 0.3

0  10  20  30  40  50

t

(a)
(b)

(c)
(d)L

FIG. 7. Density plots of the evolution of the Husimi functions Qα0 (α, t ) at selected times t for four different initial Bloch coherent states.
Solid orange lines are classical trajectories at the same energy of the respective initial state 〈αo|Ĥ |αo〉 = H (Q, P). In panels (a) and (b) the
coupling parameters are chosen at the avoided crossing condition γ AC

x = −4.10331 (with γ AC
y = 3γ AC

x and J = 100). In panel (a) the initial
state has an energy just above the ESQPT and in (b) the initial state has an energy in the intermediate regime but far enough from the ESQPT.
In panels (c) and (d) the energies of the initial coherent states are chosen similarly to (a) and (b), respectively, but the coupling parameters
are far from the condition of avoided crossings (γ C

x = −4.25529 with γy = 3γx). Bottom row: Line integral L of the Husimi distribution (15)
along the partner inner classical trajectory as a function of the time for the same initial states as in panels (a)–(d).
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show similar initial states with energies just above the ESQPT
energy and a larger one, but for couplings not satisfying the
condition for avoided crossings. The energies of these four
states are indicated, respectively, in the panels of Fig. 6. Only
in the case of Figure 7(a) does the Husimi function, initially
located in the outer trajectory, evolve into the inner region
of the phase space where the partner degenerate classical
trajectory of the initial state is located. In the rest of the panels,
the Husimi function spreads only along the outer trajectory of
the initial state.

In summary, if the initial coherent state is located atop of
one of the paired trajectories (inner-outer), then its Husimi
distribution hoop from the initial trajectory to its pair (outer-
inner) if the coupling parameters satisfy the avoided crossing
condition (11) and if the energy of the initial state is close to
the ESQPT critical energy. In Fig. 7(a), we show the hooping
from the outer to the inner region. In Appendix F, the com-
plementary case is shown, where the hopping occurs from the
inner to the outer trajectory.

In order to quantitatively confirm the dynamical tunneling
into the partner region, we consider the line integral of the
evolved Husimi function along a classical trajectory

L(Oi, Û (t )|αo〉) =
∮

Oi

Qαo (α, t )dl, (15)

where Oi is the partner classical trajectory of the trajectory
where the state is initially located. In the last row of Fig. 7
the line integral (15) is plotted as a function of time for the
same initial coherent states as in Figs. 7(a) to 7(d). One can
notice that the line integral (15) is significantly larger for
state (a), implying that, indeed, dynamical tunneling occurs
for coupling parameters at the avoided crossing condition but
only for states having an energy slightly above the ESQPT.

In general terms, to observe dynamical tunneling, the
initial sate must have large energy components inside the
energy interval indicated by the blue shaded rectangle in left
panel of Fig. 6. For an initial coherent state, this implies
that its energy Eαo = 〈αo|Ĥ |αo〉 has to be inside this energy
interval. In Fig. 6, the energies Eαo of the coherent states
[Figs. 7(a)–7(d)] are indicated showing that only the energy
of state (a) is inside the energy interval where eigenstates
participating in avoided crossings have a sudden increase of
the Wehrl entropy. In Appendix D it is shown that the intensity
of tunneling is maximal for coherent states having the energy
of the ESQPT Eαo = EESQPT and that this intensity tends to
zero as Eαo approaches the upper border of the energy interval
mentioned above.

B. Evolution of observables and breaking of the
classical-quantum correspondence

Being the tunneling a purely quantum effect, it may man-
ifest as deviations in the temporal evolution of observables
respect to the evolution calculated from a classical approxi-
mation. In this section, we will show that for initial coherent
states with energy slightly above the ESQPT and for couplings
satisfying the condition of avoided crossings, the classical-
quantum correspondence for the evolution of observables is
broken. In contrast, if the previous conditions are not fulfilled,

then a remarkable accord between classical and quantum re-
sults is obtained.

As observables, we consider the SP or fidelity,

SP(t ) = |〈α0|Û (t )|α0〉|2, (16)

and the temporal evolution of the population operator

jz(t ) ≡ 〈Ĵz〉(t )

J
= 1

J
〈α0|Û †(t )ĴzÛ (t )|α0〉. (17)

As described in Ref. [37] and Appendix E, both quan-
tities can be approximated by using the classical equa-
tions of motion through the so-called truncated Wigner
approximation (TWA).

In Fig. 8 we show the results for couplings and same four
initial Bloch coherent states as in Fig. 7. The first two rows
correspond to couplings satisfying the condition of avoided
crossings, with the first row showing results for a coherent
state with energy slightly above the ESQPT and the second
row for a state with larger energy. The last two rows show
results for couplings away from the condition of avoided
crossings and energy just above the ESQPT critical energy and
a larger one. In left column the squared energy components
|ck|2 of the initial states (|αo〉 = ∑

k ck|Ek〉) are shown
In all cases, quantum and classical results for the SP

(central column) and jz (right column) coincide until the
Ehrenfest time. After this time the quantum results show
larger oscillations than the classical approximations. How-
ever, a fairer comparison is obtained by considering rolling
temporal averages, both, for the SP and jz. We observe that
excepting the first row, we obtain a remarkable classical-
quantum correspondence, which indicates that in all these
cases the dynamical tunneling is marginal and the quantum
temporal trend is very well described classically. On the con-
trary, for the first row the classical-quantum correspondence is
broken and the classical survival probability and jz are larger
than the quantum ones. These are additional indications that
the avoided crossings favor the dynamical tunneling but only
if the initial coherent state is chosen on a classical trajectory
with energy slightly above the critical energy of the ESQPT.

Note that in the case of the coherent state of the first
row, all the energy components in the relevant energy inter-
val participate in the initial state, whereas in the other cases
we obtain components very close to zero that alternate (for
a given parity) with components different to zero. This is
understandable because in the case of the state of the first
row, the energy eigenstates contributing the most to the initial
state are located in the energy interval just above the ESQPT
energy where a superposition of the two classical trajectories
is obtained. On the other hand, for the other cases, the Husimi
function of the most contributing eigenstates is located either
on one trajectory or other in an alternating way.

In all cases shown in Fig. 8, the initial coherent state is
located on the outer trajectory of the pair of degenerate clas-
sical trajectories, and in the case of the state of the first row
the tunneling occurs into the inner trajectory of the degenerate
pair. In Appendix F, we confirm that similar results to those in
Fig. 8 are obtained for initial coherent states located in the in-
ner trajectory of the degenerate pair. Likewise, in Appendix F
we show that for initial states with energy below the ES-
QPT and energies above E/J = −1 + C, a classical-quantum
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(a)
0 10 20 30 40

0.005
0.010

0.050
0.100

0.500
1

t

SP

0 10 20 30 40

−0.2

0.0

0.2

0.4

0.6

t

j z

(b)
0 10 20 30 40

0.005
0.010

0.050
0.100

0.500
1

t

SP

0 10 20 30 40
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

t

ϕ ζ
(c)

0 10 20 30 40
0.005
0.010

0.050
0.100

0.500
1

t

SP

0 10 20 30 40
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

t

j z

(d)
0 10 20 30 40

0.005
0.010

0.050
0.100

0.500
1

t

SP

0 10 20 30 40
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

t

ϕ ζ

FIG. 8. Profiles of energy components (left column), survival probability (SP) in logarithmic scale as a function of time (central column)
and temporal evolution of the expectation value jz (right column) for the same initial coherent state as in Fig. 7. In left column, components
from positive-parity states (+) in pink solid lines and contributions from negative-parity states (−) in dashed green lines; the position of the
ESQPT is marked with a solid vertical line. In central and right columns, the quantum results correspond to gray light lines and classical results
to red dashed lines. Rolling time averages are also included: Blue for quantum results and green for classical ones.

correspondence is obtained even if the couplings fulfill the
condition for avoided crossings.

V. CONCLUSIONS

For a particular region of the parameter space in the
Lipkin-Meshkov-Glick model (γx < −1 and γy < −1) there
exists an intermediate-energy region delimited by a logarith-
mic divergence and a discontinuity in the energy density of
states, with the former defining a so-called ESQPT. At this
intermediate-energy region, real and avoided crossings occur
for coupling parameters fulfilling a condition that was derived
semiclassically. The real and avoided crossings were linked
to the existence of pairs of different classical trajectories for
the same energy that are not connected by the discrete parity

symmetry of the model. Furthermore, the ESQPT was linked
to the presence of a pair of hyperbolic fixed points in the phase
space of the classical model.

We studied the avoided crossings appearing at this inter-
mediate region through the Wehrl entropy, which is a measure
of the phase-space volume occupied by the quantum states.
We found, as a function of the coupling parameters, a sudden
increase and interchange of the Wehrl entropy for eigenstates
participating in avoided crossings and having energy close to
the critical ESQPT energy. For avoided crossings far enough
of the ESQPT energy, the sudden increase of the Wehrl en-
tropy disappears and only a simple interchange is observed.
It was shown that the spikelike behavior of the Wehrl en-
tropy for avoided crossing close to the ESQPT comes from a
superposition of the degenerate classical trajectories in the
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Husimi (phase-space) representation of the eigenstates in-
volved in the avoided crossings; this superposition is absent in
higher-energy avoided crossings. The superposition implies a
sudden augmentation of the phase space occupied by the states
and therefore an increase in the Wehrl entropy.

The singular behavior of the Wehrl entropy in avoided
crossings for eigenstates close to the ESQPT energy en-
hances the dynamical tunneling between classically discon-
nected phase-space regions for nonstationary states having
large components of these Hamiltonian eigenstates. It was
also shown the way in which this dynamical tunneling
associated to avoided crossings induces a breaking of the
quantum-classical correspondence in the temporal evolution
of observables. This quantum-classical breaking occurs in
the model exclusively for states possessing large components
of eigensates participating in the avoided crossings close to
the ESQPT critical energy. For other nonstationary states the
correspondence is kept.

The mechanism of quantum tunneling and classical-
quantum breaking identified here for the Lipkin-Meshkov-
Glick model could be also present in other quantum systems.
Not only for one-degree-of-freedom models with pairs of hy-
perbolic fixed points, but also in models with more degrees
of freedom where hyperbolic fixed points appear when the
integrability of the models is broken and they move toward
a chaotic regime [38]. The results presented here could also
be relevant in the study of dynamical phase transitions [39],
where avoided crossings and closeness to hyperbolic fixed
points could influence the dynamics of nonstationary states
in a similar way as we identified here for coherent states in
the Lipkin-Meshkov-Glick model.
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APPENDIX A: NUMERICAL METHODS

We wrote specialized codes in fortran90 to calculate the
spectrum of the Hamiltonian (1) and the Husimi represen-
tations. We performed the numerical diagonalization of the
Hamiltonian (1) by using the subroutine dsyev of the Lapack
package [40]. Once we had the eigenvalues and eigenstates
we proceeded to calculate the Husimi representation (12) on a
grid of canonical variables Q and P. With the eigenvalues and
eigenstates of the Hamiltonian, we also computed the evolu-
tion of the initial coherent state (14), the survival probability
(16) and 〈Jz〉(t ) (17). For the entropy (13) we used Monte
Carlo sampling of the Husimi representation (12).

For the line integral (15) along the classical trajectory, we
divided the trajectory in small pieces, we evaluated (14) in
each segment and finally we added the contributions from all
circular segment, i.e., numerical integration in polar coordi-
nates. In order to calculate the classical survival probability

and jz(t ), we numerically solved the equations of motion
corresponding to the Hamiltonian formalism in canonical
variables Q-P by using the software Mathematica.

APPENDIX B: ENERGY DENSITY OF STATES

A classical approximation to the EDoS can be obtained
from the lowest-order term of the Gutzwiller trace formula

ρsc(E ) = J

2π

∫
dzdφ δ[H (z, φ) − E ], (B1)

where H (z, φ) is given in Eq. 8. To evaluate the previous
integral, we use the properties of the Dirac delta to obtain

ρsc(E ) = 1

2π

∫
φ∈�ε

dφ√
1 − A(φ)[2ε − A(φ)]

×
∫ 1

−1
dz[δ(z − z+) + δ(z − z−)], (B2)

where

A(φ) = γx cos2 φ + γy sin2 φ, (B3)

z±(φ, E ) = 1 ± √
1 − A(φ)[2ε − A(φ)]

A(φ)
, (B4)

and �ε is the set of values of φ for which there exist at least
a solution of equation H (z, φ)/J = ε for variable z ∈ [−1, 1],
with ε = E/J . In Fig. 9, we show H (z, φ)/J as a function of z
for different angles φ and for the same four set of couplings as
in Fig. 1. The plots allow us not only to visualize the range of
allowed energies for given couplings but also to identify the
different kind of trajectories that may appear in the different
energy intervals. These latter are indicated by the same color
code used in Fig. 1. Observe that the number of intersections
of an horizontal line (constant ε = E/J) with the quadratic
curves H (z, φ)/J is equal to the second integral in Eq. (B2):
for the blue region in II, blue and orange regions in III, and
blue and green regions in IV, the number of intersection is 2,
while in the rest of the regions this number is 1. Equivalent
expressions for the EDoS were obtained in Ref. [22] by ana-
lyzing the zeros of the eigenstates Husimi functions.

APPENDIX C: CONDITION FOR REAL AND AVOIDED
CROSSINGS

For sector III in parameter space and intermediate energy,
there exist pairs of degenerate classical trajectories which are
not connected by the parity symmetry of the model. One
can obtain the set of energy levels associated to these two
disconnected sets of classical orbits by considering the EBK
quantization rule

J

2π

∫ π

−π

z̃±(φ, En± )dφ =
(

n± + 1

2

)
, (C1)

where n± is an integer and z̃±(φ, E ) are the two different
classical trajectories for the same energy, E , expressed in
terms of the canonical variables defined in Eq. (7). These
trajectories are obtained from the quantum Hamiltonian (4) by
mapping the pseudospin operators to classical vectors Ĵi → Ji
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FIG. 9. Solid black lines depict the classical energy H (z, φ)/J plotted as a function of z for representative values of φ ∈ [0, π/2]. The value
φ used in each line is indicated, but each line is actually associated to four different angles (±φ, π ± φ). The same sets of couplings (γx, γy )
as in Fig. 1 were used, which are representative of the sectors I–IV in parameter space. Horizontal solid lines are representative energies of the
different regimes, classified according to the kind of trajectories z(E , φ) that can be obtained by considering the intersection of the horizontal
lines with the quadratic black lines. We use the same color code as in Fig. 1 for indicating the different energy regions. Dashed horizontal lines
indicate benchmarking energies, ground-state energies, ESQPT energies and E/J = −1 + C in the case of panel III.

and expressing z as a function of φ and Ĥ → E ,

z̃±(φ, E ) = 1

Ã(φ)
±

√
1 − Ã(φ)[2ε − Ã(φ)]

Ã(φ)
,

with

Ã(φ) = 2J

2J − 1

(
γx cos2 φ + γy sin2 φ

) = 2J

2J − 1
A(φ)

and ε = E/J . Notice that z̃ and Ã are very similar to the
functions defined in Eqs. (B3) and (B4).

If two energy levels coincide En+ = En− , by adding
equations (C1) for both trajectories z̃±, we obtain

J

π

∫ π

−π

dφ

Ã(φ)
= n+ + n− + 1,

which after performing the integral leads to

2J − 1√
γxγy

= n+ + n− + 1.

This expression can be written as

γxγy =
(

2J − 1

p

)2

,

where p = n+ + n− + 1 > 0 is a positive integer number.
Since the intermediate regime with pairs of disconnected
trajectories for the same energy appear only in the region
|γx| � 1 and |γy| � 1, the integer p must be less or equal than
2J − 1. Then the condition for having crossing of EBK levels
can be written as

γxγy =
(

2J − 1

2J − N

)2

,

with N an integer satisfying 0 < N < 2J . We have verified
that for N odd crossings between states of different parity
appear, whereas for N even the crossing of the EBK energy
levels become avoided crossings between states of the same
parity.

APPENDIX D: MAXIMAL DYNAMICAL TUNNELING AT
THE ESQPT

In order to quantify how the dynamical tunneling is in-
fluenced by the energy of the initial coherent state and their
closeness to the ESQPT, we present in Fig. 10 the line integral
(15) as a function of time for several initial coherent states
whose energies 〈α0|Ĥ |αo〉 = Eαo are close to the ESQPT.

One can notice that the maximal tunneling corresponds to
the initial coherent state chosen with the closest energy to the
ESQPT. The tunneling decreases as the energy of the coherent
state increases and approaches the upper border of the energy
interval where the eigenstates present a superposition of clas-
sical trajectories in their respective Husimi functions

APPENDIX E: CLASSICAL APPROXIMATION TO
SP AND JZ

1. Survival probability

Following Ref. [37], we express the survival probability
of an initial Bloch coherent state SP(t ) = |〈αo|Û (t )|αo〉|2 in
terms of the Wigner functions at times 0 and t ,

SP(t ) = 2π

J

∫
du wαo (u, 0)wαo (u, t ), (E1)

where u = (Q, P) is a point in the phase space. The Wigner
distribution for a Bloch coherent state is in turn given in terms
of Legendre polynomials [41]

wαo (θ, φ) (E2)

= (2J )!

4π

2J∑
k=0

√
2k + 1

(2 j − k)!(2 j + k + 1)!
Pk (cos �),

where � is the angle between {θ, φ} and {θ0, φ0}, i.e.,

cos � = cos θ cos θ0 + sin θ sin θ0 cos(φ − φ0),

with θ and φ angular spherical coordinates on the Bloch
sphere. For large J , the Wigner distribution (E2) is well

064116-11



D. J. NADER et al. PHYSICAL REVIEW E 104, 064116 (2021)

0
 0.1
 0.2
 0.3
 0.4

0  10  20  30  40  50

t

(a) (b) (c)

L

FIG. 10. Line integral (15) as a function of time, corresponding to initial coherent states |αo〉 with energy close to the ESQPT: (a) energy
of the state Eαo = Ek=62 (closest energy to the ESQPT), (b) energy of the state Eαo = Ek=64 and (c) energy corresponding to Eαo = Ek=66.

approximated by a normal distribution

wα0 (θ, φ) ≈ J

π
e−J�2

. (E3)

The Wigner function of the evolved state is obtained
by using the TWA, which consists of assuming that the
evolution of the Wigner distribution is governed by the
classical equations of motion ∂w

∂t = {w, H}. From this we
obtain w(u, t ) ≈ w(ϕ−t (u), 0) = wαo[ϕ

−t (u)], where ϕ is the
function which describes the classical time evolution u(t ) =
ϕt (u0) of an initial condition u0. By using this result in the
survival probability (E1) one gets the classical approximation,

SP(t ) ≈ 2π

J

∫
du w(u, 0)w(ϕ−t (u), 0)

= 2π

J

∫
du wαo (u)wαo[ϕ

−t (u)]. (E4)

The previous integral can be viewed as the average of the
Wigner function at time t , w(t )

αo
, weighted by the initial

Wigner function wαo , or, equivalently, as the average of the
initial Wigner function weighted by the Wigner function at
time t :

〈wαo[ϕ
−t (u)]〉wαo

= 〈wαo (u)〉
w

(t )
αo

. (E5)

From this, the integral (E4) can be estimated by means of
Monte Carlo integration [37]

SP(t ) ≈ 1

M

M∑
i=1

wαo[ϕ
±t (ui )], (E6)

where ui are points randomly chosen following the initial
distribution wαo and M is the total number of Monte Carlo
iterations.

2. Temporal evolution of 〈Ĵz〉
The temporal evolution of the expectation value of the

population operator can be calculated from the Wigner dis-
tribution

jz(t ) ≡ 1

J
〈α0|Û †(t )ĴzÛ (t )|α0〉 =

∫
du z(u)w(u, t ),

where z(u) = − cos θ = [ 1
2 (Q2 + P2) − 1]. Similarly to the

SP, we approximate classically this expression by using the
TWA and the Gaussian distribution for the Wigner function of
a coherent state (E3),

jz(t ) ≈
∫

du wαo[ϕ
−t (u)]z(u).

The previous integral can be interpreted as the average of z(u)
weighted by the Wigner function at time t (w(t )

αo
),

jz(t ) ≈ 〈z(u)〉
w

(t )
αo

.

To evaluate the integral, we also perform a Monte Carlo inte-
gration to obtain

jz(t ) ≈ 1

M

M∑
i=1

z[ϕt (ui )],

where ui is a set of M random points generated from the initial
Wigner distribution (E3) and which evolve according to the
classical Hamiltonian (6).

t = 0 t = 2 t = 20 t = 200 t = 0 t = 2 t = 20 t = 50

(e) (g)

(f) (h)

FIG. 11. Density plots of the evolution of the Husimi functions Qα0 (α, t ) at selected times t for four different initial Bloch coherent states.
Solid orange line are classical trajectory at the same energy of the respective initial state 〈αo|Ĥ |αo〉 = H . In all panels the coupling parameters
are chosen at the avoided crossing condition γ AC

x = −4.10331 (with γ AC
y = 3γ AC

x and J = 100). In panel (e) the initial state has an energy well
below the ESQPT. In (f) the initial state has an energy just above the ESQPT and is located in the inner trajectory of the degenerate pair. In
(g) the initial state has an energy in the intermediate regime but far enough from the ESQPT and is also located in the inner trajectory of the
degenerate pair. In (h) the initial state has an energy in the high-energy regime well above E/J = −1 + C.
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FIG. 12. Same as Fig. 8, but for the four initial states of Fig. 11. Only in state (f) a breaking of the classical-quantum correspondence is
observed in the rolling averages of observables SP and jz.

APPENDIX F: ADDITIONAL CASES

In this Appendix we show the evolution of four differ-
ent initial Bloch coherent states, for couplings satisfying the
same condition of avoided crossing as in the vertical solid
line of Fig. 2(b). In Fig. 11 the evolution of the Husimi
function Qα0 (α, t ) is presented. States (e) and (h) are chosen
with energies outside the intermediate-energy regime where
avoided crossings occur. State (e) has an energy well below
the ESQPT, whereas state (h) has an energy well above E/J =
−1 + C. Initial state (f) has an energy just above the ESQPT

but, differently to state (a) in Fig. 7, it is initially located on the
inner trajectory and tunneling takes place into the outer tra-
jectory. The initial state (g) has an energy in the intermediate
regime but far enough from the ESQPT. Its Husimi function is
located on the inner trajectory and no tunneling is observed in
its unitary evolution. The squared energy components of the
initial states, their survival probability and the evolution of the
expectation value 〈Ĵz〉 are presented in Fig. 12. It is confirmed
that only in the case of state (f) the classical-quantum corre-
spondence is broken for the rolling averages of the considered
observables.
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