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We consider a particle diffusing in a two-dimensional (2D) channel of varying width h(x). It is driven
by a force of constant magnitude f but random orientation there or back along the channel. We derive the
effective generalized Fick-Jacobs equation for this system, which describes the dynamics of such a particle in
the longitudinal coordinate x. Aside from the effective diffusion coefficient D(x), our mapping also generates
an additional effective potential −γ (x) added to the entropic potential − log[h(x)]. It acquires an increasing or
decreasing component in asymmetric periodic channels, and thus it explains appearance of the ratchet current.
We study this effect on a trial example and compare the results of our true 2D theory with a commonly used
effective one-dimensional description; the data are verified by the numerical solution of the full 2D problem.

DOI: 10.1103/PhysRevE.104.064115

I. INTRODUCTION

Rectification of the random motion of particles due to the
ratchet effect is a widespread phenomenon [1,2]. It appears as
a consequence of concerted effect of broken spatial reflection
symmetry, nonequilibrium, and energy input from outside,
which also breaks the time-reversal symmetry. The energy
input can be implemented by periodic or stochastic switching
of an external potential or external driving force, but it can also
originate from internal structure of the particles. The latter is
the case of active particles [3,4], which may be of natural
or artificial origin. The paradigmatic example is the Janus
particles [5,6], which are chemically propelled and change
their direction randomly.

The ratchet effect with active particles was discovered
experimentally using bacteria [7] and subsequently observed
in numerous settings with both natural and artificial par-
ticles [8–13]. Rectification of active particles was studied
theoretically by computer simulations in a two-dimensional
(2D) patterned environment [14–17] as well as in quasi-one-
dimensional (1D) channels of a periodically varying profile
[18–22]. The common mechanism in both 2D and quasi-1D
ratchets is selective trapping of particles which are propelled
contrary to the “easy” direction. What the “easy” direction
is in a specific case depends on the details of the geometry.
The typical trapping time is the inverse of the frequency α

with which the direction is switched. When the frequency α

becomes large, the particles approach the limit of ordinary
passive particles and the ratchet effect disappears. Therefore,
it makes sense to consider the case of weakly active particles,
where α is large but finite, and to develop a kind of 1/α

expansion. Let us remark that if the change of direction is
due to rotation of the Janus particle by thermal fluctuations,
the rotational diffusion coefficient, related to α, depends on
the inverse cube of particle diameter, while the translational
diffusion is inversely proportional to it. Therefore for small

enough particles, the rotational diffusion can be by orders of
magnitude faster than the spatial diffusion, and thus consider-
ing large α is physically plausible.

In this work we consider a single active particle diffusing
in a two-dimensional (2D) channel of varying width h(x).
Compared to the Janus particles, whose internal driving force
can be oriented arbitrarily in space [5], the behavior of the
particle in our model is simplified so that the internal driving
force can point only along the direction of the channel axis,
with a fixed magnitude f and randomly flipping sign. In fact,
it is equivalent to a passive particle driven by a constant
external force f acting forward or backward along the channel
(see Fig. 1). Indeed, on a single-particle level there is no
distinction between an active particle and passive particle in
stochastically changing external field (provided we neglect the
hydrodynamic details of the propulsion mechanism).

The driving force flips randomly between the two possible
orientations with the rate α. The mean force averaged over
long time is zero, but asymmetry of the channel, given by
the shaping function h(x), causes a different response of the
particle at the walls to the driving forward or backward, and
so its net velocity can appear nonzero. The state of the particle
is described by three degrees of freedom: longitudinal coordi-
nate x, transverse coordinate y, and direction of the driving.
However, the ratchet current flows only along the first of the
three, which leads us to the idea of projecting the remaining
two coordinates out using a kind of the mapping technique
[23–29]. Having derived the effective reduced 1D equation
of the Fick-Jacobs (FJ) type [23], one can easily apply the
Stratonovich [30,31] or the Lifson-Jackson [32] formula to
calculate the net current or the velocity of the particle.

The ratchet effect with active particles in 1D periodic po-
tentials was also studied directly both analytically and with
numerical simulations [33–36], and these approaches could
be in principle seamlessly joined to the FJ technique. In the
context of active particles, the mapping was already used in
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FIG. 1. Scheme of the ratchet driven by fluctuating force f in a
2D channel.

Refs. [37–39]. The models of confined particles self-propelled
in an arbitrary 2D or three-dimensional (3D) direction were
considered, which are rather complicated for studying the
correlations between motions in the particular degrees of free-
dom. The spatial diffusion was reduced to the 1D problem
applying the FJ approximation, either basic or modified by
the Reguera-Rubí effective diffusion coefficient D(x) [40,41].
Moreover, the effect of angular diffusion was studied, which
might be interpreted as investigation of 1D motion of particles
with an internal degree of freedom. Of course, the transla-
tional motion of particles is influenced by random orientation
of their propulsion, namely, at the curved boundary, and so
the easy reduction of the spatial transverse coordinate may
not work satisfactorily. In our simplified model, we present a
method reducing simultaneously both degrees of freedom, the
coordinate y and orientation of the flipping force f , reflecting
more appropriately the correlations of motion in all directions.

The technique of dimensional reduction was developed for
the diffusion alone in a 2D or 3D corrugated channel [24–26].
It is based on the scaling of the transverse diffusion constant
by a factor 1/ε, which is equivalent to scaling of the transverse
lengths by

√
ε. If the scaling parameter ε → 0, the diffusion

across the channel becomes infinitely fast, smearing immedi-
ately the transverse profile of the particle probability density ρ

to a constant, ρ(x, y, t ) = ρ(x, t ). Integration of the diffusion
equation over the cross section then results in the FJ equation
[23], depending on the only spatial coordinate x.

Small but nonzero ε slows down the transverse relaxation,
and the transverse profile of ρ begins to deflect from ρ(x, t ).
The deviations can be formally expressed as a series in powers
of ε, depending on y, the local width of the channel h(x),
and its derivatives. After some algebra, it leads to a series of
corrections to the FJ equation, expressed finally by the effec-
tive diffusion coefficient D(x), replacing the intrinsic diffusion
constant D0. The mapping technique was later extended to
diffusion in various conservative fields [27–29].

Recently a similar technique was used to derive the reduced
dynamics of the 1D dichotomic ratchet [36]. Diffusion of a
particle pushed forward or backward by the randomly flipping
force f was studied on a line in the potential U (x). The orien-
tation of the flipping force was considered as the “transverse”
coordinate to be reduced, and the inverse flipping rate 1/α

played the role of the small parameter. In the limit α → ∞,
the infinitely fast flipping makes the force f ineffective to
the motion of particles, so the reduced 1D equation is the
Smoluchowski equation in the potential U (x).

For a finite α, the particle has a time ∼1/α to move be-
fore the next flip, and thus its probability density starts to
deflect from that given by the Smoluchowski equation with
only U (x). Again, the deviations can be formally expressed
as a series in 1/α, and finally, the Smoluchowski equation
is corrected by the terms depending on f , α, and the deriva-
tives of U (x). Aside from the effective diffusion coefficient
D(x), an additional effective potential −γ (x) also appears
in the mapped equation. In asymmetric periodic channels, it
can contain an increasing or decreasing contribution, driving
effectively the ratchet current.

In the present work, we are interested in a similar model
of dichotomic ratchet, where the particles diffuse in a non-
homogeneous 2D channel instead of the 1D landscape U (x).
We combine here the mapping schemes of both mentioned
models, reducing the transverse coordinate y as well as the
orientation of the force. The result is again the generalized
FJ equation, extended by the diffusion coefficient D(x) and
the additional potential −γ (x), which also consists of two
parts in asymmetric periodic channels: a periodic one and a
contribution depending linearly on x. The last one determines
the appearance of the ratchet effect.

In Sec. II we formulate the problem and discuss the zeroth-
order approximation, which is formally identical to the model
of a particle in the 1D entropic potential U (x) = − ln h(x)
[36]. The mapping procedure for the true 2D channel is then
presented in Sec. III. We demonstrate the resulting ratchet cur-
rent on a trial channel and compare it with the commonly used
FJ approximation. Our data are also verified by the numerical
solution of the full-dimensional equations.

II. SPATIAL FICK-JACOBS APPROXIMATION

First, we formulate here the equations to be solved. The
driving of particles there or back by the flipping force f can be
carried out in various ways: either the direction of an external
force is flipping, or it is the Janus particle [5], self-propelled
forward or backward depending on its orientation. We can
consider two species of particles, pushed forward (+) or back-
ward (−) by the force + f or − f , respectively, along the x
axis. The equations governing their probability densities ρ±
are

∂tρ±(x, y, t ) = D0

[
∂x(∂x ∓ f ) + 1

ε
∂2

y

]
ρ±(x, y, t )

∓α[ρ+(x, y, t ) − ρ−(x, y, t )], (2.1)

describing the driven diffusion by the force ± f and flipping
between the species (±) with the rate constant α. We suppose
the energy measured in the units such that the temperature
kBT = 1. The transverse diffusion constant is supposed 1/ε

times larger than the longitudinal one D0, having introduced
the scaling parameter ε necessary for the mapping procedure.
We also divide Eq. (2.1) by D0 and scale the time D0t → t ,
as well as the rate constant α/D0 → α. The equation is sup-
plemented by the no-flux boundary conditions (BC) at the
boundaries y = 0 and y = h(x) for each orientation,

∂yρ±(x, y, t )|y=h(x) = εh′(x)(∂x ∓ f )ρ±(x, y, t )|y=h(x),

∂yρ±(x, y, t )|y=0 = 0; (2.2)

the prime denotes the derivative according to x.
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Now we reduce the spatial coordinate y by integration over
the cross section. The 1D (marginal) densities

p±(x, t ) =
∫ h(x)

0
ρ±(x, y, t ) dy (2.3)

have to obey Eq. (2.1) integrated over y,

∂t p±(x, t ) = ∂x[(∂x ∓ f )p±(x, t ) − h′(x)ρ±(x, h(x), t )]

∓α[p+(x, t ) − p−(x, t )], (2.4)

obtained using the integration by parts and applying the
BC (2.2). To gain the self-consistent equations for p±,
we still need to express the 2D densities ρ±(x, h(x), t ) by
p±(x, t ). In the limit ε → 0, the transverse diffusion be-
comes infinitely fast, smearing immediately the profiles of ρ±;
hence ρ±(x, h(x), t ) = ρ±(x, y, t ) = p±(x, t )/h(x). If applied
in Eq. (2.4), we arrive at the (spatial) FJ approximation

∂t p±(x, t ) = ∂xh(x)(∂x ∓ f )[p±(x, t )/h(x)]

∓α[p+(x, t ) − p−(x, t )] (2.5)

after some algebra.
Notice that this equation is equivalent to that defining the

1D model, Eq. (1.1) in Ref. [36], if we take the 1D potential
as the entropic one in the 2D channel, U (x) = − ln[h(x)]; this
approximation is often used for solving the nonhomogeneous
2D models [33,37,39]. To compare it with a more precise
calculation in the next section, we review here the key results
of the mapping presented in Ref. [36] with U (x) expressed by
h(x), and demonstrate them on a trial channel.

The mapped equation, reducing the orientation of f , has
the form of the generalized FJ equation,

∂t p(x, t ) = ∂xh(x)eγ (x)[1 − Ẑ (x, ∂x )]∂xe−γ (x) p(x, t )

h(x)
, (2.6)

governing the 1D density of both orientations,

p(x, t ) = p+(x, t ) + p−(x, t ). (2.7)

The function γ (x) and the operator Ẑ (x, ∂x ) express the
corrections to the zeroth-order FJ equation, ∂t p(x, t ) =
∂xh(x)∂x[p(x, t )/h(x)]. It is valid in the limit α → ∞, when
the diffusing particle has no time to react to the fast flipping
force and the densities p±(x, t ) = p(x, t )/2.

For a finite α, the densities p± deflect from p/2 due to
different responses of the particles to the driving uphill or
downhill in the entropic potential − ln[h(x)] by the force f be-
tween the succeeding flips. Expressing formally the difference
p+(x, t ) − p−(x, t ) using p(x, t ), the corrections included in
γ (x) and Ẑ (x, ∂x ) are determined recursively, expanded in
1/α,

Ẑ (x, ∂x ) = − f 2

2α
− f 2

4α2

(
h′

h

)′
+ 1

8α3

{
f 4∂2

x

+
[

3 f 4h′

h
− 2 f 2

h3
(h2h(3) − 3hh′h′′ + 2h′3)

]
∂x

+ 3 f 4h′′

h
+ f 2

h4
(11h′4 − 25hh′2h′′ + 8h2h′′2

+ 9h2h′h(3) − 3h3h(4) )

}
+ · · · , (2.8)

γ (x) =
(

− f 2

2α
+ f 4

4α2
− f 6

8α3
+ · · ·

)
ln h − f 2

4α2

[(
h′

h

)′

+ h′2

2h2

]
+ f 4

8α3

(
2h′′

h
+ h′2

2h2
+

∫
h′3

h3
dx

)

− f 2

8α3

[
h(4)

h
− 2h′h(3)

h2
− 5h′′2

2h2
+ 6h′2h′′

h3
− 2h′4

h4

+
∫ (

h′5

h5
− h′h′′2

h3

)
dx

]
+ · · · , (2.9)

up to the third order, omitting writing the obvious arguments.
The form of the mapped equation (2.6) justifies existence

of two basic states: the (quasi-) equilibrium, with peq(x) ∼
h(x)eγ (x), and the stationary flow, when the right-hand side
equals −∂xJ = 0; hence the net flux J is constant. For solu-
tions close to the stationary flow, Eq. (2.6) can be reduced to
a simpler form

∂t p(x, t ) = ∂xh(x)eγ (x)D(x)∂xe−γ (x) p(x, t )

h(x)
, (2.10)

where the operator Ẑ is replaced by just a function, the ef-
fective diffusion coefficient D(x). Equations (2.6) and (2.10)
represent the mass conservation of the same system, so if
∂xe−γ (x) pst (x)/h(x) for the stationary solution pst (x) is ex-
pressed from both of them and compared [25], we arrive at
the relation

1

D(x)
= h(x)eγ (x)[1 − Ẑ (x, ∂x )]−1 e−γ (x)

h(x)
, (2.11)

enabling us to derive D(x) from the known Ẑ . Taking
Eq. (2.8), we find

1

D(x)
= 1 − f 2

2α
+ f 4

4α2
− f 6

8α3
+ · · · − f 2

4α2

(
h′

h

)′

+ f 2

8α3h4
(15h′4 − 31hh′2h′′ + 8h2h′′2 + 11h2h′h(3)

− 3h3h(4) ) + f 4

8α3h2
(4hh′′ − 3h′2) + · · · (2.12)

up to the third order. The terms independent of h give D(x) �
1 + f 2/2α, known as the generalized Taylor dispersion cor-
rection [42,43].

Unlike the auxiliary dimensionless parameter ε used in the
reduction of the transverse coordinate y, the functions γ (x)
and 1/D(x) here are expanded in the meaningful quantity
1/α (i.e., the ratio D0/α in the unscaled time), having the
dimension m2 (meters squared). Dimension of the force f
measured in units with kBT = 1 is m−1, so its inverse could
serve as the typical length scale, forming the dimensionless
small parameter f 2/α, controlling convergence of the expan-
sion. However, the terms depending on derivatives of h(x)
in Eq. (2.12) violate this structure; the typical length is also
given by the shape of the channel. Below we demonstrate the
convergence of the results on a specific example.

Equation (2.10) has the form of 1D Smoluchowski equa-
tion with the spatial dependent diffusion coefficient; hence we
can interpret the function −γ (x) as an additional effective po-
tential appearing due to reduction of orientation of the flipping
force f . Let us notice the integral terms ∼1/α3 in Eq. (2.9).
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FIG. 2. Trial shaping function h(x) (2.14) for various parameters
a = 0, 0.1,...up to 0.6.

As we show below, they can give a nonzero increment of γ (x)
over one period L in asymmetric periodic channels, h(x +
L) = h(x). The full effective potential − ln[h(x)] − γ (x) be-
comes a slanted washboard function, determining the effective
force averaged over one period, �γ/L = [γ (L) − γ (0)]/L,
effectively driving the ratchet effect. For calculation of the
stationary current in the washboard potential, we can use the
Stratonovich [30,31] or the Lifson-Jackson [32] formulas,

J = (1 − e−�γ )

[ ∫ L

0
h(x)eγ (x) dx

∫ L+x

x

e−γ (x′ )dx′

h(x′)D(x′)

]−1

� �γ

[ ∫ L

0
h(x)eγ (x) dx

∫ L

0

e−γ (x)dx

h(x)D(x)

]−1

(2.13)

(valid for small �γ ), modified for the varying diffusion coef-
ficient D(x); one particle per period L is considered. We check
the presented theory on a trial shaping function

h(x) = (2 − cos x)(1 + a cos x − a sin x), (2.14)

enabling us to calculate the necessary integrals in Eq. (2.9) an-
alytically. The parameter a controls anisotropy of the channel;
see Fig. 2.

The corresponding ratchet current J divided by f 2 for
easier comparison for various f is plotted in Fig. 3, depend-
ing on α. The solid and dashed lines depict the results of
Eq. (2.13) for f = 1 and 0.1, respectively, with γ (x) and D(x)
derived up to the third order [Eqs. (2.9) and (2.12); D0 = 1].
They are compared with the stationary currents (disks and
squares for f = 1 and 0.1), calculated by numerical solution
of Eq. (2.1). The lines represent the asymptotic ∼1/α3, slowly
approaching the exact data; let us stress that it is the lowest
order in 1/α, exhibiting the terms resulting in nonzero �γ . A
better coincidence with the numerical data for larger α can be
achieved by taking the higher-order corrections to γ (x); the
dotted lines show the current after adding the terms ∼ f 2/α4

and f 2/α5 according to Eqs. (A.9) in Ref. [36] for f = 0.1.
For smaller α(<5 roughly here), the expansion in 1/α does
not converge and alternative mapping methods calculating
γ (x) and D(x) were developed [36].

FIG. 3. The ratchet current J over f 2 vs the flipping rate α in
the channel shaped by Eq. (2.14), a = 0.4. The blue disks and red
squares correspond to the numerical solutions of Eq. (2.5) for f = 1
and f = 0.1, respectively. The solid and the dashed lines represent
the leading terms ∼1/α3 for f = 1 and 0.1. The dotted lines demon-
strate adding the 4-th-order terms ∼α−4 and ∼α−5 for f = 0.1.

III. MAPPING IN 2D CHANNELS

Now we extend the mapping of Eq. (2.1) onto the longi-
tudinal coordinate beyond the spatial FJ approximation, i.e.,
in the true 2D channel. To reduce both degrees of freedom,
the transverse coordinate y as well as the orientation of the
flipping force, we also rescale the flipping rate by ε, α = ᾱ/ε

in Eqs. (2.1) and (2.4). The 1D density p(x, t ) of our interest,
Eq. (2.7), includes both orientations, so to find the correspond-
ing mapped equation for it, we need yet to sum Eq. (2.5) over
the indices (+) and (−),

∂t p(x, t ) = ∂x((∂x − f )p+(x, t ) + (∂x + f )p−(x, t ) − h′(x)

×{ρ+[x, h(x), t] + ρ−[x, h(x), t]}). (3.1)

Again, we need to express ρ±(x, y, t ) and p±(x, t ) using
the 1D density p(x, t ) to make Eq. (3.1) consistent. Fixing
ᾱ nonzero, the parameter ε → 0 makes both the transverse
diffusion constant as well as the flipping rate α infinite,
smearing immediately the transverse profile of the density
to ρ+(x, y, t ) = ρ−(x, y, t ) = p(x, t )/[2h(x)] and p±(x, t ) =
p(x, t )/2. Substituting it in Eq. (3.1), we obtain the FJ equa-
tion.

A small ε > 0 causes a slower transverse relaxation, as
well as flipping of the force. The transverse profiles of
ρ±(x, y, t ) begin to deflect from p/2h in the same way as for
diffusion alone [24], but also the finite flipping rate allows the
(+) and (−) particles to move differently at the boundaries
depending on their curvature, i.e., on h(x). So ρ+ and ρ− differ
from one another at the boundary and also inside the channel,
due to diffusion. We can express these deviations formally by
operators ω̂±(x, y, ∂x ) acting on p(x, t ), writing

ρ±(x, y, t ) = eγ (x)

[
1

2
+ ω̂±(x, y, ∂x )

]
e−γ (x) p(x, t )

h(x)
. (3.2)

Without loss of generality, we added here the exponentials of
a gauge function γ (x), similar to the mapping of diffusion in
a nonconservative field [44] or other studied ratchet systems
[36,45]. It enables us to derive the mapped equation in the
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form of generalized FJ equation (2.6). Using the formula (3.2)
in Eq. (3.1) we derive

∂t p(x, t ) = ∂xeγ (x)h(x)

[
∂x + γ ′(x) − h′(x)

h(x)
ω̂

(
x, h(x), ∂x )

− f

h(x)

∫ h(x)

0
dyσ̂ (x, y, ∂x )

]
e−γ (x) p(x, t )

h(x)
(3.3)

after some algebra; we denoted here ω̂ = ω̂+ + ω̂− and σ̂ =
ω̂+ − ω̂−. The integration (2.3) and (2.7) of the backward
mapped density ρ± (3.2) has to give an identity for any p(x, t ),
which also requires us to satisfy∫ h(x)

0
dy[ω̂+(x, y, ∂x ) + ω̂−(x, y, ∂x )] = 0. (3.4)

Equation (3.3) can already be transformed to the form of
(2.6), having the function γ (x) properly fixed. As we show
later, the operators ω̂±(x, y, ∂x ) consist of the parts ω±(x, y),
which are just some functions, and the rest of the operators
containing ∂x,

ω̂±(x, y, ∂x ) = ω±(x, y) + ω̃±(x, y, ∂x ) ∂x; (3.5)

we split the operators ω̂ and σ̂ in the same way. To obtain
Eq. (2.6), the functional parts ω±(x, y) have to be eliminated
by γ (x),

γ ′(x) = h′(x)

h(x)
ω[x, h(x)] + f

h(x)

∫ h(x)

0
dy σ (x, y), (3.6)

and then the operator Ẑ of Eq. (2.6) can be identified as

Ẑ (x, ∂x ) = h′(x)

h(x)
ω̃[x, h(x), ∂x] + f

h(x)

∫ h(x)

0
dy σ̃ (x, y, ∂x ).

(3.7)
The heart of the mapping method is derivation of the op-

erators ω̂±(x, y, ∂x ) and the related γ (x) and Ẑ (x, ∂x ) by the
homogenization procedure. The small parameter ε controls
the rate of transverse equilibration, as well as the frequency
of flipping, and thus the deviations of ρ± from p/2h too. So
we expect any operator or function F (denoting ω̂, Ẑ , or γ )
expanded in ε,

F (·) =
∞∑

n=1

εnFn(·). (3.8)

We require the backward mapped density ρ±(x, y, t ),
Eq. (3.2), to satisfy the original 2D problem. So we substitute
it in Eq. (2.1),

0 =
(

1

2
+ ω̂±

)
e−γ

h
∂t p − 1

ε

[
∂2

y ω̂± ∓ ᾱ(ω̂+ − ω̂−)
]
e−γ p

h

− e−γ ∂x(∂x ∓ f )eγ

(
1

2
+ ω̂±

)
e−γ p

h
, (3.9)

as well as in the BC (2.2),

0 = [∂y − εh′e−γ (∂x ∓ f )eγ ]

(
1

2
+ ω̂±

)
e−γ p

h

∣∣∣
y=h(x)

,

0 = ω̂±e−γ p

h

∣∣∣
y=0

. (3.10)

The time derivative in Eq. (3.9) commuted with all spatial
operators and finally for ∂t p(x, t ), the mapped equation (2.6)

is taken. We arrive at the equations, which have to be satisfied
for any 1D solution p, or e−γ p/h on the level of operators,
fixing recursively ω̂±.

It is convenient to write directly the operator equations for
ω̂ and σ̂ , necessary in the relations (3.6) and (3.7). Expressing
the terms ∼1/ε from Eq. (3.9) and adding or subtracting them
for the opposite indices, we find

1

ε
∂2

y ω̂ = (1 + ω̂)
1

h
(∂x + γ ′)h(1 − Ẑ )∂x

− (∂x + γ ′)[(∂x + γ ′)(1 + ω̂) − f σ̂ ],

1

ε

[
∂2

y − 2ᾱ
]
σ̂ = σ̂

1

h
(∂x + γ ′)h(1 − Ẑ )∂x

− (∂x + γ ′)[(∂x + γ ′)σ̂ − f (1 + ω̂)],

(3.11)

acting on any function of x. From BC (3.10), we get

0 = {∂yω̂ − εh′[(∂x + γ ′)(1 + ω̂) − f σ̂ ]}y=h(x),

0 = {∂yσ̂ − εh′[(∂x + γ ′)σ̂ − f (1 + ω̂)]}y=h(x),

0 = ∂yω̂|y=0 = ∂yσ̂ |y=0. (3.12)

Now, applying the expansions of ω̂, σ̂ , and γ in ε, Eq. (3.8),
and collecting the terms of the same powers of ε in Eq. (3.11),
we obtain the recurrence relations determining the coeffi-
cients ω̂n and σ̂n. Finding the right-hand sides, we need to
solve easy ordinary differential equations in y, ∂2

y ω̂n = R̂n, and
[∂2

y − 2ᾱ]σ̂n = Ŝn. Solving the second one by the variations of
constants, we get

σ̂n = e
√

2ᾱy

(∫
dy

2
√

2ᾱ
e−√

2ᾱyŜn + Ĉ+

)

− e−√
2ᾱy

(∫
dy

2
√

2ᾱ
e
√

2ᾱyŜn + Ĉ−

)
. (3.13)

The integration constants Ĉ±(x, ∂x ) are fixed to satisfy the
corresponding orders of ε in the BC (3.12) and Eq. (3.4).
Having ω̂n and σ̂n expressed, the coefficients γ ′

n and Ẑn are
obtained from Eqs. (3.6) and (3.7).

We demonstrate the recurrence procedure on calculation of
the first-order corrections in detail. To derive the equations for
ω̂1 and σ̂1, we have to collect the terms ∼ε0 in Eqs. (3.11),

∂2
y ω̂1 = 1

h
∂xh∂x − ∂2

x = h′

h
∂x,

[∂2
y − 2ᾱ]σ̂1 = f ∂x; (3.14)

ω̂, σ̂ , γ ′, and Ẑ on the right-hand side are ∼ε, and thus they
do not contribute. The solutions

ω̂1 =
(

y2

2
− h2

6

)
h′

h
∂x,

σ̂1 = − f h′ sinh(
√

2ᾱy)√
2ᾱ cosh(

√
2ᾱh)

− f

2ᾱ
∂x (3.15)

satisfy ∂yω̂1 = ∂yσ̂1 = 0 at y = 0 and ∂yσ̂1 = − f h′ at y =
h(x) from the BC (3.12), which are required in any order of ε.
The second integration constant of ω̂1 is held by the condition
of consistency, Eq. (3.4), in the order ∼ε1. The BC for ω̂n at
y = h(x) becomes an identity.
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Now we apply ω̂1 and σ̂1 in Eqs. (3.6) and (3.7) to find γ ′
1

and Ẑ1. The operator σ̂1 is apparently of the form σ1(x, y) +
σ̃1∂x, while ω̂1 contains only the ω̃1 part, so

Ẑ1 = h′2

3
− f 2

2ᾱ
,

γ ′
1 = − f 2h′

2ᾱh
. (3.16)

We can easily identify the first term in Ẑ1 as the Zwanzig-
Reguera-Rubí [40,41] leading correction to the effective
diffusion coefficient due to varying width of the channel.
The other contributions are identical with the first-order terms
∼ f 2/α in Eqs. (2.8) and (2.9).

Complexity of the results quickly grows in the higher or-
ders; the terms ∼ε1 in Eqs. (3.11) give the equations defining
ω̂2 and σ̂2,

∂2
y ω̂2 = ω̂1

(
∂x + h′

h

)
∂x −

(
∂x + h′

h

)
Ẑ1∂x

− ∂xγ
′
1 − ∂2

x ω̂1 + ∂x f σ̂1,

[
∂2

y − 2ᾱ
]
σ̂2 = σ̂1

(
∂x + h′

h

)
∂x + γ ′

1 f − ∂2
x σ̂1

+ ∂x f ω̂1. (3.17)

Solving them with the terms of BC (3.12) and Eq. (3.4) ∼ε2

and finally applying the results in Eqs. (3.6) and (3.7), we
obtain

Ẑ2 = 2hh′

45
(hh′)′∂x + h′

45
(h2h(3) + hh′h′′ − 7h′3)

+ f 2

4ᾱ2

[
4

3
ᾱh′2 −

(
h′

h

)′]
,

γ ′
2 = f 2

4ᾱ2

[
f 2h′

h
− h(3)

h
+ h′h′′

h2

(
1 + κ coth κ + κ2

3

)

− h′3

h3

(
κ coth κ − 2κ2

3

)]
, (3.18)

abbreviating κ = √
2ᾱh(x). Again, we can recognize the

second-order correction for diffusion alone in Ẑ2; see Eq. (8)
in Ref. [24], as well as the α−2 term in Eq. (2.8) due to
the flipping force. If we return back to the unscaled flipping
rate α = ᾱ/ε, κ becomes proportional to

√
ε. Expressing then

the limit of γ ′
2, Eq. (3.18), for ε → 0, we recover correctly the

coefficient ∼1/α2 of the derivative of Eq. (2.9). Let us notice
that unlike the spatial FJ approximation (2.9), the integration
of γ ′

2 here cannot be completed analytically for an arbitrary
h(x). So we can expect that �γ can also be nonzero in a lower
order than ∼1/α3 for ε > 0 in periodic asymmetric channels.

Having the mapped equation of the form (2.6), we can re-
place the operator Ẑ by the effective diffusion coefficient D(x)
in the limit of stationary flow. Adopting the argumentation in
Sec. II, we use formula (2.11), obtaining

1

D(x)
= 1 + ε

(
h′2

3
− f 2

2ᾱ

)
+ ε2

{
h′

45
[h2h(3) − hh′h′′

− 4h′3] + f 2

4ᾱ2
[ f 2 − (h′/h)′]

}
+ · · · (3.19)

(a)

(b)

FIG. 4. The effective diffusion coefficient D(x) (a) and the lo-
cal effective force γ ′(x) (b) calculated for the channel shaped by
Eq. (2.14) with a = 0.4, ε = 0.1, and α = 5 (long dashes) or 20
(short dashes). RR in (a) represents the corresponding Reguera-Rubí
formula for diffusion alone; dotted lines depict Eq. (3.21).

up to the second order. The third-order corrections to γ ′(x)
and 1/D(x) are given in the Appendix. Substituting backward
ᾱ = εα in Eq. (3.19) and the formulas for γ ′

n(x) of any order
n, the limit ε → 0 at a fixed finite α recovers the expansions
of 1/D(x) and γ ′(x) in 1/α of the 1D model, Eq. (2.12), and
the derivative of (2.9).

We demonstrate the effective diffusion coefficient D(x) and
the effective local force γ ′(x), calculated up to the ∼ε3 order,
for h(x) defined by the function (2.14) in Fig. 4. The dashed
lines representing D(x) for α = 5 and 20 are compared with
the Reguera-Rubí formula [25,41],

D(x) � arctan [
√

εh′(x)]√
εh′(x)

� [1 + εh′2(x)]−1/3, (3.20)

which is the leading correction of the FJ equation for the
diffusion alone. In the presence of the flipping force, this
function is raised roughly by the generalized Taylor dispersion
term f 2/2α [42,43] of the 1D reduced model, Eq. (2.12), in
the spirit as suggested by Sandoval and Dagdug [37],

D(x) � 1 + f 2/2α

[1 + εh′2(x)]1/3 (3.21)

(dotted lines), at least in the range of parameters (small ε and
large α) studied in this paper. The effective force γ ′(x) varies
around zero with the integral �γ = 0.000895 and 0.000301

064115-6



DICHOTOMIC RATCHET IN A TWO-DIMENSIONAL … PHYSICAL REVIEW E 104, 064115 (2021)

FIG. 5. The rectified current J in a channel defined by Eq. (2.14),
a = 0.4, depending on the flipping rate α of the force f = 1, for
various inverse transverse diffusion coefficients ε. The solid lines
represent our theory with the formulas for γ ′(x) and D(x) derived
up to the third order. The symbols depict the results of numerical so-
lutions of the full 2D model. The dashed line shows 1/α dependence.

over one period for α = 5 and 20, which is much smaller
than the amplitude of variations. Behavior of these functions
enables us to apply the simpler Lifson-Jackson formula (2.13)
for calculation of the rectified current.

The rectified current J normalized to one particle per pe-
riod L in a channel shaped by Eq. (2.14), depending on α, is
shown in Fig. 5. The solid lines were calculated according to
the formulas for D(x) and γ ′(x) derived up to the order ∼ε3

for various parameters ε. The line for ε = 0 is identical to the
result of the 1D (spatial FJ) model, Eqs. (2.9) and (2.12), also
taking only the leading term ∼1/α3 into account. With grow-
ing ε, the decreasing speed of the transverse relaxation causes
deflection of the corresponding lines from the 1D asymptotic
for larger α, where the current J decreases roughly ∼1/α.

We observe that slower transverse relaxation (∼1/ε) re-
sults in a larger rectified current. We explain it in Fig. 6,
depicting the 2D density ρ = ρ+ + ρ− and the streamlines
in the asymmetric channel shaped by Eq. (2.14), a = 0.2,
for ε = 0.3 (a) and 0.03 (b) (see the Appendix for details of
this calculation). The motor driving the circulating currents
works at the curved boundary, where the particles pushed
against the wall increase their density towards the bottlenecks.
The variations of density at the boundary are transmitted to
the bulk by diffusion alone. But the rectification mechanism
does not work there; the mean velocity due to driving by the
flipping force in the bulk is zero. So the particles diffuse back
to the boundary at the place of the lowest density, near the
maximum h(x). Due to asymmetry of the channel, the left and
right circulating currents are not symmetric, so periodicity of
the density requires leaking of the rectified current between
the neighboring whirls along the channel. Smaller ε (panel
b) causes faster transverse diffusion; the particles get quickly
out of the boundary, and the rectification mechanism works
worse; the net current J is smaller, as seen in Fig. 5.

The results of the mapping are checked by the numerical
solution of the full 2D problem, depicted by symbols in Fig. 5.
The lowest series of triangles, corresponding to ε = 0, was
obtained by numerical solution of the stationary 1D model;

(a)

(b)

FIG. 6. Stationary 2D density ρ(x, y) (color scale) and the fluxes
(streamlines) in the channel with a = 0.2 for ε = 0.3 (a) and 0.03
(b). Size of the black arrows depicts magnitude of the flow density
at the chosen positions. The rectified current flows to the left with
magnitudes J = 5.1 × 10−5 (a) and 1.2 × 10−5 (b) for one particle
per period L = 2π .

for nonzero ε, we solved numerically the full 2D problem,
with the transverse diffusion coefficient enhanced by factor
1/ε (see the Appendix for some details of the procedure).
The results for ε = 0 deflect visibly from the line obtained by
the mapping; let us recall that the red line represents only the
lowest order asymptotic ∼1/α3. Better results can be obtained
by adding the higher order contributions as analyzed in Sec. II.
Surprisingly, for ε > 0, much better agreement is achieved in
the region where the descent of the lines approaches ∼1/α.
However, our theory remains usable only for larger α(> 5).
Rescaling α by ε in our procedure causes that the obtained
expansion in ε is of the same sort as the expansion in 1/α

in the 1D case, just corrected by the finite spatial transverse
relaxation. Involving also the region of smaller α requires us
to perform an expansion in a different parameter or a different
scaling, as is indicated in Ref. [36].

IV. CONCLUSION

We demonstrated how to derive the effective 1D equation
for a particle diffusing in a 2D channel of varying width h(x),
which is also driven along the channel there or back by the
random force f flipping with the rate α. The method combines
the access used in the mapping of two simpler models studied
before, diffusion alone in a 2D nonhomogeneous channel
[24,25] and the 1D dichotomic ratchet in an (entropic)
potential U (x)(= − log[h(x)]) [36]. The key is to define the
small parameter ε, which scales both the transverse diffusion
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constant as well as the flipping rate α. Then we start with the
same zeroth-order approximation, the FJ equation, which is
valid for both particular models in the limit of infinitely fast
relaxation in the (spatial) transverse direction or the flipping
rate.

Then the mapping procedure generates recursively the cor-
rections to the FJ equation, which are involved in the operator
Ẑ , the effective diffusion coefficient D(x), and the function
γ (x) in Eq. (2.6) or (2.10) in the limit of the stationary flow.
For the appearance of the ratchet effect, it is important to
know especially −γ (x), representing the additional effective
potential due to the flipping force. Its structure shows that its
increment �γ over one period L for a periodic asymmetric
channel can be nonzero, so �γ/L is an effective force driving
the ratchet current J . In the 1D model, such terms appear in the
third order, hence the asymptotic of J ∼ 1/α3. The function
γ (x) for the true 2D channel is more complicated, enhanced
by the terms depending on the finite diffusion rate across the
channel for ε > 0; so the terms giving the nonzero �γ also
appear in lower orders.

We tested our theory on the periodic asymmetric channel
shaped by the function (2.14). For ε > 0, the rectified current
J depending on α, Fig. 5, deflects from the 1D asymptotic
∼1/α3 for sufficiently large α. The current exhibits there
rather ∼1/α decay, and its values are much larger then those
for the 1D model. It is necessary to stress that the mechanism
of rectification in 2D channels differs noticeably from that in
the 1D potential. The rectified current appears here as a result
of different motion of the particles driven there or back at
the curved boundaries. There is no rectification of a particle’s
velocity in the bulk due to symmetry of the flipping force.
Fast transverse diffusion gets the particles quickly away from
the boundary to the bulk, so the ratchet effect is weaker for
smaller ε. The difference between the currents in the real
2D channel and in the corresponding 1D (FJ) approximation
can be enormous, as is seen in Fig. 5. It is an example of a
situation where a simplistic replacement of the real geometry
by a 1D entropic potential is far from being satisfactory, and
it is necessary to go to higher orders in the ε-expansion, as we
do in this work.

Scaling of the flipping rate α by 1/ε leads to a similar type
of expansions as in the 1D model, where the control param-
eter was 1/α. So validity of our results is restricted to the
large flipping rates (α > 5), which was verified by comparison
with the numerical solution of the full-dimensional problem.
Extension of the formulas for D(x) and γ (x) to the region
of small α would require finding another small expansion
parameter or, alternatively, formulate differential equations
for these functions, in a way applied, e.g., in Ref. [36]. This
task is left for the future.
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APPENDIX: COMPUTATIONAL DETAILS

We give here the third-order formulas for 1/D(x) and
γ ′(x), which were used in our calculations in Sec. III but are

too complicated to be in the main text:

[
1

D(x)

]
3

= − f 6

8ᾱ3
+ f 4

8ᾱ3

[
4h′′

h
− h′2

h2

(
3 + κ2

3

)]

+ f 2

8ᾱ3

(
−3h(4)

h
+ h′h(3)

h2

(
5 + 6κ coth κ − 2κ2

3

+ κ4

15

)
+ h′′2

h2

(
1 + 6κ coth κ + κ2

sinh2 κ
− κ2

3

)

−h′2h′′

h3

[
3 + 21

2
κ coth κ + κ2(92 + 7 cosh 2κ )

6 sinh2 κ

− κ3(cosh 3κ − 4 cosh κ )

3 sinh3 κ
− 7κ4

45

]

+ h′4

h4

{
5κ

2
coth κ + κ2

sinh2 κ

[
11

2
+ 7κ coth κ

− 2κ2

45

(
14 + cosh 2κ

)] + 4κ2

3

})
+ h′

945

(
2h4h(5)

+ 8h3h′h(4) − 12h3h′′h(3) − 27h2h′2h(3)

− 58h2h′h′′2 + 31hh′3h′′ + 44h′5
)

, (A1)

γ ′
3(x) = − f 6h′

8ᾱ3h
+ f 4

8ᾱ3

[
2h(3)

h
− h′h′′

h2

(
κ coth κ + κ2

3

)

+ h′3

h3

(
κ coth κ − 1 − κ2

)]
+ f 2

8ᾱ3h

{
− h(5)

h

+h′h(4)

h2

(
1 + 2κ coth κ + κ2

45

)
+ h′′h(3)

2h2

(
κ2

sinh2 κ

+13κ coth κ

)
− h′2h(3)

h3

(
5κ

2
coth κ + 15κ2

2 sinh2 κ

−κ3

3
coth κ − κ4

45

)
− h′h′′2

h3

[
2κ coth κ + κ2

2

+ κ2

2 sinh2 κ
(25 + 3κ coth κ ) − κ3

3
coth κ + κ4

15

]

+ h′3h′′

h4

[
κ2

2 sinh2 κ
(11 + 39κ coth κ ) + κ3

6
coth κ

+ κ4

sinh4 κ
+ κ2

2
− 5κ4

6 sinh2 κ
− 16

15
κ4

]

+ h′5

h5

[
κ3

8 sinh3 κ
(cosh 3κ − 17 cosh κ ) − 7κ4

sinh4 κ

− κ4

6 sinh2 κ
(31 − 4κ coth κ ) − 26κ4

45

]}
, (A2)

where κ = √
2ᾱh(x). The terms of 1/D(x) independent of f

reproduce its third-order correction for diffusion alone.
Knowing D(x) and γ ′(x) up to certain order enables us to

express the stationary 1D density p(x) from the generalized
FJ Eq. (2.10),

p(x)

h(x)
= Jeγ (x)

(e�γ − 1)

∫ x

x−L

dx′

h(x′)D(x′)
e−γ (x′ ), (A3)

064115-8



DICHOTOMIC RATCHET IN A TWO-DIMENSIONAL … PHYSICAL REVIEW E 104, 064115 (2021)

respecting periodicity p(x) = p(x + L); �γ = γ (L) − γ (0).
The net flux J is obtained from normalization of one particle
per period,

∫ L
0 p(x) dx = 1. Then the backward mapped 2D

density ρ(x, y) = ρ+(x, y) + ρ−(x, y) depicted with colors in
Fig. 6 is calculated directly according to the formula (3.2).
The components of the corresponding flux density 	j(x, y),
depicted with the streamlines in Fig. 6, are expressed as

jx(x, y) = −(∂x − f )ρ+ − (∂x + f )ρ−

= [−∂xeγ (1 + ω̂) + f eγ σ̂ ]e−γ p(x)

h(x)
,

jy(x, y) = −1

ε
∂yρ = −1

ε
eγ ∂yω̂e−γ p(x)

h(x)
. (A4)

The operators ω̂(x, y, ∂x ), σ̂ (x, y, ∂x ) as well as the functions
γ (x), p(x) are expressed only up to the order ∼ε3, and thus

also the BC (2.2) and the mass conservation, 	∇ · 	j = 0, are
satisfied only in these orders; hence tiny artifacts may appear
in Fig. 6. All analytical calculations and drawings are done in
Mathematica.

The numerical solution of the 2D model, given in Fig. 5,
was obtained using MATLAB. The procedure was straightfor-
ward: discretizing the space by a regular mesh and carefully
keeping account of the boundary conditions. The stationary
eigenvector of the resulting sparse matrix was then obtained
with the built-in MATLAB function eigs, which internally im-
plements the Lanczos algorithm. The only subtle point was the
extrapolation of the result to an infinitely fine mesh. Indeed,
we found that finite lattice spacing in space discretization
strongly affects the value of the ratchet current. Therefore,
extrapolation to zero lattice spacing is inevitable in order to
achieve desired precision.
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