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Quantum semipermeable barriers: Investigating Maxwell’s demon toolbox
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We study quantum Maxwell’s demon in a discrete space-time setup. We consider a collection of particles
hopping on a one-dimensional chain and a semipermeable barrier that allows the particles to hop in only one
direction. Our main result is a formulation of a local unitary dynamics describing the action of this barrier. Such
dynamics utilizes an auxiliary system A and we study how properties of A influence the behavior of particles.
An immediate consequence of unitarity is the fact that particles cannot be trapped on one side of the barrier
forever, unless A is infinite. In addition, coherent superpositions and quantum correlations are affected once
particles enter the confinement region. Finally, we show that initial superposition of A allows the barrier to act
as a beam splitter.
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I. INTRODUCTION

Maxwell’s demon has stimulated much research in funda-
mental physics for more than 150 years, including its fruitful
contributions to the physics of information [1–3] and quantum
mechanics [4–8]. The demon scenario is usually formulated
in terms of particles moving inside a partitioned box and
an observer, the demon itself, who operates the slit in the
partition to allow the transfer from the left part to the right
one, but to prevent the transfer in the opposite direction. The
workings of the demon are still an object of vivid academic
discussions since they constitute a simple example capable of
demonstrating the essence of many fundamental issues such
as observation, control, and irreversibility.

In this work, we revisit the quantum Maxwell’s demon sce-
nario. The action of the demon is equivalent to the workings
of a semipermeable barrier and the dynamics implemented by
such a barrier is inevitably irreversible. However, any irre-
versible dynamics can be described as an extended dynamics
on the primary system S (particles in the box) and an auxiliary
one A (demon’s memory). The goal of this paper is to analyze
the properties of A and the consequences of its interactions
with S . To simplify the analysis, we use a discrete space-time
model, since in our case the problem of discreteness and
continuity is not a physically relevant issue. Moreover, such
an approach allows for an algorithmic treatment of dynamics
in terms of sequential operations applied to the system, and
hence it is along the lines of quantum information processing.

The motivation to study the unitary evolution of S + A
comes from at least two reasons. It is commonly believed
that the fundamental laws of nature are reversible and the
observed irreversible processes stem from not tracing all ele-
ments of a bigger system. It is therefore crucial to understand
how many additional elements one needs to trace in order to
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observe reversible inner workings behind an apparent irre-
versibility. In addition, by understanding the inner workings
of the Maxwell’s demon, we make a step towards construc-
tion of artificial demons, i.e., microscopic systems capable of
transforming information into work [9].

Our model allows us to make the following observations.
First, we find that particles cannot be confined in a finite
location for an infinite amount of time, unless A is capable
of storing an infinite amount of information. If A is finite, the
particles can be trapped for a limited period of time. Next, we
study how coherent superpositions and quantum correlations
within S are affected by interaction with A. Finally, we show
that an initial superposition of A provides a resource for the
barrier to act as a beam splitter and that this resource is con-
sumed once a particle’s state becomes a spatial superposition.

II. PRELIMINARIES

A. Basic model

Due to the discrete space-time formulation, our system
can be modeled by a discrete-time quantum walk (DTQW).
DTQW’s are quantum counterparts of classical random walks
and classical lattice gas automata [10,11]. Here we focus
on a simple lattice—a one-dimensional chain. The state of
a single particle is described by two variables: the position
x ∈ {1, 2, . . . , M} and the direction of movement c ∈ {←,→}
(we follow the DTQW convention and call it a coin). The
positions x = 1 and x = M correspond to the left and the right
boundaries of the box, respectively. At time t , the system is in
a state

|ψt 〉 =
M∑

x=1

(αx,t |x,→〉 + βx,t |x,←〉), (1)

where the probability amplitudes obey the normalization
condition

∑
x(|αx,t |2 + |βx,t |2) = 1. The system evolves
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FIG. 1. Schematic representation of the free motion generated by
the operation U defined in Eq. (3).

in steps,

|ψt+1〉 = U |ψt 〉, (2)

where the unitary evolution operator is a conditional transla-
tion,

U |x,→〉 = |x + 1,→〉, (x < M ),

U |x,←〉 = |x − 1,←〉, (x > 1),

U |1,←〉 = |1,→〉,
U |M,→〉 = |M,←〉. (3)

The above is just a free motion inside the box—the particle
constantly jumps in one direction determined by the state of
the coin (see Fig. 1) and bounces off the barriers, in which
case the state of the coin flips. Note that such dynamics is
classical in a sense that it transforms the basis states into the
basis states. Any superposition results solely from an initial
state preparation.

In the case of N noninteracting particles, the system’s state
is described by∣∣ψ (N )

t

〉 =
∑

x1,c1,...,xN ,cN

αx1,c1,...,xN ,cN ,t |x1, c1〉 ⊗ . . . ⊗ |xN , cN 〉.
(4)

Although the particles can, in principle, be distinguishable,
for the demon it is irrelevant which particle is which. More-
over, we assume that initially no two particles occupy the
same state and that the dynamics will never evolve two
or more particles into the same state. Therefore, we can de-
scribe the system with the help of fermionic creation operators
a†

xc
. The N-partite state at time t becomes∣∣ψ (N )

t

〉 =
∑

x1,c1,...,xN ,cN

αx1,c1,...,xN ,cN ,t a
†
x1c1

. . . a†
xN cN

|0〉, (5)

where |0〉 is the vacuum state and the coefficients
αx1,c1,...,xN ,cN ,t are antisymmetric. Its evolution is given by∣∣ψ (N )

t+1

〉 = UN

∣∣ψ (N )
t

〉
, (6)

where UN transforms each creation operator according to the
following rule:

a†
x→ → a†

x+1→ , (x < M ),

a†
x← → a†

x−1← , (x > 1),

a†
1← → a†

1→ ,

a†
M→ → a†

M← . (7)

B. Statement of the problem

In simple words, the basic problem investigated by us is the
following: a particle evolves according to the above model and
we want to find a way to trap it in a region R = {x|1 � x �
x0}. This problem seems trivial since an intuitive solution is to
wait for the particle to enter R and then to close the entry at
x0 by inserting an impenetrable barrier that reflects particles
on both sides (flip their coin states if the particle is at x0).
Indeed, this would be trivial if one knew the initial state of the
particle in advance. The initial state would determine the time
interval, t ∈ [tin, tout], during which the particle passes through
R. It would be enough to keep the entries open for t < tin and
closed for t > tin.

The problem gets more complicated if the initial state is
unknown. In this case, one has to employ an agent, the demon,
to operate the entry. The demon determines the particle’s
state and then it picks the right time to insert the barrier.
Moreover, in case there is more than one particle, the demon
needs to let the new particles in and prevent the old ones from
getting out. From now on, we will refer to the demon as the
semipermeable barrier. The goal is to find a unitary evolution
that describes its action.

Semipermeable barriers contract the effective dimension
of the system. They transform many different states into the
same one (Appendix A) and their action can be described by
Kraus operators (Appendix B). However, since our goal is to
find out its unitary description, we focus on the properties of
an auxiliary system A that, together with the original system
S , undergoes a unitary evolution. What is important is that
throughout the work, we assume that external observers do not
have access to A. The unitary workings of the barrier need to
be reflected in the properties of A, in its own dynamics, and
in its interaction with S .

In particular, we look for the answers to the following
questions:

(1) What unitary dynamics on S + A traps a particle in a
finite region R?

(2) How does the dynamics of particles depend on the size
of A?

(3) What happens to superpositions and quantum correla-
tions within S once particles enter R?

(4) How does the initial superposition of A affect the
dynamics of S?

III. RESULTS

A. Reversibility

We are looking for a unitary operator V on a joint system
S + A capable of trapping particles in a finite region R. We
assume that V is local, i.e., its nontrivial action is limited to
x0. The whole dynamics is described by∣∣� (S+A)

t+1

〉 = (U ⊗ 1A)V
∣∣� (S+A)

t

〉
, (8)

where U is given by (3), 1A is the identity operator acting on
A, and |� (S+A)

t 〉 is the joint state of S and A. A schematic
representation of the desired transformation is presented in
Fig. 2.

To determine V , let us first focus on a single particle
and observe that the above dynamics is deterministic and
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FIG. 2. Schematic representation of the dynamics with a
semipermeable barrier located at x0. The barrier allows the particle
to pass in only one direction.

reversible. This means that we can analyze the system evolv-
ing both forward and backward in time. If we evolve it forward
in time, an external observer sees a particle moving constantly
in one direction until it reaches R. From this moment, the
particle moves there and back within the boundaries of R.
There is no randomness—just a deterministic contraction of
the state space. If we evolve the system backward in time,
an external observer sees a particle bouncing off the R’s
boundaries until, at some seemingly undetermined moment, it
breaks free and leaves R. This looks like a random behavior.

The time reversibility and determinism imply that the sys-
tem has to have a memory of the particle’s past. This memory
must be stored on A. More precisely, the particle’s entry time
into R is encoded on A. Therefore, if the evolution were
reversed, A would determine the particle’s exit time. This
means that A acts as a meter that counts the time the particle
spends inside R.

B. Where is A?

The next problem is the physical location of A. In prin-
ciple, it can be a particle’s internal degree of freedom. The
semipermeable barrier could use this degree of freedom to flag
each particle that enters R. However, its state would have to
change each time the particle bounces off the semipermeable
barrier. Otherwise, the evolution would be irreversible (see
Appendix A). The change of A’s state would count the time
the particle spends inside R.

The above choice would imply a peculiar effect. Consider
two identical particles. One of them enters R at time t1 and
the other one at time t2. If the difference t2 − t1 � 2x0, then,
once inside R, the two particles would have different internal
states. They would become effectively distinguishable. Any
test, such as the Hong-Ou-Mandel effect [12], would fail to
confirm their indistinguishability.

In principle, we could accept effective distinguishability
of particles inside R; however, note that the action of the
semipermeable barrier described by Kraus operators does not
lead to such an effect (Appendix C). We prefer to construct
a model which recovers the Kraus operator formalism once
A is traced out. That is why we abandon the possibility that
A is associated with particles. This implies that A must be
an external system interacting with particles. The interaction
must occur at x0 since we insist that the action of the barrier is
local.

C. What is A and how does it work?

Let us still focus on only one particle. The goal of A is to
make the particle change the direction of its movement each
time it is about to leave R. The following transformation on
S must be implemented:

|x0,→〉 → |x0,←〉. (9)

The particle must also have a possibility to enter R, which
implies another transformation,

|x0,←〉 → |x0,←〉. (10)

These two transformations change two different states into the
same one. To do this in a reversible way, the semipermeable
barrier needs at least an auxiliary two-level system, a qubit,
whose basis states are labeled |0〉 and |1〉. With the help of
an auxiliary qubit, one can find a unitary operation W whose
action is

W |x0,←〉 ⊗ |0〉 = |x0,←〉 ⊗ |0〉,
W |x0,→〉 ⊗ |0〉 = |x0,←〉 ⊗ |1〉. (11)

In general, due to the locality assumption, the operation
W acts effectively in a four-dimensional space spanned by
the states |x0,→〉 ⊗ |0〉, |x0,→〉 ⊗ |1〉, |x0,←〉 ⊗ |0〉, and
|x0,←〉 ⊗ |1〉. All the remaining states are unchanged by its
action, i.e.,

W |x, c〉 ⊗ |q〉 = |x, c〉 ⊗ |q〉 if x �= x0, (12)

where c =←,→ and q = 0, 1. Moreover, W is only a part of
the operation V [see Eq. (8)] that describes the action of the
barrier. The full form of V will be given in a moment.

Now, let us check if one qubit is enough. Once the above
transformation is implemented, the particle travels inside R
and the qubit remains in the state |1〉. After 2x0 − 1 steps, the
system evolves into |x0,→〉 ⊗ |1〉. However, the unitarity of
W implies that

W |x0,→〉 ⊗ |1〉 = α|x0,→〉 ⊗ |0〉 + β|x0,→〉 ⊗ |1〉, (13)

and therefore the particle exits R after 2x0 − 1 steps. We
conclude that to achieve its goal, the semipermeable barrier
has to have access to many qubits in the state |0〉.

In Eq. (13), α and β are arbitrary. We fix

W |x0,←〉 ⊗ |1〉 = |x0,→〉 ⊗ |0〉,
(14)

W |x0,→〉 ⊗ |1〉 = |x0,→〉 ⊗ |1〉,
but any other choice is good. Our choice implies the following
symmetry—if the initial qubit’s state is changed from |0〉 to
|1〉, the action of the semipermeable barrier is reversed, i.e., it
allows a particle incoming from the left to pass and reflects a
particle incoming from the right.

D. Size of A and finite trapping time

The particle bounces off the semipermeable barrier every
2x0 − 1 steps and each time it does so a new qubit in the
state |0〉 is needed. The reason why the bounce happens af-
ter k(2x0 − 1) steps, not k2x0, is that the single step of the
evolution (8) consists of two consecutive operations, V and
(U ⊗ 1A). The first one transforms |x0,→〉 into |x0,←〉 and
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the second one transforms it further into |x0 − 1,←〉. There-
fore, the trapped particle can never be observed in the state
|x0,←〉 (see Fig. 2).

The number of time steps the particle spends inside R is
proportional to the number of qubits available to the barrier.
More precisely, k qubits will allow one to trap the particle
for (k + 1)(2x0 − 1) steps (we will show this in a moment).
In principle, if the size M of the box was known, it would
be enough to use the barrier for 2(M − x0) steps. After that
time, a standard barrier could be placed at x0. However,
the goal is to construct a universal semipermeable barrier
capable of trapping the particle for any M, and hence M
could be infinite. In addition, putting a standard barrier would
require an external intervention, in which case the dynamics
would be time dependent and the total system would no longer
be autonomous. We therefore use a k-qubit string and accept
the fact that particles are trapped for a finite period of time.
Note that in reality, only a finite number of qubits is available.

E. Unitary trapping

Let A be a string of k qubits whose initial state is

|0〉 ⊗ |0〉 ⊗ . . . ⊗ |0〉︸ ︷︷ ︸
k

. (15)

We assume that the first qubit in the string is the one that is
used by W to implement the transformation (11). Next, let
T be a k-qubit unitary operation that cyclically permutes the
qubits, i.e.,

T (|φ1〉 ⊗ . . . |φk−1〉 ⊗ |φk〉) = |φ2〉 ⊗ . . . |φk〉 ⊗ |φ1〉, (16)

where |φi〉 is the state of the ith qubit. It is clear that T k =
1⊗k = 1A. T acts on A if and only if the particle is in the
state |x0,←〉. The goal of T is to replace the first qubit by the
second one whenever the first one is used by W , i.e., whenever
the particle bounces off the semipermeable barrier, or enters
R. In addition, the used qubit is moved to the last position
and the previously used qubits, which are already at the end
of the string, are shifted one position to the left. As a result,
the information about the particle’s past is stored at the end of
the string.

The total evolution of S + A (8) can be written as∣∣� (S+A)
t+1

〉 = (U ⊗ 1⊗k )V
∣∣� (S+A)

t

〉
, (17)

where

V = (�T ⊗ T )(W ⊗ 1⊗k−1)

+ [(1S − �T ) ⊗ 1⊗k](W ⊗ 1⊗k−1), (18)

and �T = |x0,←〉〈x0,← |. Of course, the above works for
only one particle in the system. The multipartite case will be
considered in a moment.

Let us follow the dynamics generated by (17). Upon the
particle’s entry to R, the first qubit is used and moved to the
last position of the string. The transformation (11) implies
that its state remains |0〉. After the next 2x0 − 1 steps, the
next qubit is used, but this time the particle bounces off the
barrier and the qubit’s state is changed to |1〉. In general, after

( j − 1)(2x0 − 1) steps inside R, the qubit string is in the state

|0〉 ⊗ . . . ⊗ |0〉︸ ︷︷ ︸
k− j unused

⊗ |0〉 ⊗ |1〉 ⊗ . . . ⊗ |1〉︸ ︷︷ ︸
j used

. (19)

Note that the first |0〉 state in the used section marks the
particle’s entry time. If the evolution was reversed, this |0〉
state would make the particle leave R after ( j − 1)(2x0 − 1)
reversed steps.

All qubits in the string are used once the particle spends
(k − 1)(2x0 − 1) steps in R. At that moment, the string is in
the state

|0〉 ⊗ |1〉 ⊗ . . . ⊗ |1〉. (20)

The particle makes one more round and, after k(2x0 − 1)
steps, it bounces off the barrier for the last time. By doing
so, the particle reuses the first qubit and changes its state to
|1〉, so the string becomes

|1〉 ⊗ |1〉 ⊗ . . . ⊗ |1〉. (21)

Now, due to (13), the particle has to leave R upon the next
arrival at the barrier. Therefore, the particle spends (k +
1)(2x0 − 1) steps inside R, during which the state of the qubit
string is transformed from (15) to (21).

Before we proceed, let us discuss one issue. In general, the
qubit string can take one of 2k different orthogonal states. In
our model, we use only k + 1 of them. Therefore, in principle,
A could be compressed to a (k + 1)-level system or a much
more efficient trapping procedure could be used to allow the
particle to stay in R for 2k (2x0 − 1) steps. Still, remember that
the above discussion concerns only a single-particle case. In a
moment, we will show that the whole set of 2k states will be
used in the multipartite scenario.

F. Possible paradox and its resolution

After k(2x0 − 1) steps inside R, the qubit string is in a state
|1〉 ⊗ . . . ⊗ |1〉 and one may wonder what would happen if we
flipped it back to |0〉 ⊗ . . . ⊗ |0〉. In principle, we can do the
flipping every k(2x0 − 1) steps. Does it mean that the particle
can be trapped in R forever?

The answer is negative due to the following unitarity
property, already mentioned in this work: Any unitary trans-
formation conserves the dimension of the state space. Note
that the number of different orthogonal states of the S + A
system inside R is fixed and finite. In particular, the effective
state space of S + A within R is (k + 1)(2x0 − 1) dimen-
sional. On the other hand, the number of states outside of R
depends on the size of the box M, which can be arbitrarily
large. If the particle was trapped for T > (k + 1)(2x0 − 1)
steps, the trapping operation would have to be contractive.
This is because T states (from outside of R) would have to
be transformed into, at most, (k + 1)(2x0 − 1) states (inside
R). This would violate the unitarity.

G. Energy and work

It is worthwhile to relate the above model to the standard
Maxwell’s demon scenario. In particular, let us analyze how
the above trapping is related to a compression of a gas. The
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heart of the Maxwell’s demon paradox is that apparently this
compression can be done at no cost.

Let us focus on a single-particle gas in our model. Its
dynamics is described by the unitary operator U defined in
Eq. (3). The corresponding eigenvectors are

|k〉 =
M∑

x=1

e−i 2πkx
2M |x,→〉 + e−i 2πk(2M+1−x)

2M |x,←〉√
2M

(22)

and the corresponding eigenvalues are

λk = e−i2πk/2M , (23)

where k = 0, . . . , 2M − 1. Next, we introduce a Hamiltonian
H and find its energies. We can write

U |k〉 = e−i2πk/2M |k〉 = e−iH
t/h̄|k〉, (24)

where 
t is the time it takes for the particle to move from one
discrete position to the next one. Hence, the energies are

Ek = h̄k
, (25)

where


 = π

M
t
. (26)

We first calculate a work done during a compression of
a box in which the gas is located. We are going to limit the
number of available positions M inside the box. Recall that the
total number of single-particle states is 2M. Let us assume that
we change this number from 2M1 to 2M2 (M1 > M2 
 1).
This corresponds to changing 
 from 
1 to 
2. We assume
that the particle is in a thermal contact with a reservoir of
temperature T = 1/kBβ. Hence, the probability of occupation
of the state with energy Ek is

p(Ek ) = e−βEk∑
k e−βEk

. (27)

We divide our process into small steps. In each step,
we change the energy of each state by dEk , after which
we thermalize the particle. The work done on the particle can
be evaluated as

W =
∫ ∑

k

p(Ek )dEk =
∫ 
2


1

∑
k

p(h̄k
)h̄kd
. (28)

We define

Z =
∑

k

e−β h̄k
 (29)

and observe

−dZ

β
=

∑
k

e−β h̄k
h̄kd
. (30)

Therefore,

W = − 1

β

∫ Z2

Z1

dZ

Z
= −kBT ln

(
Z2

Z1

)
, (31)

where

Zi =
∑

k

e−β h̄k
i ≈ 1

1 − e−β h̄
i
, (32)

for i = 1, 2. The approximation comes from the fact that the
above is a geometric series and we already assumed M1 >

M2 
 1, and hence the sum over k can be extended to 0 �
k < ∞. In addition, if we assume a high-temperature regime
β
i 
 1, we approximate Zi ≈ 1/β h̄
i and get

W = −kBT ln

(

1


2

)
. (33)

In particular, if the compression reduces the available states
to half, i.e., M1 = M and M2 = M/2, the work done on the
particle becomes

W = −kBT ln 2. (34)

Next we assume that the compression is done by the demon
at seemingly no cost. The demon traps the particle in one-half
of the box without doing any work, i.e., it compresses avail-
able positions from M to M/2. The particle’s initial entropy is
given by

Sin =
2M∑
i=1

pi ln pi

= q
M∑

i=1

pi

q
ln

pi

q
+ (1 − q)

2M∑
i=M+1

pi

1 − q
ln

pi

1 − q

− q ln q − (1 − q) ln(1 − q)

= qS1 + (1 − q)S2 + S(q), (35)

where pi is the probability that the particle is in the ith basis
state and we assume that the states corresponding to i =
1, . . . , M describe the left side of the box, whereas the ones
corresponding to i = M + 1, . . . , 2M describe the right side
of the box. In addition, q = ∑M

i=1 pi and S(q) = −q ln q −
(1 − q) ln(1 − q). In simple words, q is the probability that the
particle is in the left half of the box and 1 − q is the probability
that the particle is in the right one. Note that because of the
symmetry of the thermal state pi = p2M+1−i, therefore q =
1/2, S1 = S2 = S̃, and the particle’s initial entropy becomes

Sin = S̃ + S(1/2). (36)

On the other hand, after the compression, the particle’s en-
tropy is

S f in = S̃. (37)

The above can be interpreted in the following way. At
the beginning, the particle’s entropy is S, while the demon’s
entropy is 0. During the trapping, the demon learns in which
half of the box the particle was localized. After the trapping,
the particle’s entropy decreases to S̃, while the demon’s one
increases to S(1/2). Finally, we note that to erase the demon’s
entropy, one has to do the work equal to kBT ln 2, which
resolves the apparent paradox.

H. Many particles

Next, we generalize the previous transformation to the mul-
tipartite case. This time we are going to use fermionic creation
operators, as in (5). Let us first modify the W operation. As
before, due to the locality assumption, its action is nontrivial
at x = x0. This time this position can be occupied by zero, one,
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or two particles (one in the state |x0,→〉 and the other one in
|x0,←〉). We assumed that particles are fermionic, therefore,
when two of them are at x0, one that attempts to enter R and
one that attempts to stay in R, only one of them will end up in
R in the state |x0 − 1,←〉. The other one must end up outside
of R in the state |x0 + 1,→〉. This corresponds to the original
Maxwell’s demon situation in which two particles are heading
for the slit, one from the inside and one from the outside. The
demon is puzzled because it can decide either to keep the slit
closed and reflect both particles, or to keep the slit open and
allow both particles to go through. Both possibilities produce
equivalent effects (due to the indistinguishability of particles).
In our case, we choose the second possibility. Of course, the
problem can be generalized to include bosonic particles, in
which case both can be trapped, but we do not consider it here.

Let us consider N particles in the system. The basis states
of S + A are (

a†
x1c1

. . . a†
xN cN

)|0〉 ⊗ |q1q2 . . . qk〉, (38)

where a†
xici

creates a particle in a state |xi, ci〉 (1 � xi � M
and ci =←,→) and q j = 0, 1. In the above, we assume xi �
xi+1. We also used the shorthand notation |q1〉 ⊗ . . . ⊗ |qk〉 ≡
|q1 . . . qk〉. The corresponding N-partite version of W causes
the following transformations of the basis states:

WN
(
. . . a†

x0← . . .
)|0〉 ⊗ |0 . . .〉 = (

. . . a†
x0← . . .

)|0〉 ⊗ |0 . . .〉,
WN

(
. . . a†

x0→ . . .
)|0〉 ⊗ |0 . . .〉 = (

. . . a†
x0← . . .

)|0〉 ⊗ |1 . . .〉,
WN

(
. . . a†

x0← . . .
)|0〉 ⊗ |1 . . .〉 = (

. . . a†
x0→ . . .

)|0〉 ⊗ |0 . . .〉,
WN

(
. . . a†

x0→ . . .
)|0〉 ⊗ |1 . . .〉 = (

. . . a†
x0→ . . .

)|0〉 ⊗ |1 . . .〉,
(39)

if only one particle is at x = x0. If two particles are at x = x0,
the action of WN is

WN
(
. . . a†

x0←a†
x0→ . . .

)|0〉 ⊗ |q1 . . .〉
= (

. . . a†
x0←a†

x0→ . . .
)|0〉 ⊗ |q1 . . .〉. (40)

Finally, if there are no particles at x = x0, the action of WN is

WN
(
a†

x1c1
. . . a†

xN cN

)|0〉 ⊗ |q1 . . .〉
= (

a†
x1c1

. . . a†
xN cN

)|0〉 ⊗ |q1 . . .〉. (41)

In the last two situations, WN does not change the state of
S + A.

The cyclic permutation of the qubit string can be done with
the help of the previously introduced transformation T (16).
This allows us to represent the action of the semipermeable
barrier, capable of trapping more than one particle, as

VN = (
a†

x0←ax0← ⊗ T
)
WN + (

ax0←a†
x0← ⊗ 1A

)
WN , (42)

and hence the one step of the total N-partite evolution is∣∣� (S+A)
t+1

〉 = (UN ⊗ 1A)VN

∣∣� (S+A)
t

〉
, (43)

where UN is given by (6).
Let us assume for a moment that the state of S + A is

prepared in one of the basis states (we will consider superpo-
sitions in the following sections). Moreover, as before, let the
string of k qubits be initially prepared in the state |00 . . . 0〉.

The future states of the string are fully determined by the
particle number N and the particle distribution at t = 0. Note
that the state of the string at t > 0 encodes the information
about the system’s past. For example, if after using j < k
qubits the string is in the state

|0 . . . 11101〉, (44)

one can easily deduce that the last actions of the semiperme-
able barrier were . . ., reflect, reflect, reflect, pass, reflect. The
situation when two particles meet at x = x0 is not encoded in
the string, since in this case the barrier takes no action.

I. Efficiency

How many particles can be trapped using k qubits? More
precisely, how many particles can be trapped before the barrier
starts to let the particles out of R? The number of states in
R is equal to VR = 2x0 − 1 and the number of states in the
remaining part of the box is equal to V̄R = V − VR, where
V = 2M is the total number of states. Let the initial number of
particles in R be N0 and the initial number of particles outside
of R be N̄0 = N − N0, where N 
 1 is the total number of
particles. Whenever a particle goes through the barrier and
enters R, the density of particles inside R changes according
to

ρ(n) = ρ(n − 1) + 1

VR
= ρ(0) + n

VR
= N0 + n

VR
, (45)

where n counts the total number of particles that entered R
from the outside. On the other hand, the density outside of R
changes according to

ρ̄(n) = ρ̄(n − 1) − 1

V̄R
= ρ̄(0) − n

V̄R
= N̄0 − n

V̄R
. (46)

Next, let us recall that a qubit from the string is used
whenever (i) a particle enters R from the outside or (ii) a
particle inside R reflects off the semipermeable barrier. Let
K (n) count the average number of reflections after the entry
of the nth particle and before the entry of the (n+1)th particle.
In addition, the entry of the (n + 1)th particle is also counted
in K (n). The higher the density on one side, the higher the
chance that the next particle will arrive at the barrier from this
side. Note that the ratio of the number of reflections from the
semipermeable barrier to the number of entries through it is
given by the ratio of the respective densities. Therefore,

K (n) = ρ(n)

ρ̄(n)
+ 1 = r

(
N0 + n

N̄0 − n

)
+ 1, (47)

where the first term counts the average number of reflections
and the last term corresponds to the entry of the (n+1)th
particle. In the above, we introduced

r ≡ V̄R
VR

. (48)

The total number of available qubits is k, therefore,

k =
Nk−1∑
n=0

K (n), (49)
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n=0 n=1 n=2

n=3n=4

FIG. 3. The division of basis states into sectors. Each but the last sector consists of T states (see text).

where Nk is the total number of particles that entered through
the barrier. We get

k = Nk + r
Nk−1∑
n=0

N0 + n

N̄0 − n
. (50)

It is useful to define x ≡ N̄0 − n, which leads to

k = Nk + r
N̄0∑

x=1

N − x

x
− r

N̄0−Nk∑
x=1

N − x

x

= (1 − r)Nk + rN
N̄0∑

x=1

1

x
− rN

N̄0−Nk∑
x=1

1

x
. (51)

The sum can be approximated as

N̄0∑
x=1

1

x
≈ ln N̄0 + γ , (52)

where γ ≈ 0.57721 is the Euler-Mascheroni constant. There-
fore,

k ≈ (1 − r)Nk + rN ln

(
N̄0

N̄0 − Nk

)

= O

[
N ln

(
N̄0

N̄0 − Nk

)]
. (53)

Note that if Nk = N̄0, the second sum in (51) vanishes and

k ≈ (1 − r)N̄0 + rNγ + rN ln N̄0 = O(N ln N̄0). (54)

Let us consider two particular limits. If the semipermeable
barrier divides the box into two equal parts (r = 1), the above
formula simplifies to

keq ≈ N ln

(
N̄0

N̄0 − Nk

)
. (55)

On the other hand, if R is only a tiny fraction of the box
(VR 
 V̄R and N0 
 N̄0 ≈ N), then we can make the follow-
ing approximation. First, let us define

R ≡ r

N
= V̄R

VRN
. (56)

Then, let Nk 
 N . In this case, N̄0 − Nk ≈ N̄0 ≈ N and
Eq. (50) can be approximated as

k
 ≈ Nk + R
Nk−1∑
n=0

(N0 + n)

= (1 + RN0)Nk + R
Nk (Nk − 1)

2
= O

(
N2

k

)
. (57)

J. Superpositions within S
Up to now, we have considered the evolution in the com-

putational basis. In this section, we examine what happens if
the initial state of S is a superposition of basis states. For the
sake of this and the next sections, we relabel the basis states
and assume that k is large, i.e., the barrier does not run out of
qubits throughout the evolution.

Note that a particle in any given state |x, c〉 is eventually
going to bounce off the barrier after exactly t steps (1 �
t � 2M). Therefore, the basis states of S can be labeled |t〉
instead of |x, c〉, where t denotes the number of evolution steps
after which the particle bounces off the barrier. In particular,
|1〉 ≡ |x0,→〉, |2〉 ≡ |x0 − 1,→〉, and so on. The evolution
transforms

|t〉 → |t − 1〉, (1 < t � 2M ), (58)

|1〉 → |T 〉, (59)

where T = 2x0 − 1 and |T 〉 ≡ |x0 − 1,←〉. The dynamics
within S gradually reduces the number of states to {|t〉}T

t=1.
After the contraction, the particle is bound to R and its evo-
lution is periodic. Thus, it will be convenient to write |t〉 as
|t + nT 〉 with 1 � t � T and 0 � n � K , where K =
�2M/T �. The label n divides all basic states of S into sectors
in such a way that all states in a given sector will be bound to
R after time nT . This division is presented in Fig. 3.

The basis states of A can be also relabeled. They are strings
of zeros and ones whose possible distributions depend on the
number of particles in S . We first consider only one particle,
in which case these basis states can be relabeled as

|0 . . . 0 1 . . . 1︸ ︷︷ ︸
j

〉 ≡ | j〉. (60)

The initial single-particle state of S + A can be written as∣∣� (S+A)
0

〉 = ∣∣� (S )
0

〉 ⊗ |0〉, (61)

with

∣∣� (S )
0

〉 =
K−1∑
n=0

T −1∑
t=0

αt+nT |t + nT 〉 =
K−1∑
n=0

∣∣ϕ(n)
0

〉
. (62)

In the above,

∣∣ϕ(n)
0

〉 =
T −1∑
t=0

αt+nT |t + nT 〉 (63)

is a superposition of states for which the particle bounces off
the barrier at times nT � t < (n + 1)T . More precisely, for
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n = 0, we have T states that are already inside R; for n = 1,
we have the first group of T states outside of R; for n = 2,
we have the second group of T states outside of R; and so
on. Note that in |ϕ(K−1)

0 〉, there might be elements correspond-
ing to nonexisting states [t + (K − 1)T > 2M]. We therefore
assume that αt = 0 if t > 2M (see Fig. 3).

After T steps, the system’s state becomes

∣∣� (S+A)
T

〉 = ∣∣ϕ(0)
T

〉 ⊗ |1〉 +
(

K−1∑
n=1

∣∣ϕ(n)
T

〉) ⊗ |0〉. (64)

After 2T steps, it becomes

∣∣� (S+A)
2T

〉 = ∣∣ϕ(0)
2T

〉 ⊗ |2〉 + ∣∣ϕ(1)
2T

〉 ⊗ |1〉 +
(

K−1∑
n=2

∣∣ϕ(n)
2T

〉) ⊗ |0〉,
(65)

and so on. In the above,

∣∣ϕ(n)
mT

〉 =
T∑

t=1

αt+nT |t + γn,mT 〉, (66)

where γn,m = max(n − m, 0). Finally, after KT steps, the sys-
tem’s state is

∣∣� (S+A)
KT

〉 =
K−1∑
n=0

∣∣ϕ(n)
KT

〉 ⊗ |K − n〉, (67)

where

∣∣ϕ(n)
KT

〉 =
T∑

t=1

αt+nT |t〉. (68)

The reduced state of S is a mixture,

ρ
(S )
KT =

K−1∑
n=0

∣∣ϕ(n)
KT

〉〈
ϕ

(n)
KT

∣∣. (69)

As already mentioned, the subsequent evolution of ρ
(S )
KT is

periodic and ρ
(S )
mT = ρ

(S )
KT for m � K .

It is clear that the action of the barrier may cause the
state’s coherence to drop. This is because the initial state is, in
general, a superposition of 2M states, whereas the final state
can be, at most, a superposition of T states. To illustrate how
coherence may be affected by the barrier, let us consider two
examples corresponding to two extreme cases. If, for a given
n < K ,

∣∣� (S )
0

〉 = ∣∣ϕ(n)
0

〉 = 1√
T

T∑
t=1

|t + nT 〉, (70)

then ρ
(S )
KT is a coherent pure state,

ρ
(S )
KT = |ϕ〉〈ϕ|, (71)

where

|ϕ〉 = 1√
T

T∑
t=1

|t〉. (72)

On the other hand, if, for a given t ,

∣∣� (S )
0

〉 = 1√
K

K−1∑
n=0

|n + 1 + nT 〉, (73)

then ρ
(S )
KT is an even mixture (rank K) of mutually orthogonal

states,

ρ
(S )
KT = 1

K

K−1∑
n=0

|n + 1〉〈n + 1|. (74)

K. Quantum correlations within S
The above change of coherence is also present when there

is more than one particle in S . We discuss in detail the two-
particle case. This time the basis states of A are of the form

|0 . . . 0 1 . . . 1︸ ︷︷ ︸
j

0 1 . . . 1︸ ︷︷ ︸
j′

〉 ≡ | j, j′〉, (75)

where j denotes the number of bounces off the barrier while
there is only one particle inside R, a single zero in between
ones denotes the entry of the second particle into R, and
j′ denotes the number of bounces when both particles are
inside R.

Let us consider the following initial two-particle state of
S + A:

∣∣� (S+A)
0

〉 =
(

2M∑
1=t<t ′

αt,t ′ |t, t ′〉
)

⊗ |0, 0〉

≈
(

K−1∑
0=n�n′

∣∣ϕ(n,n′ )
0

〉) ⊗ |0, 0〉, (76)

where |t, t ′〉 ≡ a†
t ′a

†
t |0〉 corresponds to one particle bouncing

off the barrier after t steps and the other one after t ′ steps.
The sum over t < t ′ takes into account the fact that the two
particles are fermions and we do not distinguish which is
which. As before, we assume that αt,t ′ = 0 for t ′ > 2M. In
addition,

∣∣ϕ(n,n′ )
0

〉 =
T∑

t=1

T −1∑
τ=1

βt,τ,n,n′ |t + nT, t + τ + n′T 〉, (77)

where βt,τ,n,n′ ≡ αt+nT,t+τ+n′T . Finally, in the above formula,
the sum over τ does not include the situation τ = T , which
is the reason why we used approximation in Eq. (76). This is
due to the fact that when τ = T , the two fermions meet at the
barrier, one bouncing off it and one entering R. In this case,
only one fermion stays in R. However, this can happen only
for a small fraction of states; therefore, in order to keep things
simple, we assume that αt+nT,t+n′T = 0 for all n and n′.

After KT steps, the two particles are trapped inside R and
it is straightforward to show that the system is in the state

∣∣� (S+A)
KT

〉 =
K−1∑

0=n�n′

∣∣ϕ(n,n′ )
KT

〉 ⊗ |n′ − n, 2(K − n′)〉, (78)

where

∣∣ϕ(n,n′ )
KT

〉 =
T∑

t=1

T −1∑
τ=1

βt,τ,n,n′ |t, t + τ 〉, (79)

and the factor of two in |n′ − n, 2(K − n′)〉 comes from the
fact that for t � n′T , both particles bounce off the barrier.
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From now on, the evolution within S is periodic and the
reduced state is

ρ
(S )
mT = ρ

(S )
KT =

K−1∑
0=n�n′

∣∣ϕ(n,n′ )
KT

〉〈
ϕ

(n,n′ )
KT

∣∣, (80)

for m � K .
The above dynamics may affect initial coherence and, as a

result, quantum correlations between the particles. Since we
assumed that particles are identical fermions, the notion of
entanglement is no longer uniquely defined [13]. We adopt the
formalism developed in [14–17] and, instead of entanglement,
speak of general quantum correlations. In particular, consider
a two-fermion system described by

d∑
1=i< j

αi ja
†
i a†

j |0〉, (81)

where each fermion can occupy one of d states. Such a system
is quantum correlated if there exists a basis

ã†
k =

d∑
i=1

βika†
i (82)

in which its state can be represented as [14]
r∑

j=1

√
λ j ã

†
2 j−1ã†

2 j |0〉, (83)

for r > 1 and
∑

j λ j = 1. The number r is known as the Slater
rank. The basis states are divided into two separate sets, each
occupied by exactly one fermion. In the above formula, the
first set is labeled by odd numbers and the second one by even
numbers; however, any other labeling dividing the states into
two separate groups would work. Therefore, the sets can be
used to effectively distinguish the fermions and the insight
from the standard entanglement theory can be used.

Let us consider a particular example showing a clear de-
crease of quantum correlations. We assume 2M = KT , T
even, and the initial state of the form

∣∣� (S+A)
0

〉 =
(

K−1∑
n=0

∣∣ϕ(n,n)
0

〉) ⊗ |0, 0〉, (84)

for which

∣∣ϕ(n,n)
0

〉 =
√

2

KT

T/2∑
t=1

|2t − 1 + nT, 2t + nT 〉. (85)

This state is highly quantum correlated within S and the
corresponding Slater rank is r = KT/2. In fact, this is the
greatest possible Slater rank for our system. However, after
KT steps, the reduced state of S becomes

ρ
(S )
KT = |χ〉〈χ |, (86)

where

|χ〉 =
√

2

T

T/2∑
t=1

|2t − 1, 2t〉. (87)

The Slater rank of this state is r′ = r/K = T/2. This is the
greatest possible Slater rank after trapping.

The above example may suggest that the reduction of the
Slater rank can occur solely due to a decrease of the Hilbert’s
space dimension. This is not true, which can be shown by the
following example. Once again, consider 2M = KT and the
initial state of the form (84), but let K � T/2 and

∣∣ϕ(n,n)
0

〉 =
√

1

K
|2n + 1 + nT, 2n + 2 + nT 〉. (88)

This initial state has Slater rank K . However, after KT steps,
the whole system is in the state

∣∣� (S+A)
KT

〉 =
K−1∑
n=0

∣∣ϕ(n,n)
KT

〉 ⊗ |0, 2(K − n)〉, (89)

and therefore the state of S is a mixture of states with Slater
rank one,

ρ
(S )
KT =

K−1∑
n=0

|χ (n,n)〉〈χ (n,n)|, (90)

where

|χ (n,n)〉 =
√

1

K
|2n + 1, 2n + 2〉. (91)

Such a state has no quantum correlations.

L. Superpositions within A
Finally, we present a particular effect that emerges when A

is in a superposition of basis states. First we focus on a single
scattering event at the barrier which involves a single particle
in S and a single qubit in A. The qubit is in a state α|0〉 + β|1〉
and we assume that at time t , a single particle arrives at the
barrier from the right. At that moment, the state of S + A is∣∣� (S+A)

t

〉 = |x0,←〉 ⊗ (α|0〉 + β|1〉). (92)

The evolution [recall Eqs. (11) and (14)] transforms this state
into∣∣� (S+A)

t+1

〉 = (α|x0 − 1,←〉 + β|x0 + 1,→〉) ⊗ |0〉. (93)

The superposition within A is transferred to S . The barrier
acts as a programmable beam splitter that transmits with
the probability amplitude α and reflects with the probability
amplitude β. After this operation, the qubit is transformed
into the state |0〉, and therefore its initial coherence can be
considered as a resource that is consumed during the beam
splitting.

If the particle arrived from the left, the state∣∣� (S+A)
t

〉 = |x0,→〉 ⊗ (α|0〉 + β|1〉) (94)

would be transformed into∣∣� (S+A)
t+1

〉 = (α|x0 − 1,←〉 + β|x0 + 1,→〉) ⊗ |1〉. (95)

This shows that the barrier does not act as an ordinary beam
splitter. The particle’s output state does not depend on its input
state. Instead, the qubit’s output state depends on the particle’s
input state. In other words, the particle’s past is encoded on the
qubit.

This effect can be easily extended to more qubits and
more particles. For example, an entangled N-qubit state
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α|0〉⊗N + β|1〉⊗N allows for a collective beam splitting of
N particles, i.e., creating a superposition of all particles go-
ing right and all particles going left. In such a process, the
N-partite entanglement of qubits is transferred into N-partite
entanglement of particles.

IV. SUMMARY AND DISCUSSION

The answers to the four questions raised at the beginning
are the following:

(1) The unitary dynamics capable of trapping particles in
a finite region R consists of a particles’ free evolution and
an interaction between the particles and an auxiliary system
A. The interaction prevents the particles from leaving R. In
addition, the state of A changes each time a particle enters R
or tries to leave it.

(2) The trapping time and the number of particles that can
be trapped inside R depend on the size of A. If A consists of k
qubits, the semipermeable barrier stops functioning properly
after k particle entries or exit attempts. On the other hand,
the number of particles Nk that can be trapped before the
barrier stops working properly depends on the total number
of particles N and the number of particles N̄0 that are initially
outside of R. The relation between these numbers scales as
k = O[N ln( N̄0

N̄0−Nk
)].

(3) Superpositions and quantum correlations of the parti-
cles are affected by the action of the semipermeable barrier.
This is due to an entangling property of the interaction be-
tween the particles and A. In general, any initial pure state of
the particles that extends over distances larger than the number
of states in R loses some of its coherence and some of its
quantum correlations due to the trapping.

(4) If the initial state of A is in a superposition of basis
states, the semipermeable barrier acts as a programmable
beam splitter that transfers coherence from A to the particles.
If the initial state of A is entangled, the barrier causes a col-
lective beam splitting and the entanglement gets transferred to
the particles.

The second part of this work focuses on the wave-particle
duality, which allows for an alternative view of the demon’s
workings. Instead of trapping particles, the demon has to trap
a wave inside R. This wave is described by both amplitudes
and phases. The phases give rise to coherences between dif-
ferent positions. The action of the demon is twofold. On one
hand, it gathers all amplitudes inside R. On the other, it erases
some coherences. It seems that the partial erasure of coher-
ences is the price one has to pay for the wave’s localization.

Finally, the programmable beam-splitting property of our
model may find an application in studies of composite parti-
cles [18–20]. More precisely, entanglement in A allows for a
collective beam splitting of a number of particles, which may
be particularly useful to observe interference of composite
objects [21].
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APPENDIX A

Let us consider a simple example proving that a semiper-
meable barrier generates an irreversible evolution. Assume
that x0 = 2 and that the semipermeable barrier lets the par-
ticles coming in from the right. In addition, let M � 6. First,
let us prepare a particle in the state |ψ (a)

0 〉 = |3,←〉. After one
step, the particle enters R and is in the state |ψ (a)

1 〉 = |2,←〉.
After two steps, it is in the state |ψ (a)

2 〉 = |1,←〉. After three
steps, it is in the state |ψ (a)

3 〉 = |1,→〉. Finally, after four
steps, the particle bounces off the semipermeable barrier at
x0 and is in the state |ψ (a)

4 〉 = |2,←〉. In general, the trapped
particle follows a periodic evolution whose period is 2x0 − 1.
Note that the state |x0,→〉 is immediately transformed by the
semipermeable barrier into |x0,←〉 (see Appendix B).

Next, let us prepare a particle in the state |ψ (b)
0 〉 = |6,←〉.

After four steps, the particle enters R and is in the state
|ψ (b)

4 〉 = |2,←〉. The second preparation is perfectly distin-
guishable from the first one since 〈ψ (a)

0 |ψ (b)
0 〉 = 0. If the

above evolution were reversible, the following would hold:
〈ψ (a)

t |ψ (b)
t 〉 = 0 for all t . However, 〈ψ (a)

4 |ψ (b)
4 〉 = 1, and there-

fore the evolution is irreversible.

APPENDIX B

The action of a semipermeable barrier can be described
by Kraus operators. For example, a particle at x0 can evolve
according to

ρt+1 = UK1ρt K
†
1 U † + UK2ρt K

†
2 U †, (B1)

where U is given by (3), ρt is the particle’s density matrix at
time t , and the two Kraus operators are

K1 = (1x − |x0〉〈x0|) ⊗ 1c + |x0,←〉〈x0,→ |, (B2)

K2 = |x0,←〉〈x0,← |. (B3)

In the above, 1x and 1c are the identity operators on the
position and coin subspaces, respectively.

The above operators do not exactly correspond to the re-
duced dynamics generated by the unitary operator (18) or
(42). The only difference is that the unitary operators use
a new ancillary qubit only when a particle is reflected or
transmitted through a barrier. On the other hand, the Kraus
operators stem from a unitary operator that uses a new ancil-
lary qubit at each time step. More precisely, the above Kraus
operators stem from the following version of the operator
(18):

V = (1S ⊗ T )(W ⊗ 1⊗k−1),

where T is defined in (16) and W is defined in (11) and (14).

APPENDIX C

Let us apply the above Kraus operators to two identical
fermions. We use the first quantization picture. Let us assume
x0 = 2, M � 7 and the two fermions in the initial state ρ0 =
|ψ0〉〈ψ0|, where

|ψ0〉 = 1√
2

(|3,←〉 ⊗ |7,←〉 − |7,←〉 ⊗ |3,←〉). (C1)
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The evolution is given by

ρt+1 = U

(
3∑

i=1

κiρtκ
†
i

)
U †, (C2)

where, due to indistinguishability, κi are symmetrized Kraus
operators,

κ1 = K1 ⊗ K1,

κ2 = K2 ⊗ K2,

κ3 = K1 ⊗ K2 + K2 ⊗ K1. (C3)

Note that K†
2 K1 = K1 and K†

1 K2 = 0; therefore,

3∑
i=1

κ
†
i κi =

2∑
k,l=1

K†
k Kk ⊗ K†

l Kl = 1 ⊗ 1. (C4)

After one step, the system is in the state ρ1 = |ψ1〉〈ψ1|,

|ψ1〉 = 1√
2

(|2,←〉 ⊗ |6,←〉 − |6,←〉 ⊗ |2,←〉), (C5)

and after six steps, the system is in the state ρ6 = |ψ6〉〈ψ6|,

|ψ6〉 = 1√
2

(|1,→〉 ⊗ |1,←〉 − |1,←〉 ⊗ |1,→〉). (C6)

This proves that particles remain antisymmetrized both inside
and outside R.
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