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We consider three-dimensional lattice SU(N,) gauge theories with degenerate multicomponent (N; > 1)
complex scalar fields that transform under the fundamental representation of the gauge SU(N.) group and of the
global U(Ny) invariance group, interacting with the most general quartic potential compatible with the global
(flavor) and gauge (color) symmetries. We investigate the phase diagrams, identifying the low-temperature
Higgs phases and their global and gauge symmetries, and the critical behaviors along the different transition
lines. In particular, we address the role of the quartic scalar potential, which determines the Higgs phases and
the corresponding symmetry-breaking patterns. Our study is based on the analysis of the minimum-energy
configurations and on numerical Monte Carlo simulations. Moreover, we investigate whether some of the
transitions observed in the lattice model can be related to the behavior of the renormalization-group flow of
the continuum field theory with the same symmetries and field content around its stable charged fixed points.
For N. = 2, numerical results are consistent with the existence of charged critical behaviors for Ny > Nf*-, with

20 <N} < 40.
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I. INTRODUCTION

Gauge symmetries provide a unifying theme of contem-
porary theoretical physics, describing the dynamics of the
Standard Model of fundamental interactions [1-3] and critical
phenomena in condensed matter physics [4—6]. The interplay
between local gauge and global symmetries is a crucial de-
terminant of the different phases occurring in gauge models
[7-11] and of the thermal and quantum transitions between
them [12-14].

We address these issues in three-dimensional (3D) lattice
scalar gauge theories with SU(N,) gauge invariance (we name
it color gauge symmetry) and U(Ny) global (flavor) invari-
ance. The multicomponent scalar fields (Ny > 1) transform
under the fundamental representation of both groups. We
extend earlier results [12,13], considering the most general
quartic scalar potential compatible with the SU(N,) gauge
symmetry and the global U(N;) flavor symmetry. In this ex-
tended model, different low-temperature Higgs phases emerge
when varying the potential parameters. We determine the
phase diagrams, focusing, in particular, on the nature of the
low-temperature Higgs phases [7,9,11], and of the phase tran-
sitions that separate the different phases, which are related to
the spontaneous breaking of the global symmetry. All these
properties depend on the parameters of the quartic scalar
potential and on the numbers of colors and flavors, N, and
Ny, respectively. In particular, the phase diagrams for N. = 2
and N, > 2 are qualitatively different, because of the presence
of an enlarged global symmetry for N, =2 in the absence
of the scalar potential [12,13]. Moreover, the phase behavior
differs for Ny < N., Ny = N, and Ny > N.. In particular,
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distinct low-temperature Higgs phases, associated with
different gauge-symmetry breaking patterns, exist only when
Ny > N.. We mention that similar studies have been reported
for SU(N,) scalar gauge models in which the scalar fields
transform under the adjoint representation of the gauge group
[15-17].

We only consider the case Ny > 1. The three-dimensional
(3D) SU(2) gauge theory coupled to a single scalar SU(2) dou-
blet (Ny = 1 in our notation) has been much investigated, due
to its relevance for the finite-temperature electroweak phase
transition [18-22]. We only mention that the phase diagram
of the single-flavor model shows only a single phase [8—10],
indeed the high- and low-temperature regions turn out to be
analytically connected.

An important issue in the present context is the relation be-
tween the statistical gauge model and the corresponding field
theory, i.e., the field theory with the same field content and the
same gauge and global symmetries. In particular, one would
like to identify the continuous transitions that can be described
by a charged fixed point (FP) of the renormalization-group
(RG) flow of the continuum SU(N,) gauge field theory, i.e.,
with a nonzero gauge-coupling value at the FP. At present, for
3D scalar models, this identification has been done only for
Abelian gauge theories [23,24]. No analogous result has been
yet reported in the literature for non-Abelian gauge models. In
this work we address this issue in the context of scalar SU(N,)
gauge models. Close to four dimensions, stable charged FPs
exist for any N. and sufficiently large Ny. We numerically
investigate this issue for N. = 2. Finite-size scaling (FSS)
analyses of Monte Carlo (MC) simulations allow us to iden-
tify continuous transitions for Ny = 40. They become of first
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order in the infinite-gauge coupling limit, in which gauge
fields can be integrated out. This suggests that SU(2) gauge
fields play a role at the transition and thus it seems natural
to associate them with the charged field-theory FP. Since no
continuous transition is found for Ny = 20, our results suggest
that 3D charged critical behaviors for N, =2 develop for
Ny > N7, with 20 < N7 < 40.

The paper is organized as follows. In Sec. II we define
the lattice SU(N,) gauge model with Ny scalar fields in the
fundamental representation. In Sec. III we introduce the ob-
servables and discuss their FSS behavior, which will be at the
basis of our numerical analyses. In Sec. IV we discuss the
structure of the Higgs phases that emerge from an analysis of
the mininum-potential configurations, and characterize their
global and gauge symmetry-breaking patterns. In Sec. V we
discuss the RG flow of the continuum SU(NV,) gauge theories
with a multiflavor scalar field and U(N;) global symmetry,
identifying a stable charged FP for large Ny at any fixed N,
close to four dimensions. In Sec. VI we discuss the possible
phase diagrams in the space of the Hamiltonian parameters
and of the temperature, for the three cases Ny < N, Ny = N,,
and Ny > N, emerged in Sec. IV. In Sec. VII we present a
numerical study for N. = 2 and Ny = 2, 20, 40. We perform a
FSS analysis of MC data, to verify the theoretical predictions.
Finally, in Sec. VIII we summarize and draw our conclusions.
A short discussion of the model for infinite gauge coupling
is given in Appendix A. Some details on the MC simulations
and numerical analyses are reported in Appendix B.

II. LATTICE SU(N,) GAUGE MODELS
WITH MULTIFLAVOR SCALAR FIELDS

We consider lattice scalar gauge models with SU(N,) lo-
cal invariance defined on cubic lattices of linear size L with
periodic boundary conditions. The fundamental fields are
complex matrices CDJ’if ,witha =1, ..., N, (color index) and
f=1,..., Ny (flavor index), defined on the lattice sites and
SU(N,) matrices Uy , defined on the lattice links. The parti-
tion function is

Z=>Y e  B=1T, M
(&, U}

H = Hg(®,U) + Hy(®) + Hc(U), 2

where H is the sum of the scalar-field kinetic term Hg, of the
local scalar potential Hy, and of the pure-gauge Hamiltonian
Hg. As usual, we set the lattice spacing equal to one, so that
all lengths are measured in units of the lattice spacing. The
kinetic term Hy is given by

Hy(®,U) = —JN; ZReTr D Uy y @, 5. (3)

X,/

In the following we set J = 1, so that energies are measured
in units of J. The second term Hy is

Hy(®) =) " V(®y),

V@)= L Trotd + L(Trotd) + S Tr(df 0. (4
(®) 2r +4(r )+4r( ). @

The potential V(&) is the most general quartic polynomial
that is symmetric under [U(N;) ® U(N,)]/U(1) transforma-

tions. For v = 0 the symmetry of the scalar potential enlarges
to O(M) with M = 2Ny N,. Finally, we define [1]

Ho(U) = —]% 3 ReTr,..

¢ x,u>v

Hx./w = Ux,;x Ux-&-;l,v U, U,

i
x+D,u Tx,v2

(&)

where the parameter y plays the role of inverse gauge cou-
pling.

The Hamiltonian H is invariant under local SU(N,) and
global U(Ny) transformations. Under these transformations,
the scalar field transforms under the fundamental representa-
tion of both groups. Note that U(Ny) is not a simple group and
thus we may separately consider SU(Ny) and U(1) transfor-
mations, that correspond to o — Zg V/isdpe v e SU(Ny),
and % — P, o € [0, 27), respectively. Note that, since
the diagonal matrix with entries 27/ is an SU(N,) matrix, o
can be restricted to [0, 27 /N, ) and the global symmetry group
is more precisely U(Ny)/Zy, .

In this study we consider fixed-length fields satisfying

Trold, =1 (6)
and the lattice Hamiltonian
H=-N; ) ReTr® U, O, ,
X,
v i N2 Y
+ Xx:Tr (DL D,)* — Exgv ReTr I, . (7)

This model can be formally obtained from the general one
by considering the limit # — oo keeping the ratio r/u = —1
fixed. We expect it to have the same features of models with
generic values of r and u.

III. OBSERVABLES, ORDER PARAMETER,
AND FINITE-SIZE SCALING

In our simulations we compute the energy density and the
specific heat, defined as

1 1
E=—-——(H), Cy=—
3V< ) v V(
where V = L? is the volume of the lattice.
To study the breaking of the global U(Ny) symmetry, we
monitor correlation functions of the gauge-invariant bilinear
operator

A=Y o
a

(H*) — (H)%), ®)

1
off =Als— o', (9
Ny
which is invariant under the U(1) global transformations and
satisfies Tr A, = 1 and Tr Q, = 0, because of the fixed-length
constraint Tr ®'d = 1. We define its two-point correlation
function (since we use periodic boundary conditions, trans-
lation invariance holds)

Gx —y) = (Tr 0:0y), (10)

the corresponding susceptibility x = >, G(x), and the
second-moment correlation length

5(0) - é(pm)
Gp,)

p—
4sin’(r /L)

) (1D
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where p,, = 27 /L,0,0) and 5(1)) =), eP*G(x) is the
Fourier transform of G(x).

To monitor the breaking of the U(1) global symmetry, we
consider gauge-invariant operators that transform nontrivially
under these transformations. For N, = 2, we consider the bi-
linear operator

b b,
Y/% = o4 @b (12)

where € is the completely antisymmetric tensor in the color
space, with €' = 1. For Ny =2, Yxf ¢ is equivalent to the
determinant of ®,:

Y/ = /*Dy, Dy =det®,, forN.=N;=2. (13)

We define the corresponding two-point correlation function
Gy(x —y) = (Tr YY), (14)

the susceptibility xy = >, Gy(x) and the second-moment
correlation length &y as in Eq. (11). For N, = Ny = 2, Gy can
be written as

Gy (x —y) = 2(D:Dy). 15)

In our numerical study we also consider the Binder parameter

v=1l pa= o Y Tr0.0 (16)
(1)’ V2

and the ratio
R: =&/L. 17)

Analogous quantities Uy and R¢y can be defined using the
correlations of the operator Y defined in Eq. (12).

At a continuous phase transition, any RG invariant ratio R,
such as the Binder parameters U and Uy or the ratios R; and
R: v, scales as [25]

R(B,L) = frRX)+L “gr(X) + ..., (18)

where

X=(B—BIL". (19)

The function fr(X) is universal up to a multiplicative rescal-
ing of its argument, v is the correlation-length critical
exponent, and w is the exponent associated with the lead-
ing irrelevant operator. In particular, R* = fz(0) is universal,
depending only on the boundary conditions and aspect ratio
of the lattice. Since R; defined in Eq. (17) is an increasing
function of B, we can combine the RG predictions for U and
R; to obtain

UB,L)=F(R:)+ OL™"), (20)

where F now depends on the universality class, boundary
conditions, and lattice shape, without any nonuniversal mul-
tiplicative factor. Equation (20) is particularly convenient
because it allows one to test universality-class predictions
without requiring a tuning of nonuniversal parameters.

The Binder parameter U is also useful to identify weak
first-order transitions, when large lattice sizes are required to
observe a finite latent heat and bimodal energy distributions.
Indeed, while U is bounded as L — oo¢ at a continuous transi-
tion, at a first-order transition its maximum U,y increases as

the volume [26-28], i.e.,

Unix =aV +0(1), V=1L (21)

Therefore, U has a qualitatively different scaling behavior
for first- and second-order transitions. The absence of a data
collapse in plots of U versus R may be considered as an
early indication of the first-order nature of the transition [29].
We also recall that, according to the standard phenomenolog-
ical theory [26], the maximum value Cy.x(L) of the specific
heat at first-order transitions is expected to asymptotically
increases as

Crnax(L) = V[ A% +0(1/V)], (22)

where Ay is the latent heat, defined as A, = E(8 — B) —
E(B — B. ). Moreover the B values at the maximum of the
specific heat converge to the transition point as Bmax.c(L) —
B~ cVL

IV. LOW-TEMPERATURE HIGGS PHASES

The lattice gauge models we consider may have different
Higgs phases associated with different symmetry-breaking
patterns. They are determined by the minima of the scalar
potential

V() = %Tr(CDTCD)Z. (23)

In this section we discuss the main properties of these phases,
which depend on the parameter v, the number of colors N, and
of flavors Ny. It is worth noting that this discussion applies
to generic D-dimensional systems, therefore also to D =4
space-time systems that may be relevant in the context of
high-energy physics.

A. Configurations in the zero-temperature limit

For f — oo, the relevant configurations are those that
minimize V(®). To determine the minima, we use the
singular-value decomposition that allows us to rewrite the
field @ as

oY = CUWhFS, (24)
bg

where C € U(N,) and F' € U(Ny) are unitary matrices, and
W is an N, x Ny rectangular matrix. Its nondiagonal elements
vanish (W" = 0 for i # j), while the diagonal elements are
real and nonnegative, Wi =w; > 0(=1,...,q),

q = Min[N¢, N.]. (25)

Substituting the expression (24) in V (®), we obtain
v 4
_v 4
V(D)= y) ;_1 w;. (26)

A straightforward minimization of this expression, subject to
the constraint

q
Trd'd =) w=1, (27)

i=1
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gives two different solutions, that depend on the sign of v:

D w=1, w=..=w,=0, forv<0, (28)

I w =...=w,=1//q,

Analogous results hold for the general potential (4). If we
perform the substitution (24), then we obtain the potential of
a g-component model with cubic anisotropy

2
V(@) = %(Z wf) + g(z w,.2> + 2(2 w,4>. (30)

The minimum of the potential isw; = ... w, = 0forr > 0.1t
corresponds to the diagonally ordered state w; = ... = w, >
0 forr <0Oand v > 0 (and u + v/q > O for stability), and to
the axis-aligned state w; > 0, w, = ... =w,; =0, forr <0
and v < 0 (and u 4 v > O for stability).

For solutions of type (I), we can rewrite the field as

for v > 0. 29)

oY = 597/ 3D
where s and z are unit-length complex vectors of dimension

N, and Ny, respectively, satisfying§ -s =l andZ -z = 1.
For solutions of type (II), we have instead

1 :
oY = — ZC“kaf . (32)
Va5

This expression can be further simplified, parametrizing ® in
terms of a single unitary matrix. If Ny > N, thus g = N, then
we can rewrite Eq. (32) as

1 .
> CHF, (33)

where C = C D Iy,-n, is an Ny-dimensional unitary matrix
(I, is the p-dimensional identity matrix). Since Cisa unitary
matrix, we can express ® in terms of a single unitary matrix
F' =CF, i.e., we can set C =1 in Eq. (32). Due to gauge
invariance, F' is an element of U(N;)/SU(N,).

If Ny <N, thus ¢ = Ny, then we can repeat the same
argument to show that one can set

F=1 &Y =¢'cY, (34)

without loss of generality. Then, we can use the SU(N,) gauge
transformations to further simplify the expression of &%/,
obtaining

. 1 .
QY = — ¢, (35)
VY

where ¢ is a phase satisfying |¢| = 1. For Ny < N,, the phase
¢ can be eliminated by performing an appropriate SU(N,)
gauge transformation [12,13]. Indeed, let us define the SU(NV,)
matrix V = diag (g1, ..., gn,) With g, = ¢ for 1 < a < Ny,
ga=¢ N fora=Ny+1,andg, = 1 fora > Ny + 1. Then,
we have

o — \Lﬁ ¢ = \Lﬁ > vebsts (36)
f I ab

Therefore, for Ny < N, a representative of the mininum con-
figurations is simply

1
Y = — 8. (37)
Vv Ny
To distinguish the nature of the zero-temperature configu-
rations, one can use the bilinear operator A, defined in Eq. (9).
If the field is parametrized as in Eq. (24), then we have

q
TrA> =) w!, (38)
i=1

so that

1
(D) TrA’=1, 1) TrA>= -, (39)
q
for solutions of type (I) and (II), respectively.
We now discuss the large-8 behavior of the gauge fields. If
we minimize the kinetic term (3), then we obtain

Dy = Uy, DPrgp- (40)

Repeated applications of this relation along a plaquette lead
to the equation &, = I1,P,. For minimum configurations of
type (I), using Eq. (31), we have

se=Y Ms, (41)
b

i.e., 1, has necessarily a unit eigenvalue. Thus, for 8 — oo
there is still a residual dynamics of the gauge fields, leading to
a pure SU(N, — 1) gauge model with Hamiltonian Hg(U). If
the relevant configurations are those of type (II), see Eq. (29),
then IT, has g unit eigenvalues, which further reduce the dy-
namics of the gauge fields. In particular, for Ny > N, I, =1
and the gauge variables are gauge equivalent to the trivial
configuration, i.e. Uy, = Vijﬂg where V, € SU(N,). This
is true in a finite volume too, since the same argument can
be used to prove that also Polyakov loops winding around the
lattice converge to the identity as § — oo.

In our discussion we have assumed that the relevant scalar-
field configurations in the large-p8 limit are only determined
by the potential term Sy (®), as long as v # 0. We show in
Appendix A that this occurs for y = 0 and N, = 2, but we ex-
pect this to be a general result, as in the case of the analogous
model in which the scalar fields transform in the adjoint repre-
sentation of the gauge group (see the Appendix of Ref. [17]).
For v = 0 the minimum configurations are determined by the
minima of the kinetic term Sk (®, U). For N, > 3 numerical
results [12,13] show that the relevant configurations corre-
spond to solution (I), so that the fields can be parametrized
as in Eq. (31). This implies that the behavior is the same as
for v < 0. For N, = 2, the large-8 behavior for v = 0 differs
from that for v # 0, because of the global symmetry enlarge-
ment, as discussed in the Appendix of Ref. [13] and in the
Appendix A of this work.

B. The model for v < 0

For v < O the relevant minimum configurations take the
form (31). Modulo gauge transformations, they are invari-
ant under U(1) ® U(N; — 1) transformations, leading to the
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global-symmetry breaking pattern
UWNy) — U(1) @ UWNy — 1). (42)

We can also determine the gauge-symmetry breaking pattern,
i.e., the residual gauge symmetry of the minimum-potential
configurations, once ®% has been fixed—as the gauge sym-
metry cannot be spontaneously broken, this is only possible
by adding a suitable gauge fixing. We obtain

SU(N,) = SU(N, — 1), (43)

independently of the flavor number N;.

The symmetry-breaking pattern (42) is the same as in the
CPY~! model. Thus, if the gauge dynamics is not relevant
at the transition, then for v < 0 we expect the non-Abelian
gauge model with U(Ny) global symmetry and the Ccphr-!
model to have the same critical behavior, for any N,. The cor-
respondence between the two models can also be established
by noting that the relevant order parameter at the transition is
the bilinear combination A, defined in Eq. (9). For minimum
configurations, it takes the form

Ale =77, (44)

X

i.e., it represents a local projector onto a one-dimensional
space. If we assume that the critical behavior of the gauge
model is only determined by the fluctuations of the order pa-
rameter A, that preserve the minimum-energy structure (44),
then the effective scalar model that describes the critical fluc-
tuations can be identified with the CPY'~! model. Indeed, the
standard nearest-neighbor CPY~! action is the simplest action
for a local projector Py A,

Hep=—1Y TrPPep. PP =alel, (45)

X,

where ¢ is a unit complex vector. We recall that only for
N = 2 does the 3D CPY~! model (45) undergo a continuous
transition, which belongs to the O(3) universality class. For
N > 3, the model undergoes first-order transitions [29-31],
in agreement with a general Landau-Ginzburg-Wilson (LGW)
argument [29]. Note, however, that in some models that are
expected to have the same critical behavior as the CPV~!
model and that undergo transitions with the same symmetry
breaking pattern, numerical studies favor a continuous tran-
sition also for N = 3, see, e.g., Refs. [32-34]. The LGW
argument assumes that gauge fields do not play a role at
the transition. If instead gauge fields become critical, then
continuous transitions with symmetry breaking pattern (42)
are possible. These are controlled by the charged FP of the
Abelian-Higgs field theory [35,36]. This occurs for N > N*
with N* = 7(2) in the 3D lattice Abelian-Higgs model with
noncompact gauge fields [23].

As we have already discussed, since U(Ny) is not simple,
we can separately break the SU(Ny) and U(1) subgroups. For
v < 0, Eq. (42) implies that we can only observe the breaking
of the SU(Ny) group. The U(1) subgroup is unbroken in the
whole low-temperature phase.

C. The model for v > 0

The critical behavior is more complex for v > 0, as we
must distinguish three different cases: Ny < N, Ny = N, and

Ny > N.. For Ny < N, the minimum-potential configurations
take the form

oY = % 8/, for Ny < N,
7 .

1
oY = —8Y¢p, ¢eU(l), forNy=N. (46)
va

In these cases, we do not expect to observe transitions con-
trolled by the bilinear operator Q defined in Eq. (9). Indeed,
Q vanishes trivially for the configurations given in Eq. (46).
A stronger argument is provided by the analysis of the global-
symmetry breaking pattern. The global invariance group of
the ordered phase is given by the transformations B € U(Ny)
such that

Z B8 = Z yabpbf (47)
8 b

for some SU(N,) matrix V. For Ny = N, using Eq. (46), we
obtain B =V, i.e., the global invariance group is the SU(Ny)
subgroup. Therefore, for Ny = N,, the global symmetry-
breaking pattern is

U(N;) — SUWN). (48)

Thus, transitions associated with the breaking of the U(1)
invariance are possible.

For Ny < N, B can be any unitary matrix. Indeed, if we
take V = B @ V,, where V; is any unitary matrix of dimension
N¢ — Ny, such that the product of the determinants of B and
V is 1, then Eq. (47) is satisfied. Therefore, for Ny < N, any
U(Ny) transformation leaves the minimum-potential configu-
rations invariant. Thus, there is no global symmetry breaking,
and therefore no transition is expected.

When Ny > N, the minimum-potential configurations take
the form

o = g ,  F e UWNy). (49)
N,

Moreover, see the discussion following Eq. (41), gauge con-
figurations are trivial. As before, we assume that in the ordered
phase the relevant fluctuations are those that preserve this
structure. Therefore, the field CD,‘ﬁf can be parameterized as
in Eq. (49), with a site-dependent unitary matrix Fy, and we
can set Uy, = V;Vxﬂ; with V, € SU(NV,). Substituting this
parametrization in the kinetic term of the Hamiltonian we
obtain

N o~
Hy = _ﬁf > ReTr (F VY VeypFepn). (50)

¢ xn

where Y = Iy, ® Oisan Ny x Ny diagonal matrix in which the
first N, elements are 1 and the other Ny — N, elements are 0,
andV =V @ Iy, —n,. This action is invariant under the global
transformations F, — FxM, with M € U(Ny), and under the
local transformations

Vi = VG,
W, =W @ W,

Fr — Wik,
(51
Gy =W" @Iy, _n.,

where W) € SUWN,), W» € UN; — N,) (F; is unitary so
that F,fo = Iy,). The global symmetry of the effective model
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that describes the critical fluctuations is therefore
SU(Ny)
SUN,) ® SUNy — N’

(52)

which corresponds to the global symmetry-breaking pattern

U(N;) — SUN,) ® U(N; — N.). (53)

V. RG FLOW OF THE GAUGE FIELD THEORY

Previous studies of the critical behavior (or continuum
limit) of 3D lattice gauge theories with scalar matter have
shown the emergence of two different scenarios. In some
models there are transitions where scalar-matter and gauge-
field correlations are both critical. In this case the critical
behavior is controlled by a charged FP in the RG flow of
the corresponding continuum gauge field theory [2]. This
occurs, for instance, in the 3D lattice Abelian-Higgs model
with noncompact gauge fields [23], and in the compact model
with g-charged (g > 2) scalar fields [24], for a sufficiently
large number of components. Indeed, the critical behavior
along one of the transition lines occurring in these models is
associated with the stable FP of the multicomponent scalar
electrodynamics or Abelian-Higgs field theory [35—41], char-
acterized by a nonvanishing gauge coupling.

Alternatively, it is possible that only scalar-matter corre-
lations are critical at the transition. The gauge variables do
not display long-range correlations, although their presence
is crucial to identify the gauge-invariant scalar-matter critical
degrees of freedom. At these transitions, gauge fields prevent
non-gauge-invariant scalar correlators from acquiring nonvan-
ishing vacuum expectation values and developing long-range
order: the gauge symmetry hinders some scalar degrees of
freedom—those that are not gauge invariant—from becoming
critical. In this case the critical behavior or continuum limit is
driven by the condensation of gauge-invariant scalar operators
that play the role of fundamental fields in the LGW theory that
should provide an effective description of the critical dynam-
ics. In the effective model, no gauge fields are considered. The
lattice Abelian-Higgs model with compact gauge fields and
unit-charge N-component scalar fields is an example of this
type of behavior [29,30].

At present, for 3D non-Abelian gauge theories, no contin-
uous transition has been identified where the critical behavior
can be conclusively associated with stable charged FPs of the
corresponding non-Abelian continuum field theory. Models
with SU(N,) and SO(V,) local invariance have been numer-
ically studied in Refs. [12—14], but in all cases gauge fields
were found to be not critical along the transition lines identi-
fied in these models: The critical behavior could be explained
in terms of effective LGW models of the scalar order pa-
rameter, without gauge fields. Some hints of a new critical
behavior have been reported for SU(V,) gauge theories with
scalar matter in the adjoint representation [17], but the role of
gauge fields is not yet clear.

In the following we consider the continuum SU(N,) gauge
field theory that corresponds to the lattice model, to check
whether, and under which conditions, charged FPs emerge.
As in the lattice model, the fundamental fields are a complex
matrix ®*(x) (@=1,...,N. and f=1,...,Ny), and an

SU(N,) gauge field A (x). The Lagrangian is

1 . _
L= —TrF2 +Trl(D,®) (D, ®)] + -~ Trd'd
e 2

+ %(Tr D) + %Tr (@), (54)

where F),, = 9d,A, —d,A, —i[A,,A,] and D, o, = 9,84 —
itcfbAZ where t¢ are the SU(N,) Hermitian generators in the
fundamental representation.

To determine the nature of the transitions described by
the continuum SU(N,) gauge theory (54), one studies the
RG flow determined by the 8 functions of the model in the
coupling space. Within the e-expansion framework, the RG
flow close to four dimensions is determined by the one-loop
MS§ functions. Introducing the renormalized couplings u, v,
and o = g7, the corresponding MS one-loop B functions read
[42]

Bo = —€a + (Ny — 22N,) o,

Bu = —€u+ (N;N. + 4)u* 4+ 2(Ny + Noyuv + 3v*
18 (N? —1 27(N? +2

CBWE-1) ()

N, N2 ’
. 18 (N2 — 1)
By = —€v+ (Np + N)v™ + 6uv — B v
27(N2 — 4) )
_xcec 7 , 55
+ N, o (55)

where € = 4 — d. Close to four dimensions, a stable FP oc-
curs for Ny > Nji‘ with N}" = 37544+ O(¢) for N. = 2, and
N}“ = 638.9 + O(¢) for N, = 3. The stable FP for Ny > N;f is
located in the region with positive values of v. This can be
also inferred by considering the large-Ny limit. In this case
the B functions (55) can be expressed in terms of i = Nyu,
D = Nyv,and & = Nya, as

By = —eb + a2,
By = —eit + N.ir* + 20, (56)
By = —ed + 1%,
which have a stable FP for
a*=e, =0 " =e. (57)

Since the stable FP in the large-Ny limit is located in the region
v > 0, it should describe continuous transitions between the
disordered phase and the positive-v Higgs phase discussed
in Sec. IVC. Thus the, corresponding symmetry breaking
pattern should be that reported in Eq. (53).

We also note that the uncharged FP with vanishing gauge
coupling (o = 0) is always unstable with respect to the gauge
coupling, since the stability matrix €2;; = 98;/dg; has a a
negative eigenvalue

9B

Ay = = —€ + O(€?). (58)
da |,

VI. PREDICTED PHASE DIAGRAMS

In this section we sketch the phase diagrams using the
theoretical arguments presented in Sec. IV and known results
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for particular limiting cases. We will always assume Ny > 1,
since for Ny = 1 the phase diagram of the model consists of a
single phase [8—10]. The predictions will be checked numeri-
cally for N. = 2 and several values of Ny in the next section.
We mention that the phase diagram and critical behavior for
v = 0 were investigated in Refs. [12,13].

A. Some particular cases

In the limit 8 — oo the behavior of the system is de-
termined by the configurations minimizing the Hamiltonian.
As already discussed in Sec. IV, for v < 0 and v > 0, the
relevant configurations are different. For Ny > N, we expect
two different Higgs phases depending on the sign of v, while,
for Ny < N, there is one Higgs phase only for v < 0. For
positive values of v the system is disordered up to B = co. We
therefore expect a first-order transition for v = 0 and any y.
This first-order transition is the endpoint of a transition line
(transition surface if we also consider the parameter ) for
finite values of B. Its behavior depends on N,. For N, = 2 the
global symmetry for v = 0 is larger than for v # 0 [12,13].
Therefore, for N. = 2 the finite-8 transition line between the
two different low-temperature phases is expected to run along
the v = 0 axis. This is not true for N. > 2, where the transition
line between the different low-temperature phases converges
to v = 0 only for 8 — oo.

In the limit y — oo, the gauge variables Uy, , are equal
to the identity (strictly speaking, this is correct only in
the infinite-volume limit), apart from gauge transformations.
Thus, the scalar fields interact with Hamiltonian

v
H=—N; ) ReTrd[®, ; + 2 ) Tr (@[, (59)
X

X, u

with global symmetry U(Ny) ® U(N,). For v =0 the sym-
metry enlarges to O(M) with M = 2N¢N,, so that continuous
transition should belong to the O(M) vector universality class.
The behavior of model (59) for v # 0 can be predicted
by studying the RG flow of the LGW ®* theory with the
same global symmetry: continuous transitions are possible
only if a stable FP exists. Results for Ny = N, the relevant
case for the chiral finite-temperature transition of the strong-
interaction theory in the massless quark limit, are reported
in Refs. [43-45]. High-order 3D perturbative schemes [45]
indicate the presence of a stable FP (with v > 0) only for
Ny = N. = 2; no stable FPs are found for Ny = N, > 2. Re-
sults for different N and Ny are presented in Ref. [46]. Stable
FPs (again with v > 0) exist for sufficiently large Ny > N,
[46]. In particular, for N, = 2 the analysis [46] of five-loop €
expansions shows that a 3D stable FP exists for Ny 2 5 [close
to four dimensions, a stable FP exists only for Ny > N; with
Ny = 18.4853 + O(e)].

The FPs occurring for y = oo are expected to be unstable
with respect to gauge interactions, as suggested by the RG
analysis reported in Sec. V: As soon as y is finite (or « is
positive in the notations of Sec. V), the RG flow moves away
from the infinite-y FP. However, for large values of y, the
infinite-y FP may give rise to sizable crossover effects, some-
how controlling a preasymptotic regime at phase transitions.

Bl Ny=N.=2

0 v

FIG. 1. A sketch of the phase diagram expected for Ny = N, = 2
in B-v planes at finite y > 0. There are two transition lines for v # 0,
meeting at a multicritical point (v = 0, f = Bnc) With O(5) sym-
metry. Continuous transitions would belong to the O(3) and U(1) =
SO(2) vector universality classes for v < 0 and v > 0, respectively.
First-order transitions are expected on the line (v =0, B > Bc).

B. Phase diagrams for N, = 2

The phase diagram of lattice SU(2) gauge theories differs
from that of models with N, > 2. This is related to the pres-
ence for v =0 of a larger global symmetry: The theory is
invariant under the Sp(Ny)/Z, group, which is larger than the
U(Ny) symmetry group of the model for generic v # 0. This
implies that transitions between the different low-temperature
phases discussed in Sec. IV must be located within the plane
v = 0 of the B-v-y phase diagram.

1. The case Ny = N, = 2.

A sketch of the expected phase diagram for Ny = N, =2
for a fixed value of y is reported in Fig. 1. We expect it to
qualitatively apply to any finite y > 0, except in the y — 00
limit, as discussed in Sec. VI A.

For v < 0, as discussed in Sec. IV B, we expect the model
to behave as the CP' model, so that continuous transitions
should belong to the O(3) vector universality class. For v > 0,
instead, as discussed in Sec. IV C, we expect a transition line
where the U(1) degrees of freedom condense. The two lines
are expected to meet at a multicritical point at v = 0, where
the global symmetry enlarges to Sp(2)/Z, = SO(5), due to
the pseudoreality of the SU(2) group; see, e.g., Refs. [47-50]
for a discussion in the continuum theory and Refs. [12,13] for
the lattice case. Therefore, the critical behavior should belong
to the O(5) vector universality class. At the multicritical point,
the two order parameters Q and Y defined in Sec. III both
show long-range order. Indeed, at the multicritical point one
can define a five-component real order parameter [12,13] that
combines Q and Y:

o =) o0l k=123 (©0)
I8
. 1
o +ig? = ;Engxfg = det @, 61
8

where o are the Pauli matrices.
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Note that multicritical points arising from the competition
of O(3) and U(1) order parameters do not generally lead to
a multicritical behavior with an enlarged SO(5) symmetry, as
discussed in Refs. [51,52]. In the case at hand, this occurs
because the model for v = 0 is exactly invariant under the
larger group Sp(2)/Z, = SO(5).

Close to the multicritical point, the free energy can be
written as [25,51,52]

Fsing = t3vfmc(vt_¢r)v (62)

where t ~ B8 — B.(v = 0). In particular, [12,13] B.(v = 0) =
2.68885(5) and B.(v =0) = 1.767(1) fory =0 and By =2
(i.e., y = 1.13), respectively. Here v is the O(5) correlation-
length exponent, v =0.779(3) [52], and ¢r > 0 is the
crossover exponent associated with the RG dimension y, » of
the relevant spin-2 quadratic perturbation at the O(5) vector
FP. This is given by ¢r = y2, v with [51] y,, = 1.832(8),
thus ¢ = 1.427(8). Since the transition lines S.(v) forv > 0
and v < O correspond to constant values of the argument of
the scaling function fi,., from the scaling behavior (62) it
follows that

1B:() = Bw=0) ~vl*, ¢=¢;' <1. (63)

This implies that the v > 0 and v < O transition lines must
approach the v = 0 axis tangentially.

It is interesting to compare the 3D phase diagram with
the one expected for finite-temperature 3D quantum systems,
i.e., for the analogous lattice SU(2) gauge model defined on a
(3 4+ 1)-dimensional lattice in which the number L, of sites in
the fourth direction is fixed. In this case, in the absence of mat-
ter fields, we have also a finite-y Z, transition associated with
the breaking of the center symmetry of the SU(2) gauge group.
Such a line may also be present in the theory with scalar fields
for small values of §, since, at small B, the integration of
the scalar fields can only give rise to a renormalization of the
gauge coupling.

2. The case Ny > N, = 2.

Let us now consider the case Ny > N, = 2. The expected
phase diagram is shown in Fig. 2. Also in this case we have
two different Higgs phases for 8 — oo, characterized by dif-
ferent global symmetry breaking patterns, and an enlargement
of the symmetry for v = 0.

For v < 0 the transition should behave as in the CPY/~!
model. Generically, we expect a first-transition line except,
possibly, for small values of Ny (we recall that the question
of the existence of continuous transitions in CPY/~! models
is stll debated [29,32,33]). For v < 0, we do not expect y to
be relevant. Indeed, the field-theory analysis of Sec. V shows
that the RG flow for v < 0 does not have stable FPs. Thus, no
charged critical behavior is expected.

For v > 0, we expect a transition line associated with the
symmetry breaking pattern (53). The nature of the transition
is, however, not clear, since for Ny > N;, the field-theory
RG flow has a stable FP, see Sec. V, indicating that gauge
modes can become critical and change the critical behavior.
Therefore, a priori two different types of critical behavior can
occur. For Ny < N7, y should not play any role and the gauge
model should behave as the effective matrix model obtained

Bt Ny>N.=2

>
fo

0 v

FIG. 2. A sketch of the phase diagram expected for Ny > N, = 2
for fixed values of y > 0. For v < 0, y should not play any role and
the transition line should be of first order or belong to the CPY/ !
universality class, if it exists. For v > 0, the nature of the transition
might depend on y for sufficiently large values of Ny. For v = 0 we
have a first-order line ending at a first-order multicritical point.

by integrating the gauge degrees of freedom (see Appendix
A). The numerical results of the next section indicate that
the transition line is of first order. For Ny > N}, instead, one
might have two different regimes, depending on y. For small
y, the effective matrix model describes the critical behavior,
while for large values of y a new critical behavior sets in,
controlled by the field-theory charged FP.

As it occurs for Ny = 2, for v = 0 the symmetry enlarges
to Sp(N¢)/Z,. Thus, we have a multicritical point for v =0
(LGW arguments predict the transition to be of first-order for
any Ny > 3[12,13]) and a first-order transition line, extending
from the multicritical point to § = oo along the v = 0 axis.

C. Phase diagrams for N, > 3

We now sketch the possible phase diagrams for N, > 3.
We must distinguish three cases, i.e., Ny < N., Ny = N,, and
N = NC.

In Fig. 3 we show the expected phase diagram for Ny <
N, and N, > 3. For v < 0, the behavior is independent of
N, and thus the high-temperature disordered phase and low-
temperature Higgs phase are separated by a transition line
where the system behaves as the CPY/~! model. In particular,
for Ny = 2, transitions may be continuous, in the O(3) vector
universality class. The results of Refs. [12,13] indicate that
this line intersects the v = 0 axis at a finite 8 value. Presum-
ably, it enters the v > 0 half-plane. However, since for v large
enough the system is disordered for any f, the curve should
bend and approach v = 0 as B — oo. Note that for large S,
transitions should be of first order, hence a tricritical point
should be present, if the transitions are continuous for v < 0
(this is the expected behavior for Ny = 2).

A possible phase diagram for N = Ny is shown in Fig. 4,
while the case N. < Ny is reported in Fig. 5. The qualitative
behavior in these two cases should be similar to that observed
for N, = 2. The only difference is the absence of an enlarged
symmetry for v = 0, so that the v = 0 axis does not play any
particular role. Therefore, the multicritical point, on whose
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N(/ZS /Bll

N¢ < N,
f ' 1% order

Np—1
cPY |

>
fo

()

FIG. 3. A sketch of the phase diagram at fixed y > 0 expected
for Ny <N, N, > 3. For values of N, for which there is no
CP"r~! universality class, the whole line corresponds to first order
transitions.

nature we have no prediction, will be a generic point with v #
0. Analogously, the first-order transition line that separates the
two low-temperature Higgs phases will be a generic line in the
B-v plane for each value of y. The considerations we made
on the nature of the transition lines, but not of the multicritical
points, in Secs. VIB 1 and VIB 2 do not depend on N, and
also apply here.

VII. NUMERICAL ANALYSES FORN, =2

In this section we present some numerical results for N, =
2, to check the phase diagrams put forward in Sec. VIB.
Some technical details on the MC simulations are reported
in Appendix B.

A. Results for Ny =N, =2

To verify the phase diagram sketched in Fig. 1, and in
particular the existence of the O(3) and U(1) transition lines
meeting at the O(5) multicritical point located at v = 0 and
[12,13] B. = 2.68885(5), we performed numerical simula-

Bt Ny=N.>3

\

()

FIG. 4. A sketch of the phase diagram at fixed y > 0 expected
for Ny = N. > 3.

B Ny>N.>3

Cpl\rffl

(%

FIG. 5. A sketch of the phase diagram at fixed y > 0 expected
for Ny > N. > 3.

tions for v = 1 and v = —1. As the parameter y should not
play any role, we only performed simulations for y = 0.

For v = 1, the numerical estimates of the RG-invariant
quantities associated with the order parameter Yxf ¢ defined in
Eq. (13), are reported in Figs. 6 and 7. The data confirm the ex-
istence of a continuous transition at 8 &~ 2.50, which belongs
to the U(1), or XY, universality class. Indeed, if we fit the
data using the XY estimate v = 0.6717(1) (see Refs. [25,53—
55]), then we obtain B, = 2.502(1) and an excellent collapse
of the data (upper panel of Fig. 6). The best evidence that
the transition belongs to the XY universality class is provided
by the plot of Uy versus R y. Data approach the asymptotic
universal curve F(Rg) corresponding to the XY universality
class (the curve is taken from the Appendix of Ref. [56]).
Moreover, the approach to the universal XY curve, see the
inset of Fig. 7, is consistent with the expected FSS scaling
behavior

U(L,Rgy) — F(Rey) ® L™Fy(Re y), (64)

where w is the leading scaling-correction exponent and F,(R¢ )
is a scaling function that is universal apart from a multiplica-
tive factor. If we use the XY estimate [54] w = 0.789(4), then
we observe a reasonable scaling, again confirming that the
transition is related to the breaking of the U(1) symmetry. The
SU(Ny) symmetry is unbroken, and indeed the correlations of
the bilinear operator Q are not critical (but still nonanalytic)
for v > 0, as expected, see Fig. 8.

In Figs. 9 and 10 we report results for v = —1. In this
case, the order parameter Q,J:g defined Eq. (9) is critical,
signaling the breaking of the SU(2) symmetry and therefore
the presence of a transition that belongs to the CP!' or O(3)
universality class. In Fig. 9 we report a scaling plot of R¢ using
[57] the O(3) estimate v = 0.71164(10) (accurate estimates of
the O(3) exponents can be found in Refs. [25,57-62]) and the
estimate of the critical temperature B, = 2.561(1), obtained
by performing biased fits of the data, in which v was fixed
to the O(3) value. The agreement is excellent. As before, we
also considered U versus R:. Data fall on top of the O(3)
curve (it is reported in the Appendix of Ref. [56]) with small
corrections that are consistent with Eq. (64) and the O(3)
value of the scaling-correction exponent, [57] w = 0.759(2).

064111-9



BONATI, FRANCHI, PELISSETTO, AND VICARI

PHYSICAL REVIEW E 104, 064111 (2021)

L5 ‘ T T
4 L=8 A<1
| & L=]2 < |
* [=]6 o
o =24 q
Lo L=32 * _
o L=48 A
)
R, I ) |
£Y ©
&
0.5 fﬁ
| s ]
a4 q4d N=2, Nf:2, v=1
| | |
-10 5 0 5 10
VY
(B-BJL
1 T T T T I
<4< [=8
| AAL=]2 7
** [ =]6 | * ,/“/
o-8[=24
075~ 0-0 [,=32 A o
N=2, Nf:2, v=1
025+~ |
| | | |

FIG. 6. Data of Rz y for N. =Ny =2, y =0 and v = 1, versus
B (bottom) and versus (8 — B.)L'/" (top). We use the XY critical
exponent v = 0.6717 and our best estimate S, = 2.502 of the critical
point. The excellent collapse of the data (top panel) demonstrates that
the transition belongs to the XY universality class.

We also mention that correlations of the operator Y, are not
critical, as expected.

In conclusion, our numerical results confirm the discussion
of Sec. VIB, and are fully consistent with the phase diagram
reported in Fig. 1. We expect the same qualitative behavior for
any finite inverse gauge coupling y > 0.

B. Results for Ny > N, =2

We now present some numerical results for two large val-
ues of Ny, Ny = 20 and Ny = 40, to check whether the lattice
model develops a critical behavior that can be associated
with the charged FP of the corresponding SU(N,) gauge field
theory. As we have discussed in Sec. V, the charged FP is
expected to be present only if the gauge fields develop a
critical dynamics. Therefore, we expect such a behavior for
nonvanishing values of y. For y = 0, the gauge fields can be
integrated out and one obtains an effective scalar model for the
two order parameters, whose critical behavior should be well
described within the standard LGW approach without gauge
fields, see Appendix A.

1.8
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14 © L=32 0.5 1
o L=48 R
— XY 9
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- N,=2, Nj=2, v=I

\ \ \ \
10 0.25 0.5 0.75 1

FIG. 7. Estimates of Uy versus R; y for N, = Ny =2,y =0, and
v = 1. The continuous line is the XY universal curve F (R;) (taken
from Ref. [56]). Estimates of L”[Uy — F (R y)] versus Rg y, using
the XY correction-to-scaling exponent w = 0.789, are reported in
the inset. The data show a reasonable scaling behavior, which is
definitely consistent with the scaling behavior (64).
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FIG. 8. Data of & (top) and U (bottom) for N. =Ny =2,y =0
and v = 1, as obtained from the correlations of the bilinear operator
O,. They clearly show that the correlations of the bilinear operator Q
do not become critical for v > 0, as expected.
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FIG. 9. Plot of R; for N. =Ny =2, y =0 and v = —1, versus
(B — B.)L'", using the O(3) critical exponent [54] v = 0.71164 and
our best estimate B, = 2.561 of the critical point. The excellent
collapse of the data supports the O(3) critical behavior.

For Ny = 20, we have performed simulations for two val-
ues of y, choosing y =1 and 3. For y = 1, we have also
studied the v dependence, considering v = 1 and v = 10. Re-
sults for y = 1 depend only weakly on v and indeed, we find
that both models undergo a transition for a similar values of 8,
B, ~ 1.28. The results for the specific heat Cy and the Binder
parameter U are shown in Figs. 11 and 12, respectively. They
are consistent with a first-order transition: We do not observe
scaling when U is plotted against R and the maximum of U
increases with L. Also the data for y =3 and v = 1 favor a
first-order transition, see Fig. 13, at . &~ 1.16. The transition

T T
1.6~ 02 \$ — .
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I a& A no ]
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FIG. 10. U versus Rg, as obtained from the correlations of the
bilinear operator Q, for N. = Ny =2, y = 0 and v = —1. The data
appear to approach the universal curve corresponding to the O(3) uni-
versality class [56]. In the inset we report F,,(R;) = L“[U — F(R;)]
versus R, using the O(3) correction-to-scaling exponent [57] w =
0.759. The data, in particular those for the largest available lattice
sizes, show a reasonably good scaling.
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FIG. 11. Data for the specific heat Cy for N. =2, Ny =20, y =
1, v = 10 (top), and v = 1 (bottom). The apparent divergence of Cy
with increasing L supports a first-order transition.

is weaker than that observed for y = 1, and indeed larger
lattices are needed to observe the emergence of the typical
features of first-order transitions. This is not unexpected, since
the transition may become continuous for y — oo, controlled
by the stable FP of the matrix model (59), see Sec. VI A.

As no evidence for a charged FP was found for Ny = 20,
we decided to study the model for an even larger number
of flavors. We chose Ny = 40 and performed simulations for
y =0 and 1, and also for the matrix model obtained in the
limit y = oo (it amounts to setting Uy, , = 1 on every link).
As v does not play a role, we always fixed v = 1.

For y = 0, we observe a very strong first-order transition
at B, ~ 1.2. Already on small lattices, there are long-living
metastable states and we are not able to thermalize the system
for L 2 12. There is apparently no FP in the model in which
gauge fields are integrated out. To detect the possible presence
of a charged FP, we performed simulations for a finite value
of y, choosing y = 1. Results corresponding to 8 < L < 28
are fully consistent with a continuous transition at g, ~ 1.18.
First, the specific heat is apparently bounded—its maximum
does not increase with L. Second, the plot of the Binder
parameter versus R, see Fig. 14, shows a reasonably good
scaling. In particular, the maximum of the Binder parame-
ter does not increase with L. On the contrary, it apparently
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FIG. 12. The Binder parameter U versus the ratio R; for N, = 2,
Ny =20,y =1, v =10 (top), and v = 1 (bottom). Data do not of
converge and the maximum of the Binder parameter U increases
with increasing L, as expected for a first-order transition (see the
discussion at the end of Sec. III).
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FIG. 13. The Binder parameter U versus the

ratio R; for N, = 2,

N; =20, v =1, and y = 3. No scaling is observed, indicating that

the transition is of first order.
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FIG. 14. The Binder parameter U versus the ratio R; for N, = 2,
Ny =40,v =1, and y = 1. The data appear to converge to a scaling
curve with increasing L, consistently with a continuous transition.

decreases with increasing sizes (we find Upy, =~ 1.06,1.04
for L = 12 and 28, respectively), a phenomenon that is not
consistent with a first-order transition. The strong peak in the
Binder parameter can be interpreted as a crossover effect, due
to the first-order transition line that is expected to be present
for smaller values of y and that ends in the transition point at
Be~1.2,y =0.

As the transition for y = 1 is apparently continuous, it is
interesting to determine the corresponding critical exponents.
The exponent v has been determined by fitting R: to f(X),
with X = (B8 — B.)L'/". We have parameterized the function
f(X) with an order-n polynomial (stable results are obtained
for n 2 15). We have performed several fits, including each
time only data satisfying L > L, (we used Ly, = 8, 12, 16).
Moreover, as corrections appear to be stronger in the region
where U has a peak, we also investigated how results change
if only data satisfying R > 0.20 are considered. The results
of these analyses are consistent with

Be = 1.1864(1), v =0.74(2). (65)

In Fig. 15 we report the plots of U and R; versus X, using
the estimates (65). We observe good scaling, except for X <
—0.8, where U has a peak. Note that v > 2/3, and thus the
result is consistent with a finite specific heat at the transition
for L — oco. We have also estimated the exponent 7, that
characterizes the behavior of the susceptibility, x ~ L*~"¢
at the critical point. To estimate 7y we have fitted log x to
(2 —ng)logL + g, (R¢), using a polynomial parametrization
for the function g(x). We find

no = 0.89(3). (66)

Scaling is excellent, as shown in Fig. 16.

The transition we have identified for y = 1 can be naturally
associated with the charged FP of the SU(N,) field theory
(54). A conclusive proof would require a detailed analysis
of the gauge correlations. However, note that such a FP dis-
appears as y is decreased toward zero and is not present in
the matrix model in which the gauge fields are integrated out,
confirming that gauge fields do indeed play a role. It would
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FIG. 15. Binder paramer U (top) and correlation-length ratio R
(bottom) versus X = (8 — )L for N, =2, N; = 40, v = 1, and
y = 1. We set B. = 1.1864 and v = 0.74. The inset in the upper
panel gives a more detailed view of the behavior of the Binder
parameter for —1.2 < X < —0.8, the values of X where U has a
peak.
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FIG. 17. The Binder parameter U versus the ratio R; for N. = 2,
Ny =40,v =1, and y = oo (ungauged matrix model).

be interesting to compare the estimates of the critical expo-
nents with the large-Ny predictions computed in the gauge
field theory—these results are not available at present—as this
would provide a more quantitative check of the identification.

As a final check, we have studied the behavior of the model
for y = o0, to exclude that the observed behavior for y = 11is
simply a crossover effect due to the presence of a continuous
transition in the infinite-y matrix model. We recall that the
model in the y — oo limit becomes equivalent to the lat-
tice scalar model (59), which can have continuous transitions
for sufficiently large N, and in particular for Ny = 40, see
Sec. VI A. Monte Carlo simulations of the ungauged matrix
model provide evidence of a phase transition for 8. ~ 1.00. In
Fig. 17 we report U versus R:. We observe excellent scaling,
indicating that the transition is continuous. The curve we
obtain is quite different from the one obtained for y = 1, see
Fig. 14. For instance, in the matrix model the maximum of U
is approximately 1.007, which is significantly smaller than the
value obtained for y = 1, see the inset in the upper panel of
Fig. 15.

We have also determined the exponents for the matrix
model. Although we only have data for 8 < L < 16, scaling
corrections are small. Analyzing the data as we did for y = 1,
we obtain

Be =1.0079(4), v =0.975(5), ngo=1.147(5). (67)

Note that 7 is the critical exponent associated with the com-
posite operator Q and it should not be confused with the
exponent 7 that characterizes the critical behavior of the cor-
relations of the fundamental field %, that are well defined in
the ungauged model. The estimates of the exponents are very
different from those obtained for finite y, again excluding that
the results for y = 1 are a crossover due to the presence of a
continuous transition in the ungauged matrix model.

VIII. CONCLUSIONS

We have investigated how non-Abelian global and gauge
symmetries shape the phase diagram of 3D lattice gauge
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theories. We consider a model with SU(V,) local invariance
and U(Ny) global invariance, in which the scalar fields trans-
form under the fundamental representation of both groups. We
use a standard formulation with nearest-neighbor couplings
[1], considering the most general quartic scalar potential com-
patible with the given global and gauge symmetry, cf. Eq. (4).
We determine the low-temperature Higgs phases and the na-
ture of the phase transitions, as a function of the parameter v
entering the quartic potential, defined in Eq. (7). This study
extends the one reported in Refs. [12,13] for maximally sym-
metric scalar potentials, corresponding to fixing v = 0. We
show that such an extension to multiparameter quartic poten-
tials gives rise to various notable scenarios, characterized by
different low-temperature Higgs phases.

The analysis of the minimum-energy configurations allows
us to determine the main features of the phase diagram. We
determine the ordered Higgs phases, their global and gauge
symmetry-breaking pattern, and the nature of the transition
lines between the various phases. These features depend on
the scalar-potential parameter v and on the number of colors
and flavors, N, and Ny, respectively. We observe qualitative
differences between the cases N. =2 and N. > 2, and the
casesNy < No, Ny = N.,and Ny > N,, as sketched in Figs. 1—-
5. In particular, for Ny > N, the phase diagram presents two
distinct Higgs phases, associated with different global and
gauge symmetry-breaking patterns.

To check the theoretical arguments, we performed numer-
ical MC simulations for N, = 2. For v = 0 and any N, the
model is invariant under a larger symmetry group, namely
Sp(Ny)/Z,. Therefore, a first-order transition line is expected
on the v = 0 axis for sufficiently large values of S, separating
two different low-temperature ordered phases corresponding
to v > 0 and v < 0, respectively, see Figs. 1 and 2. In par-
ticular, for Ny = 2, the global symmetry of the model with
v = 0 enlarges to Sp(2) =~ O(5), leading to the emergence of
an O(5) multicritical point, where the continuous transition
lines extending within the regions v > 0 and v < 0 meet. Ac-
cording to the theoretical arguments reported in Secs. IV and
VI, for v > 0 the transition line belongs to the XY universality
class—the corresponding order parameter is the determinant
of the scalar fields, see Egs. (12) and (13)—while, for v < 0,
it belongs to the O(3) universality class, being associated
with the condensation of the gauge-invariant bilinear oper-
ator defined in Eq. (9). The FSS analyses of the numerical
data support these theoretical predictions, thus conferming the
phase diagram sketched in Fig. 1.

We also present results for larger values of Ny, focusing
on the phase behavior for v > 0, whose nature is unknown,
see Fig. 2 and the corresponding discussion in Sec. VI. In
particular, we address the question of the existence of tran-
sitions that can be associated with the stable charged FP that
is present in the scalar SU(2) gauge field theory—the corre-
sponding Lagrangian is reported in Eq. (54)—for large values
of N fe

This issue has been recently addressed in the Abelian-
Higgs field theory characterized by a local U(1) and a global
U(Ny) symmetry. Field theory predicts the existence of a
stable charged FP for a sufficiently large number of com-
ponents [35-41]. In the e-expansion approach, such a FP
only exists for Ny > N7(d), where d is the space dimension.

In d = 4 dimensions, N}‘ (4) ~ 183. However, corrections in
the expansion in powers of € =4 —d are large and four-
loop results provide a significantly smaller estimate in d = 3,
N ;‘ (3) ~ 12. Recent numerical work on the 3D lattice Abelian-
Higgs model with noncompact gauge fields [23] identified a
transition line along which critical exponents are in quanti-
tative agreement with the field theory large-N, predictions:
these transitions can therefore be associated with the charged
FP. These results provided the estimate [23] N;(3) =72),
confirming that the large value in four dimensions, Njf(4) ~
183, is quantitatively not relevant for the 3D case. It is worth
noting that the charged FP is also relevant for some transitions
occuring in the compact Abelian-Higgs model when the scalar
matter has a charge larger than one [24].

As it occurs in the scalar U(1) field theory, SU(2) field
theories have a stable charged FP in the region v > O for
Ny > N}‘(d ). Close to four dimensions, N*(d) is very large,
indeed N} (4) ~ 376, see Sec. V. However, it is conceivable
that the critical value N;f(3) in three dimensions is signifi-
cantly smaller than the four-dimensional one, as it occurs in
the Abelian-Higgs models. To check whether 3D SU(2) lattice
models undergo transitions associated with the field-theory
charged FP, we have performed simulations for two large
number of components, Ny = 20 and Ny = 40. For Ny = 20
we have only evidence of first-order transitions. A continuous
transition is instead observed for Ny =40,y = 1,and v = 1.
The transition becomes of first order in the infinite-gauge cou-
pling limit (y — 0), in which gauge fields can be integrated
out, confirming that the gauge dynamics is relevant for the
existence of the continuous transition. This leads us to conjec-
ture that the continuous transition observed for Ny = 40 and
finite y > 0 is associated with the charged FP of the SU(N,)
field theory with Lagrangian (54). If the association is correct,
then our results allow us to estimate N;‘ in three dimensions.
The critical value N}‘(S) is large, 20 < N;(3) < 40, but still
significantly smaller that the four-dimensional value.

It is clear that significant additional work is needed to fully
clarify this issue. On the numerical side, a detailed analysis of
gauge correlations at the transition is clearly required, while
on the field-theory side it would be important to have quanti-
tative predictions for universal quantities, for instance, for the
critical exponents. Indeed, this would allow us to perform a
more quantitative comparison between the numerical results
obtained in the simulation of the lattice gauge model and
the corresponding SU(V,) field theory predictions. A com-
plete understanding of this issue is fundamental to clarify if
and how the non-Abelian gauge field theory can be realized
in 3D statistical models sharing the same global and local
symmetries.
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APPENDIX A: EFFECTIVE MODEL FOR N, =2

In this Appendix we briefly discuss the effective scalar
model that can be obtained for y = 0 by integrating out the
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gauge fields. We will use the results of Ref. [63] for SU(N)
link integrals. We define

= _—N, B Z q>x+u (@) (A1)

and the invariant combination

Ky, = Tr SS* + detS + detS”
1 2 1 202
<3 (QWQ’*’

Then, we obtain

/ [dUJe P = Cexp Y In[1}(2Ke,)//Kep),  (A3)
X,/

where C is an irrelevant constant and /; (x) is a modified Bessel
function. Since

f
2 Yx-fll Yfg +

1
2Y’ffﬂYfg) (A2)

1 _ 1
Tr (oY =TrQ*>— — =TrYY +1— —,
N N

f f

we see that, for any Ny, in the absence of the gauge coupling,
the gauge model is equivalent to a matrix model for the order
parameters Q and Y. Note also that K, can be expressed in
terms of the Sp(Ny) order parameter defined in Ref. [13], ex-
plicitly showing the larger symmetry of the model for v = 0.

We can also use these expressions to discuss the large-3
limit. In this case we have translation invariance—the fields do
not depend on x. If we use the singular value decomposition
(24), then we find that K becomes independent of the scalar
fields, namely

(A4)

‘32N2 ,32N2
! (wl2 + w%)2 = !

This result proves that for v =0 and B — oo the scalar
fields are uniformly distributed, as already shown in Ref. [13].
Moreover, the scalar kinetic term is irrelevant in determining
the Higgs phases at low temperature: They are uniquely fixed
by the scalar potential.

K= (A5)

APPENDIX B: MONTE CARLO SIMULATIONS

We performed MC simulations on cubic lattices with pe-
riodic boundary conditions. We used two different updates

of the complex scalar field ®*/. The first one is a standard
Metropolis update [64] that rotates two randomly chosen ele-
ments of d>§j” (denoted by ¢; and ¢, in the following). More
precisely the proposed update is

¢, = cos01e”p; + sin b1 ¢, B1)
(bé = —sin 9]6i02¢] + cos 9]€i03¢2,

where the angles 6; are uniformly distributed in [—«, ], and
the value of « is chosen to obtain an acceptance of approxi-
mately 30%. In the second update we propose the change

o _ 2RETH@LS,)

- Sy — &y, (B2)
Tr(SiS,)
where S is the matrix
Sy = Z(Ux,uq)x-&-u + Ux o, M /1)' (B3)
I

Such a deterministic update satisfies detailed balance (since
it is involutive), and for v = 0 would be an overrelaxation
step [65]. For v # 0 this move is accepted or rejected using
a standard Metropolis test, and, for the parameters used in
this work, a typical value of the corresponding acceptance
rate is 90%. Link variables were updated using the Metropolis
algorithm, with the proposed update Uy, — V Uy, ,, where V
is an SU(N,) matrix close to the identity and V or VT were
used with a 50% probability to ensure detailed balance. Also
in this case the maximal distance of V' from the identity matrix
was chosen in such a way to have an average 30% acceptance
ratio.

We call lattice iteration a series of 10 lattice sweeps in
which we sequentially update the scalar field on all the sites
and the gauge field on all the links. In nine lattice sweeps we
use the pseudo-overrelaxed update with proposal (B2), while
in 1 sweep we use the update based on the proposal (B1). This
ratio of 1 to 9 was kept fixed for all the cases studied in this
work, since we verified the autocorrelation times to be small
enough for our purposes, and we did not pursued any further
parameter optimization.

Measures where performed after every lattice iteration,
and for the largest lattice sizes typical statistics of our runs
were A3 x 10 measures in the case of two-flavor models,
and ~8 x 10° and ~4 x 10° for Ny =20 and Ny = 40, re-
spectively. To analyze data and estimate error bars we used
standard blocking and jackknife techniques, and the maxi-
mum blocking size adopted was of the order of 103 data.
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