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Medium-range atomic correlation in simple liquids. II. Theory of temperature dependence
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The spatial atomic correlations in liquids and glasses extend often significantly beyond the nearest neighbors.
Such correlations, called the medium-range order (MRO), affect many physical properties, but their nature is not
well understood. In this article the variation of the MRO with temperature is calculated based upon the concept
of the atomic-level pressure, focusing on simple liquids, such as metallic liquids. It is shown that the structural
coherence length that characterizes MRO follows the Curie-Weiss law with a negative Curie temperature as
observed by experiment and simulation. It is also shown that the glass transition is induced by freezing of the
MRO, rather than the freezing of the nearest-neighbor shell. The implications of these results are discussed.
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I. INTRODUCTION

The atomic structure of liquid and glass is usually de-
scribed by the atomic pair-distribution function (PDF), g(r),

g(r) = 1

4πNρ0r2

∑
i, j

〈δ(r − |ri − rj|)〉, (1)

where ri is the atomic position of the ith atom, N is the number
of atoms in the system, ρ0 is the average number density
of atoms, and 〈....〉 denotes thermal and ensemble average
[1–3]. The PDF depicts the distribution of distances between
two atoms. The PDF can be determined by x-ray or neutron
diffraction measurement through the Fourier transformation
of the structure function, S(Q), where Q is the momentum
transfer of scattering [1–3]. Even though some key properties
depend on higher-order correlation functions [4,5], the PDF
is widely used in describing the structure because it is a
convenient structural descriptor which can be experimentally
determined with high accuracy. The PDF is the same-time
correlation function, thermal average of snapshots, and does
not contain information on dynamics. But it sufficiently char-
acterizes supercooled liquid with relatively slow dynamics,
whereas full description of high-temperature liquid requires
the knowledge of dynamic correlation functions, such as the
Van Hove function [6,7].

The PDF shows many peaks indicating shell-like structures
around an atom. The first peak describes the short-range or-
der (SRO) in the nearest-neighbor shell, whereas the peaks
beyond the first peak depict the medium-range order (MRO).
Ornstein and Zernike were the first to propose a scheme to
connect the SRO with the MRO through a self-consistency
equation [8]. Slightly different approaches were suggested
by others [2,3,9,10], but all these approaches are based on
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the idea that the MRO is directly related to the SRO. How-
ever, as we discussed elsewhere [11–14], there are significant
differences in the nature between the SRO and the MRO,
particularly in the supercooled and glassy states. For instance,
the MRO freezes at the glass transition, whereas the SRO does
not, as shown in Part I of this paper [14]. Even though they
are related, they are sufficiently distinct so that the behavior
of the MRO cannot be readily predicted from the SRO alone.
The problems with the Ornstein-Zernike (OZ) theory which
directly relate the MRO to the SRO in describing supercooled
liquid state are well known, because the OZ theory is based on
the mean-field approximation and higher-order correlations
are neglected [3]. In this article we propose an alternative ap-
proach to elucidate the MRO and its temperature dependence
down to the glass transition, based on the concept of the struc-
turally coherent ideal glass state [12,15] and the atomic-level
pressure fluctuations [16,17]. We primarily focus on simple
liquids with spherical interatomic potentials, such as metallic
liquids.

II. SHORT- AND MEDIUM-RANGE ORDER
IN LIQUID AND GLASS

The first peak of the PDF describes the distribution of
the nearest-neighbor distances from a central atom, which
reflects the atomic sizes of the constituent elements and the
nature of chemical bonding among them, as well as quantum
and thermal fluctuations. In liquids and glasses the number
of neighboring atoms for each atom, the local coordination
number, varies from site to site. The average coordination
number, N̄C , is given by the integration over the first peak of
the PDF,

N̄C = 4πρ0

∫
1st peak

g(r)r2dr. (2)

For simple liquids with dense-random-packed structure,
such as metallic liquids, the value of N̄C is 12–14 [18,19].
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At longer distances the PDF oscillates around unity, and its
amplitude, |g(r) − 1|, exponentially decays with distance as

|g(r) − 1| ≈ exp (−r/ξs)

r
, (3)

where ξs is the structural coherence length which characterizes
the MRO.

This form was suggested by Ornstein and Zernike through
their self-consistency equation [8]. However, it is possible
to arrive at this form from a more general point of view, as
discussed in Part I of this paper [14]. For crystalline materials
the reduced PDF, G(r) = 4πrρ0[g(r) − 1], has persistent os-
cillations with similar amplitudes up to macroscopic distances
[20], because at large distances each peak in g(r) does not
represent a single crystallographic distance, but it represents
the number of atoms. This argument applies equally well to
liquids and glasses. At large r the width of the higher-order
peaks in g(r) is of the order of 1 Å, much wider than the
typical phonon amplitudes which are of the order of 0.1 Å.
Therefore, the peaks in g(r) do not represent individual atomic
distances, but instead they describe more coarse-grained local
density fluctuations [11]. Then, starting from an imaginary
state with long-range density correlation, G(r) should decay
because of randomness in the structure of liquid as

G(r) = G0(r) exp

[
− r

ξs(T )

]
, (4)

reproducing Eq. (3). Here G0(r) describes the state with the
limit of ξs → ∞, the structurally coherent ideal glass state
with long-range density correlation and has persistent oscil-
lations [15]. Interestingly we were able to create a model
with such features for Pd42.5Ni7.5Cu30P20 alloy liquid [15]
with the reverse Monte Carlo (RMC) method [21], using the
experimentally determined G(r) as a starting point.

It was found that above the glass transition temperature, Tg,
ξs(T ) obeys the Curie-Weiss law for temperature dependence,

ξs(T )

a
= C

Tg

T − TIG
(T > Tg), (5)

where a is the average nearest-neighbor distance, TIG is the
ideal glass temperature where ξs(T ) diverges and is negative
for all metallic liquids we studied [15]. Because ξs is linearly
related to S(Q1), where Q1 is the position of the first maximum
in S(Q) [12], S(Q1) − 1 also follows the Curie-Weiss law
[15]. The Curie-Weiss behavior of S(Q1) was predicted by
the OZ theory at a high-temperature limit [22]. However, in
this case the Curie temperature is positive for a system with
an attractive potential, whereas our results show it is negative
[15]. Furthermore, according to the OZ theory, the Fourier
transform of the MRO structure function, h(Q) = S(Q) − 1,
is given by

h(Q) = c(Q)

1 − ρ0c(Q)
, (6)

where c(Q) describes the SRO [3,8]. Therefore, a continuous
variation of c(Q) with temperature through Tg as observed by
experiment should result in a continuous variation of h(Q) as
well, whereas S(Q1) shows a sharp change in its temperature
dependence at Tg [15]. Thus, the OZ theory cannot explain the
important difference between the SRO and MRO with respect

FIG. 1. The reduced PDF, G(r), of Fe glass at Tg (dark curve),
and G(r) of the structurally coherent ideal Fe glass obtained by the
RMC method (light curve).

to the temperature dependence through Tg as observed by ex-
periment and simulation [14]. The apparent failure of the OZ
theory is partly because the high-temperature approximation
does not work for supercooled liquid. Also, the validity of
the mean-field approximation in the OZ theory is question-
able for supercooled liquid in which atoms are dynamically
strongly correlated. In the following we propose an alternative
theory which explains the Curie-Weiss behavior of ξs(T ) with
a positive Curie temperature based upon the concept of the
atomic-level pressure.

III. RESULTS

A. Structurally coherent ideal glass state

The G0(r) in Eq. (4) describes the state extrapolated in
the limit of ξs → ∞. This state has long-range correlation
with no positional order. We call it the structurally coherent
ideal liquid (glass) [15]. The G0(r) can be obtained from the
G(r) determined by experiment as G0(r) = G(r) exp(r/ξs).
Figure 1 shows the G(r) of amorphous Fe at Tg (1000 K)
obtained by simulation and the corresponding G(r) of the
structurally coherent ideal glass. The simulation was carried
out using the LAMMPS software [23] with the modified John-
son potential for Fe [24] for a model of 16 000 atoms with
periodic boundary conditions. The model was equilibriated at
2000 K and cooled with the rate of 2 K/ps to avoid crystalliza-
tion. The model of the structurally coherent ideal glass with
54 000 atoms with periodic boundary conditions was obtained
by the RMC method [21] to fit to G0(r), with the constraint
of the minimum atomic separation of 2.0 Å. The amplitude
of oscillations in G(r) for the model obtained by the RMC is
smaller than that of G0(r), but the periodicities are the same
[15]. The MRO portion of G(r) is approximately given by

GMRO(r, T ) ≈ AMRO(T )a sin [QMROr + δMRO(T )]

× exp

[
− r

ξs(T )

]
, r > rcutoff , (7)

where a is the nearest-neighbor distance defined by the first
maximum in the PDF, AMRO(T ) is the amplitude of the MRO
oscillation, δMRO(T ) is the phase factor, and rcutoff is the
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position of the first minimum of the PDF beyond the first
peak. Both AMRO(T ) and δMRO(T ) show only weak variations
with temperature [14]. QMRO is almost identical to Q1. The
S(Q) of the structurally coherent ideal glass state (ξs → ∞)
has a single Bragg sphere at QMRO [15]. The Curie-Weiss law,
Eq. (5), shows that the system is driven to the structurally co-
herent ideal glass state as temperature is reduced. The driving
force to increase the coherence will be discussed elsewhere.
We will assume that he structurally coherent ideal glass state
represents the ground state of the system, although this state
exists only in extrapolation, and in reality various frustration
factors prevent the system from reaching this state, just as the
frustrated ideal states assumed by other theories [25–27]. We
will conceptually start from this state, and then consider devia-
tions from this state due to frustration and thermal excitations.

B. Deviation from the structurally coherent ideal glass
state and the MRO

We assume that the imaginary structurally coherent ideal
glass state as the ground state of the system. As temperature
is increased thermal density fluctuations reduce the coherence
length as in Eq. (4). Thermal volume strain at an atom, i, is
given by

εV,i = 3εr,i = 3
ur,i

a
, ur,i = 1

NC,i

∑
j

ui j, (8)

where NC,i is the number of nearest neighbors of the ith
atom, ui j is the deviation in the distance between the center
atom i to the nearest-neighbor atom, j, from the distance
in the structurally coherent ideal glass state, and a is the
average nearest-neighbor distance. The second moment of the
average is

〈(εV )2〉 = 9

N
2
C

〈∑
j

(ui j )
2

〉
= 9

NC
〈(εR)2〉, (9)

where

εR =
[

1

NC

∑
j

(ui j )
2

] 1
2

(10)

describes the root-mean-square magnitude of local fluctua-
tions in the near neighbor distance which varies with time.
For simple liquids N̄C = 4π [28]. If we introduce volume, or
density, fluctuation described by εR to the structurally coher-
ent ideal glass state, the decay of G(r) from r to r + R, where
R = 2π/QMRO, is given by

G(r + R)

G(r)
= 〈sin {QMRO[r + R(1 + εR)]}〉

sin (QMROr)

= exp

[
−〈(QMRORεR)2〉

2

]
= exp

(
− R

ξs

)
. (11)

Thus,

1

ξs
= Q2

MROR〈(εR)2〉
2

= πNC

9
QMRO〈(εV )2〉. (12)

Now the nearest-neighbor distance, a, is defined by the first
peak in Eq. (7). Then, neglecting the phase factor, δMRO, which

is small, aQMRO = 5π/2,

a

ξs
= 10π3

9
〈εV

2〉. (13)

This equation relates the coherence length of the MRO to
the volume fluctuation at the atomic level.

C. Atomic-level stress and strain

We now calculate the volume fluctuation at the atomic level
using the atomic-level stresses tensor for an atom i, ¯̄σi. It is
defined by

σ
αβ
i = 1

Vi

∑
j

f α
i j r

β
i j, (14)

where α and β refer to Cartesian indices, Vi is the local atomic
volume of atom i, and fi j

α and ri j
β are the α and β compo-

nents of the two-body force and distance between atoms i and
j [16,17]. Its trace gives the atomic-level pressure

pi = 1
3

(
σ xx

i + σ
yy
i + σ zz

i

)
, (15)

whereas five other combinations give the shear, or deviatory,
stresses, τm,i, m = 1–5. Because the bulk of the two-body
forces originates from the nearest neighbors the atomic-level
stresses characterize the configuration of the nearest neigh-
bors [17]. For instance, the atomic volume strain,

εV,i = pi

B
, (16)

where B is bulk modulus, describes the local atomic volume
variation compared to the equilibrium atomic volume. There
are six stress components in each stress tensor, but because
f α
i j = − f α

ji the contribution from each bond {i, j} is counted
twice, so the total number of variables in the system of N
particles is 3N , equal to the degrees of freedom of the system.
This means that it is possible to describe the atomic dynamics
in terms of the dynamics of the atomic-level stresses if excita-
tions are localized. Indeed, in the liquid state the atomic-level
stresses follow the equipartition theorem,

〈p2〉
2B

= 〈τ 2〉
2G

= kBT

4
, (17)

where G is shear modulus [29,30].
The principal origin of the atomic-level pressure is the

atomic size mismatch [17,28]. If we place an atom in an
atomic site in a solid which is smaller than the atomic size, this
atom will be under compressive stress. To evaluate this effect
correctly, however, we have to consider the accommodation
effect by the surrounding atoms. For instance, in an icosahe-
dral cluster the distance between the center and the apex is
shorter than the apex-apex distance by 4.9%. This means that
in order to form an icosahedron with hard spheres, we have to
use a sphere at the center which is smaller by �x = 0.098 than
the 12 spheres on the peripheral sites. If we use 13 soft spheres
with the same size, we have to compress the central sphere by
εT

V = 1 − (1−�x)3 = 0.266 in volume strain to place it at the
center of the icosahedron without straining other atoms. The
εT

V is called the transformation strain [31]. At this moment
all the strain is in the center atom, whereas the atoms at the
peripheral sites have no strain. To reduce the total energy the
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strain on the central atom needs to be relaxed by εR
V and other

atoms need to be strained to accommodate the relaxation. For
an icosahedral cluster of 13 atoms interacting via the modi-
fied Johnson potential this strain was calculated to be εR

V =
0.141, after consideration of the secondary accommodation
of the icosahedral cluster by surrounding elastic medium (see
Appendix A).

This elastic accommodation by the neighbor atoms can
be modeled well by the elastic inclusion theory by Eshelby
[31]. In this theory an elastic sphere is inserted into an elastic
medium with a spherical hole. The size of the inserted sphere,
inclusion, does not match the size of the hole. In order to
match the size of the hole the size of the inclusion has to be
changed by a volume strain, εT

V . After insertion the system is
relaxed so that the strain in the inclusion can be partly accom-
modated by the surrounding elastic medium. According to the
Eshelby theory the strain on the inclusion after relaxation is
given by

εI
V = εT

V

Kα

, (18)

where

Kα = 3(1 − ν)

2(1 − 2ν)
, (19)

and ν is Poisson’s ratio, and the relaxation strain, εR
V = εT

V −εI
V

is given by

εR
V =

(
1 − 1

Kα

)
εT

V . (20)

The total energy is

E = BV

2Kα

(
εT

V

)2
. (21)

For the 13 icosahedral cluster of Fe atoms interacting with
the modified Johnson potential, ν = 0.25, εT

V = 0.266. We ob-
tain εR

V = 0.148 according to Eq. (20), which only slightly (by
5%) overestimates what is calculated for the icosahedral clus-
ter embedded in an elastic medium, 0.141. Thus, the Eshelby
theory is quite reliable in evaluating the atomic-level stresses
due to the atomic size mismatch including the accommodation
by the neighboring atoms, even though the atomic systems are
not an elastic continuum as assumed by Eshelby [17].

D. Atomic-level pressure in liquid

In liquid the local structure has a wide variety in topology
[18]. However, the atomic-level pressure is primarily depen-
dent on the local coordination number rather than the detailed
topology [17,32]. The relation between the coordination num-
ber, NC , and the average atomic-level pressure for a specific
value of NC can be calculated in the following way. If we place
an A atom with the radius rA in the liquid of B atoms with the
radius of rB, the average coordination number is given by [28]

NC (x) = 4π

(
1 −

√
3

2

)
(1 + x)[1 + x +

√
x(x + 2)], (22)

where x = rA/rB. If we replace the A atom with a B atom, it
does not fit because of the difference in size. This mismatch

produces the atomic-level pressure. The atomic size is not in-
herent to each element but depends on bonding and chemical
environment [33], but here we neglect these effects and focus
on purely geometric argument.

First, we start with the structurally coherent ideal glass
state given by Eq. (7). Even though this glass has long-range
structural coherence, its local structure is quite diverse with
distributed coordination numbers [15]. Thus, if we try to form
this glass with a single element, atoms do not fit the atomic
site. To make an atom fit snug into each site with the coordi-
nation number NC , we have to compress or expand the atom
by the volume strain,

εT
V = 3

2
�x = 3(3 − 2

√
3)

(
NC

4π
− 1

)
, (23)

as derived from the derivative of Eq. (22) evaluated at x = 1
(see Appendix B). The pressure is given by pT = BεT

V . At this
moment all the strain is in the center atom, but to reduce the
total energy the strain on the central atom needs to be relaxed
by εR

V and the matrix needs to be strained to accommodate the
relaxation, by Eq. (20). Now, to create the state with ξs → ∞,
the structurally coherent ideal glass state, atoms have to be
compressed or expanded with εT

v to fit the structure. After the
strain εT

v is locally relaxed by εR
v by straining the neighbors,

the structure is deviated from the structurally coherent ideal
glass state and loses long-range coherence. Therefore, εR

v is
the volume strain that characterizes the deviation from the
structurally coherent ideal glass state. Thus,

a

ξs
= 10π3

9

〈(
εR

V

)2〉
. (24)

E. Variation of the MRO with temperature

Now there are two kinds of strain. The first is the misfit
strain, ε

T,m f
V , that originates from the misfit of the atomic size

to the structurally coherent ideal glass state as we discussed
above, which depends on chemical composition. The second
is thermal strain due to thermal atomic fluctuations, εT,th

V .
Because the misfit strain is static whereas thermal strain is
dynamic with zero average,〈(

εT
V

)2〉 = 〈(
ε

T,m f
V

)2〉 + 〈(
εT,th

V

)2〉
. (25)

For the thermal strain, through the equipartition theorem
for T > Tg [29,30] we find

〈Eth〉 = kBT

4
, (26)

kBT = 2BV

Kα

〈(
εT,th

V

)2〉
, (27)

〈(
εR,th

V

)2〉 = (Kα − 1)2

Kα

kBT

2BV
. (28)

Thus, the strain which determines the MRO through
Eq. (23) is given by〈(

εR
V

)2〉 = 〈(
ε

R,m f
V

)2〉 + 〈(
εR,th

V

)2〉
= 9

10π3

a

ξs
= (Kα − 1)2

Kα

kB(T − TIG)

2BV
, (29)
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for T > Tg where

〈(
ε

R,m f
V

)2〉 = − (Kα − 1)2

Kα

kBTIG

2BV
. (30)

Therefore, TIG < 0. Thus,

ξs(T )

a
= C

Tg

T − TIG
, (31)

where

C = 9

10π3

Kα

(Kα − 1)2

2BV

kBTg
, (32)

which explains the Curie-Weiss law observed for ξ (T ) and
S(Q1) by diffraction experiment and by simulation [15]. Be-
cause Tg is given by [34]

kBTg = 2BV

Kα

(
εT,crit

V

)2
, (33)

where εT,crit
V is the universal critical transformation strain for

glass transition, we obtain

C =
(

9

10π3

)
1(

εT,crit
V

)2(
1 − 1

Kα

)2
. (34)

F. Comparison with simulation and experiment

We tested our prediction, Eq. (29), with MD simula-
tions using the LAMMPS software [23] for systems with
16 000/32 000 atoms. The test was made first with the model
by an embedded atom model (EAM) type many-body poten-
tial for Fe [35], which was designed to keep the value of B
constant and vary G. We used this model because it allows
one to examine the effect of Poisson’s ratio without changing
composition, thus avoiding the complications due to alloying.
The total potential energy is given by

EPE =
∑

i

[
F (ρ i ) + 1

2

∑
j �=i

φ(ri j )

]
, (35)

where φ(r) is the two-body potential, and

F (ρ) = A

2
F0ρ[ln ρ − 1], (36)

ρ i = 1

ρT

∑
j �=i

ρ(ri j ), (37)

ρT =
∑
j �=i

ρ(ri j ), (38)

ρ(r) = exp

[
−β

(
r

r0
− 1

)]
, (39)

F0 = − 1

N

∑
i, j �=i

ρ(ri j )[ln ρ(ri j ) − 1], (40)

where r0 ≈ a [35]. We choose the modified Johnson potential
(mJp) [24] as the pair potential φ(r), and β = 6. The coher-
ence length, ξs(T ), and bulk and shear moduli were calculated
as a function of temperature for the systems with A = 0 (the
original mJp for Fe), A = 0.04, 0.08, and 0.12. The plots of
a/ξ (T ) against T are shown in Fig. 2, for simulation with

FIG. 2. The MRO strain, 〈εv
2〉 = (9/10π 3)(a/ξs ), for liquid Fe

with various values of A (symbols), and by Eq. (27) (dotted lines).

various values of A, and are compared to those by Eq. (29)
using the simulation values for TIG. Even though we applied
the Eshelby theory based on elastic continuum to discrete
atomic systems, Eq. (29) explains the Curie-Weiss law of the
data with excellent agreement for the slope.

The second moment of the volume strain, 〈ε2
V 〉, is pro-

portional to a/ξ (T ) via Eq. (13), so it is linear with
temperature as shown in Fig. 3 for the experimental data for
Pd42.5Ni7.5Cu30P20 alloy liquid and the simulation data for
various metallic alloy liquids in Ref. [15]. We calculated the
value of C, the slope of the Curie-Weiss plot by Eq. (32),
and compared it in Fig. 4(a) with the value obtained for the
data shown in Figs. 2 and 3. In evaluating Eq. (32) we used
macroscopic values of elastic moduli, calculated by impos-
ing macroscopic strain by gradually modifying the periodic
boundary conditions and relaxing the structure at T = 1 K.
However, the alloys are chemically heterogeneous, and the
macroscopic moduli represents the average values for local
elasticity. For this reason, the results shown in Fig. 4(a) in-
dicate small disagreement with the fitted C values for alloy
glasses, even though it works very well for single-component
glassy Fe. We also determined the effective value of Kα for the

FIG. 3. The MRO strain related to the structural coherence
length, 〈ε2

v〉 = (9/10π 3)(a/ξs ), for Pd42.5Ni7.5Cu30P20 alloy liquid
determined by x-ray diffraction, and for various metallic alloy liquids
obtained by simulation [13].
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FIG. 4. (a) The value of C in Eq. (29) determined for the data
in Fig. 2 and S1, compared to the calculation by Eq. (30), (b) The
effective Poisson’s ratio, νeff , obtained by fitting Eq. (27) to the data,
compared to the calculated values of ν. The line indicates νeff = ν.

simulation results and calculated the effective Poisson’s ratio,
νeff . The value of νeff is compared with the calculated value of
ν in Fig. 4(b) for the experimental data on Pd42.5Ni7.5Cu30P20

alloy liquid and the simulation data for various metallic alloy
liquids in Ref. [15], in addition to the Fe simulation data
using the many-body potential, Eq. (35). Overall agreement
is excellent, supporting the validity of Eq. (29) in explaining
the Curie-Weiss law and predicting its slope.

The value of εT,crit
v in Eq. (33) determined for experimental

data is equal to 0.095 [34]. However, for simulation the effec-
tive cooling rate, 5 × 1010 K/s, is much higher than those for
experiments. Interestingly, in spite of such a large difference
in cooling rates, Eq. (33) is valid even for simulation if we use
a slightly higher value of εT,crit

v , which is equal to 0.105, as
shown in Fig. 5.

IV. DISCUSSION

A. Structural frustration

Liquids are condensed matter with density comparable to
those in the solid state. In some cases, liquids are denser
than solids, as in water and ice. The attractive interatomic
potential drives cohesion, and results in the condensation
of liquid. In the case of metallic or Lennard-Jones liquids,
maximizing compaction, thus density, is the primary principle

FIG. 5. kBTg/2BV plotted against Poisson’s ratio, ν. Circles are
for simulation (this work) and squares are for experimental values by
Ref. [34]. Lines are for two values of εT,crit

v by Eq. (33).

for formation of the structure. Local density is maximized
for four atoms forming a tetrahedral cluster. But the entire
three-dimensional space cannot be filled with tetrahedra, as
is well known because the inherent structural frustration of
three-dimensional space, where rules for local space filling
and global space filling are not the same [25–27].

Here imposing the long-range order in G0(r) resulted in
the large varieties in the SRO [15], as an outcome of this
frustration. The local strain, ε

T,m f
V , represents the atomic size

mismatch due to the frustration. From Eqs. (30), (31), and (33)
we obtain

ξs(Tg)

a
= C

1 − TIG/Tg
, (41)

TIG

Tg
= −

〈(
ε

T,m f
V

)2〉
(
εT,crit

V

)2 . (42)

The ξs(Tg)/a is related the liquid fragility [36],

m = d log η

d (Tg/T )

∣∣∣∣
T =Tg

, (43)

where η is viscosity [37]. Thus, the misfit strain is large for
fragile liquid and is small for strong liquid. In Fig. 6 m is
compared against 1/[1 + |TIG/Tg|]3 for various metallic liq-
uids. The values of m are determined by experiment [38–43].
A correlation between fragility and the misfit strain is clearly
seen. The ξs(Tg)/a, thus the misfit strain, is also related to the
ratio, wL/wG, where wL and wG are the Lorentzian and Gaus-
sian widths when the first peak of S(Q) is fitted with the Voigt
function, which is a hybrid of the Lorentzian and Gaussian
peaks. Because the exponential decay, Eq. (3), results in the
Lorentzian peak shape, we suggest that this ratio characterizes
the ideality of the structure [12]. In summary, the misfit strain,
ε

T,m f
V , arises as a consequence of structural frustration and is

small for fragile, more ideal liquid, and large for strong, less
ideal liquid.

B. Relation between MRO and SRO

The stress tensor, Eq. (14), has six components, the pres-
sure, the � = 0 term in the spherical harmonics representation,
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FIG. 6. Fragility coefficient, m, determined by experiment
(Pd42.5Ni7.5Cu30P20 [38], Pd82Si18 [39], Zr35Cu65 [40], Zr50Cu50

[41], Zr50Cu40Al10 [42], Ni62Nb38 [43], Ni80P20 [41]) compared to
1/[1 + |TIG/Tg|]3. The |TIG/Tg| is related to the magnitude of the
misfit strain through Eq. (42).

and the five shear components, the � = 2 terms. Whereas the
first peak of G(r) reflects all six terms, we have shown here
that the MRO represents only the pressure fluctuations. There
are several reasons for this important difference. The first is
that whereas the first peak of the PDF which describes the
SRO depicts the atom-atom correlations, or the point-to-point
correlations, the MRO peaks represent the correlation between
the central atom to the coarse-grained density fluctuations,
the point-to-set correlations [44]. The density fluctuations are
controlled by pressure fluctuation. The second reason is that
if we describe the structure in terms of the density waves
[45,46], the PDF sees only the longitudinal waves, and not the
shear waves [3]. Furthermore, the shear waves are strongly
damped and would not propagate in liquids [2,3].

We found that in supercooled liquid viscosity is determined
by the coherence length of the MRO. The activation energy for
viscosity, Ea(T ),

η(T ) = η∞ exp

[
Ea(T )

kBT

]
, (44)

is related to ξs(T ) through

Ea(T ) = E0

[
ξs(T )

a

]3

, (45)

just above Tg in Pd42.5Ni7.5Cu30P20 liquid [15]. Because
the glass transition is defined by η reaching 1013 poise
(= 1012 Pa s), the glass transition is controlled by ξs(T ), thus
by the volume fluctuation, εT,th

V , reaching the critical value,
εT,crit

V .
On the other hand, the SRO represented by the height of the

first peak of the PDF is dominated by local shear fluctuations,
because there are five shear components in comparison to
one component of pressure, and shear modulus, G, is lower
than the bulk modulus, B, resulting in larger shear strain [17].
Consequently, almost no change in the temperature derivative
is seen at Tg for the height of the first peak of the PDF [14].
This observation, that the SRO dynamics is not frozen in the
glassy state below Tg even though the MRO is frozen, has very

significant implications on the properties of simple glasses, as
will be discussed elsewhere.

Various models assume high-symmetry atomic clusters,
such as an icosahedral cluster, as building blocks to form the
MRO by stacking these clusters [47–49]. In such models the
relevant length scale for the MRO is the intercluster distance,
which is a few times the atomic distance, whereas the period-
icity of the observed MRO oscillations is comparable to the
interatomic distance. Therefore, the MRO discussed here can-
not be explained in terms of the building of the SRO clusters.
Furthermore, in such models the distribution of the atomic-
level strains will be bifurcated, less for the atoms within the
clusters and more for those connecting the clusters. But the
distribution of atomic-level stresses shows a single Gaussian
distribution, with no evidence of bifurcation [24,32]. In gen-
eral, spatially heterogeneous distribution of stresses results in
higher total elastic energy and is not preferred. In the present
work statistically homogeneous fluctuation of the atomic-level
stress is assumed, without assuming any building block.

V. CONCLUSION

For a long time, the medium-range order (MRO) in liquid
and glass, defined by the atomic correlations beyond the near-
est neighbors, has been considered to be a direct consequence
of the short-range order (SRO) in the group of the nearest-
neighbor atoms. Consequently, research efforts focused on
relating the properties of liquid and glass directly to the inter-
atomic potential and the SRO. However, mounting evidence
suggests that the MRO is distinct in nature from the SRO, and
the relationship between them is indirect. This distinction is
important because some properties, including viscosity and
glass transition, are controlled more by the MRO than by
the SRO. In this article we discuss the MRO as it relates
to the deviation from the structurally coherent ideal glass
state. Focusing on simple liquids, such as metallic liquids, we
calculate the temperature dependence of the MRO based upon
the concept of the atomic-level pressure. The results provide
the theoretical basis for the Curie-Weiss law for the structural
coherence length as observed by experiment and simulation.

The temperature dependence of the MRO is quite distinct
from that of the SRO, and the freezing of the MRO, not that of
the SRO, defines the glass transition. Describing the evolution
of the liquid structure with temperature, the elucidation of the
glass transition in particular, has been a long-standing ques-
tion. The theory described here presents a solution supported
by experimental and simulation data, and provides an impor-
tant piece of the puzzle on the origin of the glass transition, at
least for simple liquids with spherical pairwise or EAM-type
potentials, such as most metallic liquids. The extension to
more complex liquids, including covalent liquids, is left for
future work.

ACKNOWLEDGMENTS

The authors thank J. S. Langer for discussion and W.
Dmowski for help in the calculation of elastic moduli. This
work was supported by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences, Materials Sciences and
Engineering Division.

064110-7



TAKESHI EGAMI AND CHAE WOO RYU PHYSICAL REVIEW E 104, 064110 (2021)

APPENDIX A: ESHELBY THEORY

For an icosahedral cluster of 13 Fe atoms interacting with
the modified Johnson potential [24], the distance between the
central atom and the edge atom is RCE = 2.522 Å and the
edge-edge distance is REE = 2.652 Å. Because the equilib-
rium distance is R0 = 2.622 Å, the strain on the center-edge
bond is εLC = (RCE − REE )/REE = −0.0381, thus εI,FS

V =
1 − (1 + εLC )3 = 0.110 for the center atom. By comparing
to εT

V = 0.266, we obtain εR,FS
V = 0.156 for the center atom

in a free-standing icosahedral cluster. However, the strain on
the edge-edge bond is εLE = 0.0114. This means that the
icosahedral cluster has expanded by εC

V = 0.0346 compared to
the ideal volume of the icosahedral cluster. In order to reduce
the volume of the icosahedral cluster to the ideal volume we
have to apply the transformation volume strain to the cluster,
εT,cluster

V = εC
V . We then repeat the same Eshelby procedure for

the cluster, by compressing it to the ideal volume, placing it
in the hole of the elastic medium with the same ideal size,
and relaxing the cluster and the medium to minimize the total
elastic energy. Using Eq. (18), we obtain εIC

V = 0.0154 for the
icosahedral cluster. This has to be added to εI,FT

V . Therefore,
the final strain on the inclusion after the cluster is embedded
in the elastic medium is, εI

V = 0.125, and the relaxation strain
is εRC

V = 0.141. The value obtained by the Eshelby theory,
Eq. (20), εR

V = 0.148, is in the middle between εRC
V = 0.141

and εR,FS
V = 0.156.

It should be noted that the elasticity theory of Eshelby
is applicable even for liquid, as long as the relaxation time
of liquid is longer than the phonon timescale so that liquid
behaves like solid as far as elasticity is concerned. For this
comparison the Maxwell relaxation time, τM = η/G∞, where
η is viscosity and G∞ is the high-frequency shear modulus,

should be compared with the time for phonon to propagate
to the nearest neighbor, because most of the Eshelby strain is
borne by the shell of nearest-neighbor atoms. They become
equal to each other at the viscosity crossover temperature, TA

[50]. Therefore, the Eshelby theory is applicable at least at
temperatures below TA, which is about twice Tg for metallic
liquids [51] and higher for molecular liquids [40].

APPENDIX B: DERIVATION OF EQ. (23)

From Eq. (22), the ideal value of NC for x = 1 is

NC (1) = 4π. (B1)

Also

dNC (x)

dx

∣∣∣∣
x=1

= 2π

(
1 + 2√

3

)
. (B2)

Thus, to the first order,

�x = x − 1 = dx

dNC

∣∣∣∣
x=1

�NC,

�NC = NC (x) − NC (1) =
(

NC

4π
− 1

)
. (B3)

To fit a sphere with rB = xrA to the site for x = 1 we have
to change the size by �x = x−1. Then the A-B bond length,
rA + rB = (1 + x)rA, has to be compressed to 2rA. Thus, the
Voronoi volume defined by the nearest neighbors has the
volume strain

εT
v = 3

2�x. (B4)

From (B2)–(B4) we derive Eq. (23).
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