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Logarithmic finite-size scaling of the self-avoiding walk at four dimensions
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The n-vector spin model, which includes the self-avoiding walk (SAW) as a special case for the n → 0 limit,
has an upper critical dimensionality at four spatial dimensions (4D). We simulate the SAW on 4D hypercubic
lattices with periodic boundary conditions by an irreversible Berretti-Sokal algorithm up to linear size L = 768.
From an unwrapped end-to-end distance, we obtain the critical fugacity as zc = 0.147 622 380(2), improving
over the existing result zc = 0.147 622 3(1) by 50 times. Such a precisely estimated critical point enables us to
perform a systematic study of the finite-size scaling of 4D SAW for various quantities. Our data indicate that near
zc, the scaling behavior of the free energy simultaneously contains a scaling term from the Gaussian fixed point
and the other accounting for multiplicative logarithmic corrections. In particular, it is clearly observed that the
critical magnetic susceptibility and the specific heat logarithmically diverge as χ ∼ L2(ln L)2ŷh and C ∼ (ln L)2ŷt ,
and the logarithmic exponents are determined as ŷh = 0.251(2) and ŷt = 0.25(3), in excellent agreement with
the field theoretical prediction ŷh = ŷt = 1/4. Our results provide a strong support for the recently conjectured
finite-size scaling form for the O(n) universality classes at 4D.
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I. INTRODUCTION

The self-avoiding walk (SAW) is a special random walk
without self-intersection, and plays an important role in
combinatorics, probability, polymers sciences and statistical
mechanics [1]. The SAW on a connected graph is simply
a sequence of distinct vertices and each consecutive pair of
vertices are adjacent. Most studies about SAWs focus on
d-dimensional hypercubic lattices, where walks start from
the origin. Let cN denote the number of N-step SAWs, the
generating function is

χ (z) =
∞∑

N=0

cN zN =
∑

ω

z|ω|, (1)

where
∑

ω is over all walks and |ω| is the walk length. The
parameter z (z > 0) is called the fugacity or activity. The
summation converges for z < zc, where the critical value zc

is the convergence radius. Similarly, the two-point function
with the end point at coordinate x is defined as

G(x) =
∞∑

N=0

cN (x)zN =
∑

ω:0→x

z|ω|, (2)

where cN (x) denotes the number of N-step SAWs ending at
x. Obviously, χ (z) = ∑

x G(x), so the generating function
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χ (z) is simply the susceptibility of SAW. For the ensemble
of SAWs with fixed length N , called the canonical ensemble,
the mean displacement is ξN =

√
1

cN

∑
ω:|ω|=N ‖xω‖2 with xω

the endpoint of the walk and it is expected that

cN ∼ μN Nγ−1, ξN ∼ Nν . (3)

The connectivity constant μ is related to the critical fugacity
as μ = 1/zc, and γ , ν are critical exponents. Since ξN plays
a role of correlation length, ν is normally referred to be the
correlation-length exponent. In the ensemble of SAWs with
fixed fugacity z, called the grand-canonical ensemble, the
mean displacement is ξ (z) = √∑

ω z|ω|‖xω‖2/
∑

ω z|ω|. When
z approaches zc from below, it is expected that

χ (z) ∼ (zc − z)−γ , ξ (z) ∼ (zc − z)−ν, (4)

and G(x) ∼ ‖x‖2−d+η at zc.
Over the past few decades, the SAW has been extensively

studied. In two dimensions (2D), the Coulomb-gas theory pre-
dicted the critical exponents γ = 43/32 and ν = 3/4 [2]. This
can even be established rigorously by proving that the scaling
limit of SAW is SLE8/3 (Schramm-Loewner evolution) [3],
conditioned on the conjecture that the scaling limit of SAW
exists and is conformally invariant. In 2D, the exact value of
critical point is only known on the honeycomb lattice, which

was first conjectured as zc = 1/
√

2 + √
2 in 1982 [2] and after

30 years was finally proved rigorously [4]. Numerical esti-
mates of critical points on other 2D lattices are summarized in
Table I. In particular, the value of zc on the square lattice was
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TABLE I. Summary of critical points on various lattices and
dimensions. The type of lattices and methods are shown in brackets.
Here TTM, EM, and MC deonte topological transfer-matrix method,
exact enumeration, and Monte Carlo methods, respectively. Esti-
mates of zc for d � 4 are only available on hypercubic lattices using
Monte Carlo methods.

d zc

1/
√

2 + √
2 [2,4] (honeycomb)

0.379 052 277 755 161(5) [5] (square, TTM)
2 0.240 917 574 5(15) [23] (triangle, EM)

0.390 537 012 5(15) [24] (Kagomé, EM)

0.213 491 0(3) [25] (simple cubic, MC)
3 0.099 630 6(2) [26] (face-centered cubic, MC)

0.153 127 2(5) [26] (body-centered cubic, MC)

4 0.147 622 3(1) [10]
0.147 622 380(2)(this work)

5 0.113 140 843(5) [11]

6 0.091 927 87(3) [10]

7 0.077 502 46(2) [10]

8 0.067 027 467(9) [10]

estimated to the 15th decimal place, an unprecedent precision,
using the topological transfer-matrix method [5]. No rigorous
results are available in 3D. Estimates of zc on various 3D
lattices are shown in Table I, and the critical exponents were
determined to a very high precision as γ = 1.156 953 00(95)
[6] and ν = 0.587 597 00(40) [7]. For d � 5, it was proved
via lace expansion [8,9] that the two-point function G(x) ∼
‖x‖2−d and critical exponents γ = 1, ν = 1/2, consistent
with the prediction of the Gaussian fixed point in the frame-
work of renormalization group (frequently referred to be the
mean-field theory). Critical points on high-dimensional hyper-
cubic lattices were estimated in Refs. [10,11], summarized in
Table I.

For SAW, dc = 4 is the upper critical dimension, where
scaling behavior can be described by mean-field theory but
with multiplicative logarithmic correction. In Refs. [12,13],
renormalization-group arguments give that

cN ∼ μN [ln(N/N0)]1/4, ξN ∼ N1/2[ln(N/N0)]1/4 , (5)

with some positive constant N0. However, to numerically con-
firm the logarithmic scaling is a big challenge, since one has
to simulate very long self-avoiding walks. Not until recently,
Clisby [14] simulated SAWs with walk length up to one
billion steps using an improved pivot algorithm [15,16], and,
finally, the logarithmic scaling was clearly observed for the
first time. By universality arguments, the behavior of χ (z) and
G(x) for 4D SAW is believed to exhibit the same scaling as the
weakly self-avoiding walk; for the latter it has been rigorously
proved that [17,18]

G(x) ∼ ‖x‖−2, χ (z) ∼ (zc − z)−1[− ln(zc − z)]1/4. (6)

A well-known connection between SAW and spin systems,
pointed out by de Gennes in 1970’s, is that SAW can be
interpreted as the n = 0 case of the n-vector [or O(n)] model.
The O(n) model is to describe a system of interactive spins,

and its Hamiltonian is

H = −
∑
x∼y

Sx · Sy, (7)

where the summation is over all pairs of adjacent vertices and
the spins Sx are n-component unit vectors. Special cases of
the O(n) model are the Ising model (n = 1), the XY model
(n = 2) and the Heisenberg model (n = 3). In particular, un-
der the graphical (loop) representation, it can be shown that
SAW can be interpreted as a 0-component spin model, via the
fact that the two-point function of the n-vector model reduces
to that of SAW as n → 0 [1]. It is known that the upper
critical dimension is dc = 4 for the general O(n) model, and is
believed that for d > 4, the n-vector model exhibits the same
critical behavior for all n � 0.

Recently, it receives much attention to study the scaling
behavior of SAW on high-dimensional boxes [19–21], for
understanding the finite-size scaling (FSS) of the general n-
vector model for d > dc [22], which has been the subject
of long-standing debate since 1980s. For the convenience
of readers, we shall briefly recall some basic aspects of the
FSS theory in critical phenomena, and a brief review of the
subtleties and recent development of FSS in high dimensions.

FSS is a fundamental theory to describe the asymptotic
approach of finite systems to thermodynamic limit near a
continuous phase transition point. The main conjecture of FSS
is that the correlation length is cut off by the order of linear
system size, and the singular part of the free energy function
can be written as

f (t, h) = L−d f̃ (tLyt , hLyh ), (8)

where the parameters t , h represent the thermal and magnetic
scaling fields, and yt , yh are the corresponding renormaliza-
tion group exponents with yt = 1/ν, yh = d − β/ν. Here β

and ν are the critical exponents for order parameter and cor-
relation length, respectively. Below upper critical dimensions
dc, FSS has been widely accepted, and proved to be a powerful
tool to extract critical points and exponents from finite-size
systems.

However, the FSS above the upper critical dimension is
surprisingly subtle. For d > dc, the critical behavior is con-
trolled by the Gaussian fixed point [27], where one has yt = 2
and yh = 1 + d/2. So, together with the FSS ansatz, it pre-
dicts that at the critical point the susceptibility scales as χ ∼
L2yh−d = L2 on high-dimensional boxes where L is the linear
system size. Although this is well accepted on hypercubic
lattices with free boundary conditions and consistent with
numerical observations later [28–31], subtleties appear when
one considers the case of periodic boundary conditions (PBC).
In 1982, Brézin [32] theoretically showed that the Gaussian-
fixed-point prediction fails on hypercubic lattices with PBC.
In the next year, this failure was repaired by Binder and Priv-
man [33–35] using the mechanism of dangerous irrelevant
variables, the effect of which leads to two new renormalized
exponents y∗

t = d/2, y∗
h = 3d/4. As a consequence, the sus-

ceptibility was predicted to scale as χ ∼ L2y∗
h−d = Ld/2 for

the PBC case, distinct with the Gaussian fixed-point predic-
tion χ ∼ L2. In 1985, Binder et al. [36,37] showed some
numerical evidence to the scaling χ ∼ Ld/2 by simulating the
Ising model on the 5D hypercubic lattices with PBC with
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system sizes up to L = 7. In the same year, by studying the φ4

field Hamiltonian, Brézin and Zinn-Justin [38] theoretically
confirmed the scaling of χ ∼ Ld/2. Other Monte Carlo studies
providing consistent scaling of susceptibility can be found in
Refs. [28,39–45].

To understand the FSS of χ above dc and with PBC, one
should start with the more fundamental quantity, the two-point
function G(x), since χ = ∑

x G(x). In 1997, by studying the
long-range Ising model in one dimension with PBC, Luijten
and Blöte [39] numerically observed that G(x) behaves dif-
ferently for short and long distances above dc. For the Ising
model on the 5D torus, it was claimed in Ref. [46] that
G(x) still behaves Gaussian-like ‖x‖−3 for the short distance,
but then becomes ‖x‖−5/2 for the large distance. In 2006,
Papathanakos [47] conjectured that for the Ising model on
high-dimensional (d > 4) tori, the two-point function

G(x) ∼
{‖x‖2−d if ‖x‖ � O(Ld/[2(d−2)] )

L−d/2 if ‖x‖ � O(Ld/[2(d−2)] )
, (9)

and proved that the right-hand side of Eq. (9) is a lower bound
of G(x). This conjecture means that G(x) still follows the
Gaussian fixed-point prediction for small ‖x‖, but enters a
distance-independent plateau L−d/2 for large ‖x‖. According
to Eq. (9), the scalng of the susceptibility, χ ∼ Ld/2, comes
from the plateau, instead of the algebraic decaying of G(x).
On the other hand, Kenna and Berche proposed [48] in 2014
a different scenario that above dc, the exponent η governing
the behavior of the two-point function should be replaced by a
new exponent ηQ, i.e., G(x) ∼ ‖x‖2−d−ηQ with ηQ = 2 − d/2.
This disagrees with the Gaussian fixed-point prediction but
is consistent with the numerical observation G(L/2) ∼ L−d/2

and χ ∼ Ld/2. In 2014, by studying the Fourier modes of sus-
ceptibility χk for the Ising model on the 5D torus, Young and
Wittmann numerically observed that χk �=0 ∼ L2 and χk=0 ∼
Ld/2. Namely, the nonzero mode χk �=0 still follows the Gaus-
sian fixed-point prediction, which clearly refuted the proposed
scaling of G(x) involving ηQ, but the zero mode χk=0 shows
the anomalous scaling Ld/2. Later, Grimm et al. [19–21]
studied the two-point function of SAW and the Ising model
on five-dimensional tori, which, by universality arguments,
should exhibit the same scaling behavior. By simulating sys-
tem sizes up to L = 221 for SAW and L = 101 for the Ising
model, they provided strong numerical evidence to Eq. (9).

It is believed that the complete graph can be used to model
the infinite-dimensional lattices with PBC. Thus, we argue
that the distance-independent regime of the two-point function
in Eq. (9) can be regarded as the contribution from the com-
plete graph. Indeed, one can show that on the complete graph
the correlation between any two vertices scales as V −1/2,
which corresponds to L−d/2 on the lattices once we match the
volume V = Ld . The distance-dependent behavior in Eq. (9)
still follows the Gaussian fixed-point prediction. So it suggests
that, in order to completely describe the FSS behavior of the
Ising model above dc with PBC, we need both the Gaussian
fixed-point asymptotics and the complete-graph asymptotics
and the FSS of the free energy density should be written as

f (t, h) = L−d f̃0(tLyt , hLyh ) + L−d f̃1(tLy∗
t , hLy∗

h ). (10)

From universality, it is expected that Eq. (10) applies to
the general O(n) model above dc = 4. The term f̃0 arises
from the Gaussion fixed point with (yt , yh) = (2, 1 + d/2),
and accounts for the FSS of distance-dependent observables
including the correlation function G(x) for short ‖x‖ and
the nonzero Fourier mode χk �=0, etc. The term f̃1 can be
regarded to correspond to the complete-graph asymptotics
with (y∗

t , y∗
h ) = (d/2, 3d/4), and acts as the “background”

contribution describing the leading FSS of the conventional
observables, which include the magnetization, the energy, the
magnetic susceptibility and the specific heat, etc. In particular,
f̃1 describes the L dependence of the plateau of G(x) for large
‖x‖, which leads to the scaling χ ∼ Ld/2. This is consistent
with the asymptotics of the susceptibility of the Ising model
on the complete graph [49] with V vertices, χ ∼ V 1/2 [46],
by setting V = Ld . Moreover, a dimensionless ratio, defined
from the SAW walk length and its fluctuation, was observed
to quickly converge to the value analytically obtained from
the complete-graph SAW [21], giving a strong support to the
conjecture that the term f̃1 corresponds to the complete-graph
asymptotics.

Rich geometric phenomena, consistent with Eq. (9) and
(10), are also observed. By studying the Fortuin-Kasteleyn
clusters of the 5D Ising model, the authors in Ref. [50] further
demonstrated that the largest cluster follows the complete-
graph asymptotic and other clusters follow the Gaussian
fixed-point prediction. Therefore, the Gaussian fixed-point
term f̃0 in Eq. (10) not only dominates the scaling behavior
of many Fourier-transformed quantities with nonzero modes
but also determine the behavior of quantities with scale much
smaller than the system size. For the 5D SAW and the loop
representation of the 5D Ising model, to account for how many
times the walk (loop) wraps around the periodic boundaries,
an unwrapped distance u was introduced such that, effectively,
the finite box is reciprocally placed in the infinite space with
a period of side length L. Surprisingly, it is found that [19],
in terms of u, the plateau of G(u) disappears and the Gaus-
sian decaying behavior G(u) ∼ ‖u‖2−d extends to a distance
ξu ∼ Ld/4, which we call the unwrapped correlation length.
Apparently, ξu diverges faster than the linear size L, giving a
vivid and unconventional picture that, at criticality, the SAW
wraps around the periodic boundaries for many times and
the winding number diverges as L(d−4)/4. The divergence of
the correlation length for the 5D Ising model with PBC was
observed in Ref. [51].

At the upper critical dimensionality dc = 4, the Gaus-
sian and the complete-graph sets of exponents coincide, i.e.,
(2, 1+d/2) = (d/2, 3d/4) = (2, 3). For such a case, loga-
rithmic corrections are generally expected. It was proposed in
Ref. [52] that the free energy density of the O(n) model with
n = 1, 2, 3 can be written as

f (t, h) = L−4 f̃0(tLyt , hLyh )

+ L−4 f̃1(tLyt (ln L)ŷt , hLyh (ln L)ŷh ), (11)

where (yt , yh) = (2, 3) and the logarithmic exponents ŷt =
4−n

2n+16 , ŷh = 1/4 [53,54]. As in Eq. (10), there simultaneously
exist two terms in Eq. (11); the former comes from the Gaus-
sian fixed point and describes the FSS of distance-dependent
observables, and the latter describes the “background”
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contributions for the FSS of macroscopic quantities. However,
f̃1 can no longer be regarded as an exact counterpart of the
FSS of complete graph, and thus, apart from the presence of
multiplicative logarithmic corrections, this might lead to other
effects, e.g., deviation of some universal quantities from their
complete-graph counterparts.

In Ref. [52], the authors simulated the O(n) model with
n = 1, 2, 3 and measured the Fourier mode of susceptibility
χk. They numerically found that χk �=0 ∼ L2yh−d and χk=0 ∼
L2yh−d (ln L)2ŷh . For the two-point function, the authors ob-
served that

G(x) ∼
{‖x‖−2 if ‖x‖ � O

[
L

(ln L)ŷh

]
L−2(ln L)2ŷh if ‖x‖ � O

[
L

(ln L)ŷh

] , (12)

and estimated ŷh = 0.25(5), in agreement with the predicted
value 1/4. Similarly to the d > dc case, one also expects
that there exists an unwrapped correlation length ξu, which
diverges logarithmically faster than L as ξu ∼ L(ln L)ŷh . Con-
sistent picture was observed for the correlation length of the
4D Ising model with PBC in Ref. [51].

In Ref. [52], little attention was paid to the scaling behavior
of thermal quantities. For example, the logarithmic diver-
gence of the specific heat at the critical point, C ∼ (ln L)2ŷt

as predicted from Eq. (11), was not observed in Ref. [52]. In
Ref. [55], the authors simulated the 4D Ising model at the crit-
ical point and observed that the specific heat is still bounded
with system sizes up to L = 80, which is contradictory to the
prediction from Eq. (11). Thus, more evidences are needed to
clarify the critical scaling of the specific heat, and to support
Eq. (11) consequently. It would be also interesting to study the
FSS of the unwrapped correlation length ξu.

By universality arguments, we expect that Eq. (11) can also
be applied to SAW with ŷt = 1/4, which is larger than those
n > 0 cases. For SAW, larger system sizes are achievable in
simulations than spin models, since one only needs to record
a single walk instead of the whole lattice. Also, an irreversible
Berretti-Sokal (BS) algorithm was developed in [11], which
was shown to be particularly efficient for simulating SAWs
on high-dimensional lattices. These advantages have been uti-
lized in Refs. [19,20,56] to confirm the form of G(x) in Eq. (9)
and G(u). Moreover, in the high-temperature phase (z < zc)
and in the thermodynamic limit, the specific heat equals zero
since the energy density of SAW (walk length divided by the
volume) is zero. Therefore, compared with spin models, the
specific heat of SAW has no regular part at the critical point,
and is expected to suffer less finite-size corrections.

In this paper, we simulated the SAW in 4D with PBC
and the linear system size is up to L = 768. We found that,
among various quantities, the unwrapped end-to-end distance
(unwrapped correlation length) ξu suffers surprisingly weak
finite-size corrections, from which we obtain a precise esti-
mate of the critical point zc = 0.147 622 380(2), improving
the existing result 0.147 622 3(1) [10] by 50 times. At the
estimated zc, we observed the expected scaling for all the
measured quantities as by Eq. (11), such as the mean walk
length N ∼ L2(ln L)ŷt and the susceptibility χ ∼ L2(ln L)2ŷh .
In particular, we clearly observe the specific heat diverges as
C ∼ (ln L)2ŷt , which, together with the results in Ref. [52],
provides a complete numerical support to Eq. (11). Our data

analysis estimates that ŷh = 0.251(2) and ŷt = 0.25(3), in
agreement with the expected value 1/4.

The f̃1 term in Eq. (11) acts as the solely-L-dependent
background contribution, which would vanish under Fourier
transformation. So the Fourier modes of the macroscopic
quantities are expected to follow the prediction from the f̃0

term. Indeed, we measure the Fourier modes of the mean
walk length Nk, the specific heat Ck and the susceptibility χk
with k �= 0, and observe that Nk ∼ L2, χk ∼ L2 and Ck tends
to a constant, all consistent with the Gaussian fixed-point
predictions.

The remainder of this article is organized as follows. In
Sec. II, we define the variable-length ensemble of SAW in 4D
torus and introduce the algorithms, sampled observables and
their expected finite-size scaling behavior. Numerical results
are presented in Sec. III. We end with a discussion in Sec. IV.

II. OBSERVABLES AND FSS ANALYSIS

A. Model and algorithm

We use an irreversible version of the Berretti-Sokal
algorithm [11] to simulate self-avoiding walks on four-
dimensional hypercubic lattices with PBC. We first introduce
some notations. Let

TL =
{[

1−L
2 , L−1

2

]d
, if L is odd[

1 − L
2 , L

2

]d
, if L is even

(13)

be the d-dimensional boxes with linear size L and peri-
odic boundary conditions. Let ω = (ω0,ω1,ω2, . . . ,ω
) be
an 
-step self-avoiding walk, where each ωi ∈ TL and ‖ωi −
ωi+1‖ = 1. For simplicity, 
 is used to specify the walk length

 = |ω|. Let W be the set of all self-avoiding walks on TL

rooted at the origin (fixing ω0 = 0). We shall simulate with a
fixed fugacity z, i.e., in the variable-length (grand-canonical)
ensemble of the self-avoiding walk model on TL, defined by
choosing a SAW ω ∈ W via the following probability:

π (ω) = χ−1 · z
, ∀ ω ∈ W, (14)

where the susceptibility χ , as defined in Eq. (1), acts as a
normalization factor. On a high-dimensional hypercubic lat-
tice with coordination number � = 2d , the critical fugacity is
known to be zc ≈ 1/(2d − 1) � 1.

The celebrated Metropolis method can be straightfor-
wardly used to simulate the SAW by Eq. (14). Among the
nearest neighbors of the endpoint ω
, one of them is randomly
chosen, say x, and the endpoint is proposed to move there.
For z < 1, if the chosen vertex x happens to be at ω
−1,
one simply erases the SAW by one step (
 ← 
 − 1), and
moves the endpoint there (ω
 ← x). Otherwise, if the self-
avoiding condition is satisfied (x is not on the walk), then
the proposal of ω
 ← x is to increase the length by one step,

 ← 
 + 1, and the acceptance probability is P = z. Near zc,
about d trials are needed in order to have one successful
update. The BS algorithm [57] introduced a simple trick to
overcome this problem. One first randomly chooses either the
length-increasing (+) or the length-decreasing (−) operation
with half-by-half probability. For operation (−), the endpoint
ω
 is directly moved to the next-to-the-end point ω
−1, and
the acceptance probability is P(−) = min{1, 1/z(� − 1)}. For
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operation (+), one uniformly at random chooses one of (� −
1) neighbors (not including ω
−1) of ω
, and the acceptance
probability is P(+) = min{1, z(� − 1)}. The detailed-balance
condition can be easily proved. Near criticality zc ≈ 1/(� −
1), the acceptance probabilities are close to 1, and thus the BS
algorithm gains a speeding-up factor about d , compared with
the standard Metropolis algorithm.

The simulation efficiency can be further significantly im-
proved by introducing an irreversible procedure, in which
the balance condition is satisfied but the detailed-balance
condition is broken. For the irreversible BS method, each
SAW state in the configuration space W is duplicated into
two copies, specified by an auxiliary state, (+) and (−),
respectively. Within the extended configuration space W̃ =
W ⊗ {−,+}, three types of update operations are introduced:
the length-increasing, the length-decreasing, and the switch-
ing operation. The first two operations are the same as those
in the BS algorithm, and the switching operation is to switch
between the auxiliary states while the walk is kept unchanged.
For any SAW with auxiliary state (+), only the length-
increasing and the switching operation are allowed; for any
SAW with auxiliary state (−), only the length-decreasing and
the switching operation are allowed.

With the above definitions, the irreversible BS algorithm
[11] can be easily formulated as follows. For a SAW with (−),
the length-decreasing operation is performed with probability
P(−), and, otherwise, the switching operation. Similarly, for a
SAW with (+), the length-increasing operation is carried out
with probability P(+), and the switching operation, otherwise.
It can be derived from the balance condition that the accep-
tance probabilities, P(+) and P(−), are the same as those in the
reversible BS algorithm. At the critical point, since zc(2d − 1)
is slightly larger than 1, one has P(+) = 1 and P(−) less but
very close to 1; for instance, P(−) ≈ 0.97 for the critical 4D
SAW. In this case, the simulation procedure is the following.
The SAW keeps growing until it hits itself, and then, the
length-decreasing operation persists until a rejection event
occurs with a small probability or the SAW is completely
erased. This leads to large probability flow circles, and the
diffusive feature of random updates in the Metropolis and the
BS algorithm is suppressed and partly replaced by ballistic-
like behavior. For the critical 4D SAW, in comparison with
the Metropolis algorithm, the efficiency is improved by more
than 100 times [11]. For the complete graph, the irreversible
BS algorithm is qualitatively more efficient than the reversible
methods, as for the irreversible worm algorithm [58].

Finally, it is mentioned that a hash-table technique is
implemented in order to efficiently check the self-avoiding
condition.

B. Sampled quantities

In simulations, besides the conventional coordinates x, the
unwrapped coordinates of the SAW are dynamically calcu-
lated and stored in computer memory. Initially (empty lattice),
u = 0. At each step of updating the walk, add ei (−ei) to u if
the walk moves along (against) the ith direction. Here ei is the
unit vector in the ith direction.

After thermalization, measurements of various observables
are taken in every L2 Monte Carlo steps. Given a self-avoiding

walk ω, we sample the following observables. For these
Fourier modes, we sample with the wave vector k(k, i) =
2πk

L ei, where i = 1, 2, 3, 4 and k = 1, 2, 3. Our data show
that Fourier modes using k(2, 1) suffer slightly less finite-size
corrections, so in the following discussion we fix the wave
vector k = k(2, 1).

(a) The walk length N = |ω| and its Fourier mode Nk =∑N
j=1 eik·ω j ;
(b) The return-to-origin indicator D0 = 1(N = 0) and a

Fourier mode Fk = eik·ωN .
(c) The end-to-end distance R = ‖ωN ‖ and its un-

wrapped version Ru := ∑d
i=1 |u(ω)i|/d , i.e., the averaged

absolute value of the coordinates of u(ω).
The measurement occupies little computer time, since the

measured observables are dynamically updated.
We then obtain the ensemble average (〈·〉) of the follow-

ing quantities:
(i) The mean walk length N = 〈N 〉, an energy-like

quantity, and its variance C = 1
V (〈N 2〉 − 〈N 〉2), which is

the analog of the specific heat;
(ii) The Fourier mode of walk length Nk = 〈|Nk|〉 and

the specific heat Ck = 1
V (〈|Nk|2〉 − 〈|Nk|〉2);

(iii) The susceptibility χ = 1/〈D0〉. This equality

holds since 〈D0〉 =
∑

ω:|ω|=0 z|ω|∑
ω z|ω| = 1/χ . The Fourier mode of

susceptibility χk = 〈|Fk|〉/〈D0〉;
(iv) The mean end-to-end distance ξ = 〈R〉 and the

mean unwrapped end-to-end distance ξu = 〈Ru〉;
(v) The Binder ratio QN = 〈N 2〉

〈N 〉2 .

C. Finite-size scaling analysis

By universality argument, we expect the scaling form of the
finite-size free energy density f (t, h) in Eq. (11), conjectured
for the O(n) model with n = 1, 2, 3, can be extended to the
SAW model (n = 0). When h = 0, the FSS formulas for the
susceptibility χ , the mean walk length N and its variance C
are

χ (t, L) ∼ L2(ln L)2ŷh χ̃0[tLyt (ln L)ŷt ] + L2χ̃1(tLyt ),

N (t, L) ∼ L2(ln L)ŷt Ñ0[tLyt (ln L)ŷt ] + L2Ñ1(tLyt ),

C(t, L) ∼ (ln L)2ŷt C̃0[tLyt (ln L)ŷt ] + C̃1(tLyt ), (15)

where t = z − zc, (yt , yh) = (2, 3), (ŷt , ŷh) = (1/4, 1/4), and
χ̃0(·), χ̃1(·), Ñ0(·), Ñ1(·), C̃0(·), C̃1(·) are scaling functions.

We now derive the FSS of the unwrapped end-to-end
distance ξu. Consider an unwrapped two-point function
G̃(u) := ∑

ω:u(ω)=u z|ω|, we expect that, for d � dc, G̃(u) ∼
‖u‖2−d g(‖u‖/ξu), where the function g(x) decays sufficiently
fast to zero as x → ∞ such that the integral

∫ ∞
0 xαg(x) < ∞

for all α ∈ (0,∞). It then follows that

χ =
∑

u

G̃(u) ≈
∫ ∞

0
tg(t/ξu)dt ∼ ξ 2

u . (16)

Since χ ∼ L2(ln L)2ŷh , it follows that ξu ∼ L(ln L)ŷh . Near the
critical point, we expect that

ξu(t, L) ∼ L(ln L)ŷh ξ̃u[tLyt (ln L)ŷt ], (17)

where ξ̃u(·) is the scaling function.
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FIG. 1. Plot of the unwrapped end-to-end distance ξu, rescaled
by L(ln L)1/4, near the critical point and for various system sizes.
The red vertical line indicates the new estimate of zc, while the
dashed vertical line is the central value of the previously best estimate
of zc = 0.147 622 3. The inset zooms in the intersection region, to
clearly show their deviation.

The FSS of Fourier-mode quantities are expected to follow
the Gaussian fixed-point predictions, that is,

χk ∼ L2, Nk ∼ L2, Ck ∼ const. (18)

III. RESULTS

In this section, we provide numerical results to support the
scaling behavior of various quantities conjectured in Sec. II C.
We perform least-square fits of our Monte Carlo data to the
expected ansatz. As a precaution against correction-to-scaling
terms that we miss including in the fitting ansatz, we impose
a lower cutoff L � Lmin on the data points admitted in the fits,
and systematically study the effect on the residuals (denoted
by chi2) by increasing Lmin. In general, the preferred fit for
any given ansatz corresponds to the smallest Lmin for which
the goodness of the fit is reasonable and for which subsequent
increases in Lmin do not cause the chi2 value to drop by vastly
more than one unit per degree of freedom (DF). In practice, by
“reasonable” we mean that chi2/DF � 1. The systematic error
is obtained by comparing estimates from various reasonable
fitting ansatz.

We first carry out extensive simulations at the previously
best estimate zc = 0.147 622 3 [10] with system sizes up to
512. However, from these data, the estimates of ŷt (from N
and C) and ŷh (from χ ) are inconsistent with their expected
value 1/4. The reason might be the precision of zc is not
high enough. So we next carry out simulations around zc to
estimate zc to a higher precision.

A. Estimate of the critical point zc

As suggested by the scaling behavior of ξu in Eq. (17),
if one plots ξu/[L(ln L)ŷh ] versus z for various system sizes,
then at the critical point an intersection is expected for large
L. Indeed, as shown in Fig. 1, by letting ŷh = 1/4 one can
see an excellent intersection point for L � 32. This suggests

that ξu suffers very weak finite-size corrections and thus is a
nice quantity for estimating zc. In the inset of Fig. 1, we can
see that the intersection point is around 0.147 622 380, which
is clearly larger than the central value of the previously best
estimate, as indicated by the red dashed line.

To estimate zc systematically, we perform the least-square
fits of the ξu data onto the following ansatz,

ξu

L(ln L + c0)1/4 =
m∑

k=0

ak (z − zc)k[Lyt (ln L + c′
0)ŷt ]k

+ b1Ly1 + b2Ly2

+ c1(z − zc)Lyt +y1 (ln L + c′
0)ŷt . (19)

Here m is the highest order we keep in the fitting ansatz,
from the Taylor expansion of ξ̃u around z = zc. The constants
c0, c′

0 are nonuniversal constants which are commonly used
when fitting the data at the upper critical dimension where
logarithmic corrections are involved [59]. The terms b1, b2

account for the finite-size corrections with y2 < y1 < 0. The
c1 term accounts for the crossing effect between finite-size
corrections and the scaling variable (z − zc)Lyt (ln L)ŷt .

We start with fixing c0, c′
0 = 0. From our fits, we notice

that leaving both yt and ŷt free cannot produce stable results.
So we start with fitting by fixing yt to its expected value
2 and leaving ŷt free. We first try the fits with m = 2 and
without including any correction terms in the ansatz, that is,
setting b1, b2, c1 to zero. The result shows that chi2/DF < 1
when Lmin = 48, so indeed ξu suffers quite weak finite-size
corrections. This fit gives that zc = 0.147 622 379 8(10) and
ŷt = 0.28(3), consistent with the expected value 1/4. The co-
efficients ak are found to be consistent with zero when k � 3.
Thus, in the following, we fix m = 2. We then try to fit by
including one correction term b1Ly1 . Leaving y1 free cannot
produce stable fits, which is expected since the corrections are
very weak (y1 is small). Fixing y1 to either −1 or −2 in the
ansatz produce consistent estimate zc = 0.147 622 380 6(12)
and zc = 0.147 622 380 0(9), respectively. Consistent esti-
mates are also obtained when fitting with fixing y1 = −1 and
y2 = −2. In all scenarios above, including the crossing-effect
term to the ansatz shows that c1 consistent with zero and its
effect to the estimates of other parameters is negligible.

We then perform the fits with ŷt fixed at 1/4 and yt free, and
follow the similar procedure described above. In this scenario,
our fits again produce consistent estimate for zc and yt . Similar
results are also obtained from the fits with fixing both yt = 2
and ŷt = 1/4. We show some fitting details in Table II.

We then try the fits with leaving c0, c′
0 free. However,

leaving both c0, c′
0 free in the fits cannot produce stable

results. We next try to fix c′
0 = 0 and leave c0 free. Rea-

sonable fits are obtained at Lmin = 48, which gives that zc =
0.147 622 380 6(9) and c0 = −0.04(2). The estimate of zc is
consistent with the fixing c0, c′

0 = 0 case. Finally, we try the
fits with fixing c0 = 0 but leaving c′

0 free. Stable fits are ob-
tained at Lmin = 48, which give zc = 0.147 622 379 6(8) and
c′

0 = −0.5(5). Fitting details are shown in Table II. Clearly,
our fits suggest both c0 and c′

0 are consistent with zero within
two standard deviations, and thus the effect of including char-
acteristic length to Eq. (19) is negligible. This means that
ξu suffers very weak finite-size corrections, both in additive

064108-6



LOGARITHMIC FINITE-SIZE SCALING OF THE … PHYSICAL REVIEW E 104, 064108 (2021)

TABLE II. Fitting results for the unwrapped end-to-end distance ξu using the ansatz Eq. (19) with m = 2, and b1, b2, c1 = 0.

Lmin yt ŷt zc c0 c′
0 a0 a1 a2 chi2/DF

48 2.005(5) 1/4 0.147 622 379 6(8) 0 0 0.443 52(4) 0.83(2) 1.11(6) 16.2/17
64 2.005(5) 1/4 0.147 622 379 7(8) 0 0 0.443 53(5) 0.83(2) 1.11(6) 16.0/15
96 2.005(6) 1/4 0.147 622 380 0(8) 0 0 0.443 62(7) 0.83(2) 1.11(6) 10.8/11

48 2 0.28(3) 0.147 622 379 6(8) 0 0 0.443 52(4) 0.81(4) 1.07(9) 16.1/17
64 2 0.28(3) 0.147 622 379 7(8) 0 0 0.443 53(5) 0.81(4) 1.07(9) 15.9/15
96 2 0.28(3) 0.147 622 380 0(8) 0 0 0.443 62(7) 0.81(4) 1.1(1) 10.7/11

48 2 1/4 0.147 622 379 7(8) 0 0 0.443 52(4) 0.850(2) 1.16(2) 17.1/18
64 2 1/4 0.147 622 379 7(8) 0 0 0.443 53(5) 0.850(2) 1.16(2) 16.8/16
96 2 1/4 0.147 622 380 0(8) 0 0 0.443 63(7) 0.850(2) 1.16(2) 11.5/12

48 2 1/4 0.147 622 380 6(9) −0.04(2) 0 0.444 6(5) 0.852(2) 1.15(3) 12.8/17
64 2 1/4 0.147 622 381(1) −0.08(3) 0 0.445 6(8) 0.853(3) 1.14(4) 9.6/15

48 2 1/4 0.147 622 379 6(8) 0 −0.5(5) 0.443 52(4) 0.87(2) 1.24(8) 16.1/17
64 2 1/4 0.147 622 379 7(8) 0 −0.5(5) 0.443 53(5) 0.87(2) 1.24(8) 15.9/15

(b1, b2 ≈ 0) and multiplicative logarithmic terms (c0, c′
0 ≈ 0).

By comparing estimates from various ansatz, we conclude
that zc = 0.147 622 380(2) and ŷt = 0.27(4). In Fig. 2(a), we
show the scaling function by plotting ξ̃u(x) versus x := (z −
zc)L2(ln L)1/4. As expected, the data collapse nicely onto the
curve which corresponds to our preferred fitting to the ansatz
Eq. (19).

To demonstrate the validity of our estimate of zc, we plot
ξu/L[(ln L)1/4] versus L for different values of z, shown in
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FIG. 2. (a) Plot of the scaling function ξ̃u(x), where x = (z −
zc )L2(ln L)1/4. The red curve corresponds to our preferred fit of the
ξu data to the ansatz Eq. (19). (b) Plot of ξu/[L(ln L)1/4] versus L for
fixed values of z. The curves correspond to our preferred fit of the
data by the ansatz Eq. (19). We note that, the central value of the
previously best estimate of zc deviates away from our estimate about
40 times of our quoted error bar.

Fig. 2(b). As expected, the data with z = 0.147 622 380 tend
to a horizontal line, while the data with z about five standard
deviations away from our estimate clearly bend up and down,
respectively. The convergence towards a horizontal line at zc

also suggests that c0 ≈ 0, consistent with our fitting results.
We also perform least-square fits to the data of other quan-

tities, such as QN , χ , C, and N , to estimate zc. Our results
show that, compared with ξu, these quantities suffer stronger
finite-size corrections and produce consistent estimates of zc

but with larger error bars. Fitting details for these quantities
are omitted here.

B. Scaling behavior at zc

We then study the scaling behavior of various quantities at
zc, to estimate the logarithmic correction exponents ŷh, ŷt and
the universal Binder cumulant QN . We first study ξu, which is
expected to scale as L(ln L)ŷh at zc. To estimate ŷh, we perform
the least-square fits of the ξu/L data to the ansatz

O = (ln L)ŷO (a0 + b1Ly1 ). (20)

Here the exponent ŷO = ŷh. Again, without including any
correction terms (fixing b1 = 0), we obtain stable fits when
Lmin = 48, and it gives ŷh = 0.252(2), in excellent agreement
with the expected value 1/4. Including only one correction
term b1Ly1 in the fitting ansatz with y1 free produces stable
fits even when Lmin = 6, which gives ŷh = 0.2518(8) and
y1 = −2.5(1). We also try to fit by fixing y1 = −5/2 and
consistent estimate of ŷh is obtained. By comparing estimates
from various ansatz, we have ŷh = 0.251(2). The details of
our fits are shown in Table III.

We then study the susceptibility χ and its Fourier mode
χk. From Eqs. (15) and (18), we expect that χ ∼ L2(ln L)2ŷh

and χk ∼ L2, at zc. Strong numerical evidence can be seen
in Fig. 3. In the top figure, we plot χ/L2 versus ln L in log-
log scale, and clearly our data collapse onto a straight line
with slope 1/2. The bottom figure shows χk/L2 converges as
L increases. To estimate ŷh, we then perform least-square fits
of the χ/L2 data to the ansatz

O = a0(ln L + c0)ŷO + a1. (21)
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TABLE III. The fitting results of the unwrapped distance ξu at
the critical point.

Lmin ŷh a0 b1 y1 chi2/DF

6 0.2518(8) 0.4424(5) −1.1(1) −2.5(1) 8.9/11
8 0.251(1) 0.4426(7) −0.9(4) −2.4(2) 8.7/10

12 0.2515(6) 0.4426(5) −1.0(1) −5/2 8.6/10
16 0.252(1) 0.4423(6) −0.9(2) −5/2 8.3/9

48 0.252(2) 0.4425(9) 0 – 7.2/7
64 0.252(2) 0.442(1) 0 – 6.9/6

Here ŷO = 2ŷh. Leaving both c0 and a1 as free parameters
cannot produce stable fits. Fixing one of them to zero and
leaving the other one free produce consistent estimate of ŷh.
This is expected since, as subdominate terms, c0 and a1 have
almost the same effect. Our fits give that ŷh = 0.24(2), con-
sistent with the expected value 1/4. The fitting detail is shown
in Table IV. To check χk/L2 converges to a nonzero constant,
we perform a simple fit of the χk/L2 data to Eq. (20) with
ŷO = 0, and it gives that a0 = 0.102(2).

We then study the mean walk length N and its Fourier
mode Nk, the expected scaling of which at zc are, respectively,
N ∼ L2(ln L)ŷt and Nk ∼ L2. Numerical evidence supporting
their scaling is shown in Fig. 4. In the top figure, we log-log
plot N/L2 versus ln L and our data collapse onto a line with
slope 1/4; the bottom figure shows that Nk/L2 converges as L
increases. Fitting N/L2 and Nk/L2 using the same procedure

   2
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(a) Log-log plot of χ/L2 vs. ln L

1/2
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(b) Linear plot of χk /L2 vs. L

FIG. 3. The scaling behavior of susceptibility χ (a) and its
Fourier mode χk (b), at the critical point. The line in the top figure has
slope 1/2, and the shadow in the bottom figure indicates our estimate
of the value that χk/L2 converges to. All data points here have error
bars which are smaller than the size of data points.

TABLE IV. The fitting results of the susceptibility χ , walk length
N and specific heat C at the critical point. The third column is the
estimate of ŷh for χ and ŷt for N and C.

O Lmin c0 a0 a1 chi2/DF

χ 12 0.24(2) 0 1.7(2) 0.3(2) 6.5/10
16 0.25(2) 0 1.5(2) 0.5(2) 5.1/9
16 0.24(1) 0.3(2) 1.79(9) 0 4.9/9
24 0.23(2) 0.1(3) 1.9(1) 0 4.3/8

N 16 0.26(2) 0 0.80(9) 0.3(1) 10.1/9
24 0.29(4) 0 0.7(1) 0.4(1) 8.7/8
32 0.24(1) 0.7(3) 0.99(4) 0 6.8/7
48 0.26(3) 1.2(7) 0.94(8) 0 6.1/6

C 24 0.24(2) 0 0.53(6) 0.01(6) 8.9/8
32 0.25(2) 0 0.48(7) 0.06(9) 8.3/7
24 0.24(1) 0.0(1) 0.53(2) 0 8.9/8
32 0.25(1) 0.1(2) 0.52(3) 0 8.2/7

as the susceptibility case, we obtain ŷt = 0.26(2) and Nk/L2

converges to a constant 0.213(2).
We then discuss the specific heat C and its Fourier mode

Ck at zc. As shown in Eq. (15), we expect that C diverges
logarithmically as C ∼ (ln L)2ŷt for the O(n) model with 0 �
n � 3. However, it is difficult to be numerically observed in
the n = 1, 2, 3 cases. For the self-avoiding walk, thanks to the
precisely determined critical point and much larger achievable
system sizes, we clearly observe the logarithmic divergence of
the specific heat. As shown in Fig. 5, the plot of C versus ln L
in log-log scale clearly shows that the data collapse onto a

 1.2
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(a) Log-log plot of N/L2 vs. ln L

1/4
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(b) Linear plot of Nk/L2 vs. L

FIG. 4. The scaling behavior of the mean walk length N(a) and
its Fourier mode Nk(b) at the critical point zc. The line in the top
figure has slope 1/4, and the shadow in the bottom figure indicates
our estimate of the value that Nk/L2 converges to. All data points
here have error bars which are smaller than the size of data points.
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FIG. 5. The scaling behavior of the specific heat C(a) and its
Fourier mode Ck(b) at the critical point zc. The line in the top figure
has slope 1/2, and the shadow in the bottom figure indicates our
estimate of the value that Ck converges to. All data points here have
error bars which are smaller than the size of data points.

line with slope 1/2. Perform least-square fits of the C data to
Eq. (21) gives that ŷt = 0.24(2), consistent with the expected
value 1/4. For the Fourier mode, our data shows that Ck
converges to a constant 0.0212(5).

C. Binder cumulant QN

We finally discuss the Binder cumulant QN . For SAW on
the complete graph with V vertices, it was proved [60] that
the mean walk length N = √

2V/π + o(1) and its variance
is varN = (1 − 2/π )V + o(1). It then follows that, on the
complete graph,

QN = 〈N 2〉
〈N 〉2

= varN
〈N 〉2

+ 1 = π

2
+ o(1). (22)

However, for SAW at 4D, the situation is different. As we
conjecture in Eq. (15) and (17), and numerically confirmed
in Sec. III B, the mean walk length N ∼ L2(ln L)ŷt and ξu ∼
L(ln L)ŷt . Thus, the relation N ∼ ξ 2

u fails to hold, and thus
SAW at 4D behaves differently as the simple random walk.
So, due to logarithmic corrections to scaling, the f̃1 term in
Eq. (11) is not exactly the counterpart of the FSS on the
complete-graph, and thus QN may not take its complete-graph
value.

We then examine the QN data. In Fig. 6, we plot the QN data
near the critical point for various system sizes. Our estimate
of zc is shown as the shadow column. As one can see, as
L increases, it is almost impossible to have an intersection
located within our estimate of zc and giving the value π/2

1.49
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(z-zc)(×10-8)

192
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384
512
768

FIG. 6. Plot of the Binder cumulant QN near the critical point,
for various system sizes. The shadow column shows our estimate
of zc.

in the vertical axis. This means that the value of QN at zc may
not take the complete-graph value π/2.

We next study the QN data at the critical point. We first plot
QN versus L in Fig. 7, which shows that, as L increases, QN

likely converges to some constant smaller than π/2. To pre-
cisely estimate the value QN converges to, we perform careful
fits to the QN data. We first try to fit without logarithmic
corrections, using the ansatz

QN = Q0 + b1Ly1 + b2Ly2 . (23)

The data can be well fitted by including only one correc-
tion term (fix b2 = 0), which gives Q0 = 1.528(3) and y1 =
−0.43(8) when Lmin = 48. In the left inset of Fig. 7, we plot
QN versus L−1/2 and the data collapse to a straight line, which
also indicates the leading correction term of QN is L−1/2. Con-
sistent estimate of Q0 is obtained when one more correction
term b2L−2 is added. Thus, without logarithmic corrections,
our data analysis support that Q0 is smaller than π/2.

We then try to fit with logarithmic corrections. As the right
inset of Fig. 7 shows, if we plot QN versus (ln L)−1/2, then

FIG. 7. Plot of the Binder cumulant QN versus L at the critical
point. The curve corresponds to our preferred fit of the QN data to
the ansatz QN = Q0 + b1Ly1 . The left and right insets plot QN versus
L−1/2 and (ln L)−1/2, respectively. The two red lines are to guide the
eyes.
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the data also collapse to a straight line which ends around
π/2 as L → ∞. This means the QN data can also be fitted to
the ansatz QN = Q0 + b1(ln L)−1/2. Indeed, when Lmin = 96,
our fits show that Q0 = 1.575(4). We also try to fit QN to the
ansatz QN = Q0 + b1(ln L + c)−1/2. Stable fits are obtained
when Lmin = 48, and we have Q0 = 1.56(1). So our data
suggest that the estimate of Q0 is consistent with π/2 when
logarithmic corrections are taken into account.

In short, it is suggested that likely QN at criticality de-
viates from the complete-graph value, although this can not
be completely excluded due to the possible existence of log-
arithmic corrections. In previous literatures like Ref. [46],
the Binder ratio and particularly its complete-graph value of
the Binder ratio were used to estimate the critical point of the
four-dimensional Ising model. Our data in Figs. 6 and 7 imply
that this might induce systematic deviations. Nevertheless,
whether QN takes the complete-graph value π/2 at 4D or
less than π/2 remains an open question and needs further
theoretical and numerical study. For completeness, we study
in the Appendix the Binder cumulant QN for d = 1, 2, 3, 5.

IV. DISCUSSION

In this paper, we studied the finite-size scaling of the self-
avoiding walk model on four-dimensional hypercubic lattices
with periodic boundary conditions. We first precisely locate
the critical point zc by performing finite-size analysis to the
unwrapped end-to-end distance ξu. At the estimated zc, we
determine the logarithmic scaling behavior of various quanti-
ties: the susceptibility χ ∼ L2(ln L)2ŷh , the mean walk length
N ∼ L2(ln L)ŷt and the specific heat C ∼ (ln L)2ŷt . We esti-
mate ŷt = 0.25(3) and ŷh = 0.251(2), both in agreement with
the expected value 1/4. Moreover, for the Fourier modes with
k �= 0, we numerically observed that χk ∼ L2, Nk ∼ L2, and
Ck converges to a constant, following Gaussian fixed-point
predictions. Our results provide strong numerical evidence
to the conjectured finite-size scaling form of the free energy,
shown in Eq. (11), for the O(n) universality class at 4D with
0 � n � 3.

We note that, compared with the previous understanding
of FSS at dc [54], the significance of Eqs. (11) and (12)
can be seen from the following aspects. First, these two
equations arise from a simple and beautiful picture, i.e., the
simultaneous existence of Gaussian fixed-point asymptotic
and modified complete-graph asymptotic at dc. Note that, the
Gaussian fixed-point term is not merely a correction term,
since it dominates the scaling behavior of Fourier-transformed
quantities (with nonzero modes), determines the distance-
dependent behavior of the two-point function, and also the
quantities with scale much smaller than the system size.
Therefore, without the Gaussian fixed-point term, the FSS
ansatz of the free energy and even the entire physical picture
at dc is incomplete. Moreover, Eq. (11) can systematically
predict the FSS of various thermal and magnetic quantities,
which can explain all the existing numerical results in the
literature.

From the finite-size analysis to the SAW data at 4D, we
notice that whether the logarithmic scaling can be clearly
observed depends sensitively on the precision the estimated
critical point. In Ref. [52], the logarithmic divergence of the

specific heat for the n-vector model with n = 1, 2, 3 was not
clearly observed. The reason might be that the critical points
for these cases have not been estimated to a high enough
precision. For SAW, the precisely determined critical point
attributes to a geometric quantity: the unwrapped end-to-end
distance ξu, which suffers extremely weak finite-size correc-
tions. We note that geometric (random walk) representations
are also available for these n � 1 cases [22]. So it is possi-
ble to find a quantity analogous to ξu which can be used to
precisely estimate the critical points of these cases. Take the
Ising model for example, one candidate of such a quantity is
the unwrapped end-to-end distance of the Aizenmann random
walk, see Ref. [21] for the explicit definition. It would be
interesting to perform a systematic finite-size analysis to the
n-vector model under the geometric representation in four
dimensions.
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APPENDIX: BINDER CUMULANT QN

FOR OTHER DIMENSIONS

In this section, we discuss the dependence of the critical
Binder cumulant QN on dimensionality d . We first simulate
the SAW on the 2D, 3D, and 5D hypercubic lattices with PBC
at the critical points shown in Table I. The largest system sizes
are up to L = 512, 192, 96 and more than 107, 106, and 106

samples for each system size are generated for 2D, 3D, and
5D, respectively.

TABLE V. The fitting result of QN for SAW with d = 2, 3, 5.

d Lmin Q0 b1 b2 y1 y2 χ 2/DF

8 1.3008(1) 0.54(1) – −1.33(1) – 2.8/7
16 1.3008(2) 0.56(7) – −1.34(5) – 2.7/6

2 32 1.3009(3) 0.6(4) – −1.4(2) – 2.7/5
32 1.3010(1) 0.94(3) – −3/2 – 3.1/6
64 1.3010(2) 1.0(2) – −3/2 – 2.9/5
8 1.3010(1) 1.08(3) −0.88(8) −3/2 −2 3.6/7

16 1.3009(2) 1.2(1) −1.3(4) −3/2 −2 2.8/6

6 1.4071(3) −0.06(3) 0.88(7) −1.0(2) −2 2.4/7
8 1.4072(5) −0.05(4) 0.8(1) −0.9(3) −2 2.3/6

3 6 1.4071(1) −0.065(3) 0.89(1) −1 −2 2.4/8
8 1.4071(1) −0.065(4) 0.88(3) −1 −2 2.4/7
12 1.4071(2) −0.067(8) 0.90(8) −1 −2 2.3/6

12 1.571(1) −0.108(4) – −0.50(3) – 5.5/4
16 1.568(2) −0.12(1) – −0.58(7) – 3.6/3

5 12 1.5710(2) −0.1080(9) – −1/2 – 5.5/5
16 1.5712(3) −0.109(1) – −1/2 – 5.0/4
24 1.5709(6) −0.107(3) – −1/2 – 4.7/3
12 1.5712(5) −0.109(3) 0.02(6) −1/2 −2 5.4/4
16 1.5704(9) −0.103(7) −0.2(2) −1/2 −2 4.2/3
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FIG. 8. Plot of the critical Binder cumulant QN for various di-
mensions (a) d = 2, (b) d = 3, and (c) d = 5.

We then perform the least-squared fits to the Monte Carlo
data via the ansatz Eq. (23). We first discuss the d = 5 case.
If we include only one correction term b1 in the ansatz,
the fits give Q0 = 1.569(3), in perfect agreement with π/2,
and y1 = −0.56(9). If we fix y1 = −1/2, then we get the
consistent estimate 1.5709(6). Consistent estimates are also
obtained if the b2 term is added to the ansatz, with y2 fixed
at −2. We finally conclude the estimate Q0 = 1.569(5) by
considering the systematic error from using different ansatz.
A similar procedure has been done for d = 2, and we get
the estimate Q0 = 1.301 0(5) and y1 = −1.4(2). For d = 3,
fixing b2 = 0 and leaving Q0, y1, b1 free cannot obtain stable
results. We then fix y2 = −2 and leave Q0, b1, b2, y1 free, and
we get Q0 = 1.4072(5), y1 = −0.9(3). Fixing y1 = −1 also
leads consistent estimate of Q0 and gives b1 = −0.067(8),
b2 = 0.90(8). Finally, we estimate Q0 = 1.407 2(8). Details
of fitting are summarized in Table V.

In Fig. 8, we plot QN versus Ly1 for d = 2, 5, where y1

takes the value −3/2,−1/2 respectively. It shows that the
asymptotic values of QN are consistent with our estimates.
For d = 3, since b2 is much larger than b1, to clearly show
the leading correction term b1Ly1 , we subtract b2Ly2 from QN .
The asymptotic value of QN − b2Ly2 in the L → ∞ limit is
close to 1.407, which is consistent with our estimate.

1.29

1.36

1.43

1.50

π/2

 1  2  3  4  5

Q
0

d

FIG. 9. Plot of the critical Binder cumulant Q0 for d =
1, 2, 3, 4, 5. The gray dashed line shows the value π/2. Both the
two possible scenarios, that Q0 is consistent with π/2 (red) or less
than π/2 (blue), are shown for the 4D case. The horizontal blue line
indicates that Q0 takes the complete-graph value π/2 for d > 4.

For d = 1, the critical point is trivially at zc = 1 since the
number of N-step SAWs rooted at an arbitrarily fixed point
is cN = 2 for all N . Thus, for SAW on a length-L cycle, the
critical mean walk length is

〈N 〉 =
∑L−1

N=0 NcN zN
c∑L−1

N=0 cN zN
c

=
∑L−1

N=1 2N

1 + ∑L−1
N=1 2

= L(L − 1)

2L − 1
,

and its second moment is

〈N 2〉 =
∑L−1

N=0 N2cN zN
c∑L−1

N=0 cN zN
c

= L(L − 1)

3
,

and the Binder cumulant

QN = 〈N 2〉
〈N 〉2

= (2 − 1/L)2

3(1 − 1/L)
. (A1)

In the L → ∞ limit, we get QN = 4/3. In Fig. 9, we plot the
estimates of Q0 for various d . For 1 � d � 3, we connect the
data points with a smooth curve. For 4D, we show the two
possible scenarios from our data analysis: Q0 is consistent
with the complete-graph value π/2 (red) or Q0 is less than
π/2 (blue). For d > 4, Q0 takes the complete-graph value
π/2.
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