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Symmetries and phase diagrams with real-space mutual information neural estimation
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Real-space mutual information (RSMI) was shown to be an important quantity, formally and from a numerical
standpoint, in finding coarse-grained descriptions of physical systems. It very generally quantifies spatial corre-
lations and can give rise to constructive algorithms extracting relevant degrees of freedom. Efficient and reliable
estimation or maximization of RSMI is, however, numerically challenging. A recent breakthrough in theoretical
machine learning has been the introduction of variational lower bounds for mutual information, parametrized
by neural networks. Here we describe in detail how these results can be combined with differentiable coarse-
graining operations to develop a single unsupervised neural-network-based algorithm, the RSMI-NE, efficiently
extracting the relevant degrees of freedom in the form of the operators of effective field theories, directly
from real-space configurations. We study the information contained in the statistical ensemble of constructed
coarse-graining transformations and its recovery from partial input data using a secondary machine learning
analysis applied to this ensemble. In particular, we show how symmetries, also emergent, can be identified. We
demonstrate the extraction of the phase diagram and the order parameters for equilibrium systems and consider
also an example of a nonequilibrium problem.
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I. INTRODUCTION

Constructing coarse-grained descriptions of physical sys-
tems is a fundamental operation, both practically and from the
foundational theory viewpoint. It is often difficult to simulate
a complex system from first principles, even if a microscopic
model exists, necessitating layers of descriptions and inde-
pendent simulations of properties at differing scales [1]. This
is the practical counterpart to the powerful methodology of
deriving effective theories providing a summary of physics
at this scale, which may involve qualitatively new emergent
properties.

The above idea finds its full realization within the frame-
work of the renormalization group (RG) [2–5], where the
coarse-graining transformation of local degrees of freedom
(DOFs) gives rise to the RG-flow in the space of theories.
While momentum-space methods had a profound impact on
physics [6,7], real-space renormalization, despite some veri-
table successes [8–11], has not yet reached a similar status.
In practice, real-space procedures are nontrivial to design,
involve ad hoc choices, and can rarely be executed exactly,
amplifying any approximation as they are iterated. More-
over, analytical understanding is often lacking. At the same
time disordered and complex systems, where the notion of
momentum may not be available, are naturally amenable to
real-space approaches and thus provide a strong motivation
for development of improved methods.

The arbitrariness of the real-space RG transformation
choice can be drastically reduced: an optimal coarse graining
rule for a given system exists [12,13], theoretically defined

by maximizing the information the coarse DOFs retain about
distant parts of the system, i.e., the real-space mutual informa-
tion (RSMI). Such coarse-grained representation is an optimal
(lossy) compression of information about long-distance prop-
erties of the system. This observation can, however, be made
much more powerful. Since long-range information is due to
the scaling operators, its optimal compression not only defines
a better iterative RG rule, but, performed for each point in
the phase diagram, should allow us to directly extract all
the operators themselves, without explicitly executing the RG
flow. This was formally proven, at least for critical systems in
equilibrium [14]. Conceptually, this opens the possibility of
identifying formal components of the effective theory directly
from real-space data, using only its statistical properties.

The core quantity of interest, the RSMI, is however chal-
lenging to maximize or estimate, as is mutual information
(MI) in general [15], which in practice limits the applicability
of such general approach to but the simplest of systems.

Here we overcome this limitation by developing a highly
efficient algorithm, the RSMI neural estimator (RSMI-NE),
computing the optimal coarse-grainings. Our approach is
based on state-of-art machine learning techniques of es-
timating mutual information by maximizing its rigorous
lower-bounds [15,16]. A key algorithmic idea, introduced
in Ref. [16], is to parametrize these bounds by a neural
network f�, optimizing over its parameters �. We use this
differentiable variational ansatz for RSMI to optimize the
RG transformation, expressed by another neural network
ansatz with parameters �. Crucially, both networks are com-
bined and trained together using stochastic gradient descent

2470-0045/2021/104(6)/064106(17) 064106-1 ©2021 American Physical Society

https://orcid.org/0000-0002-5536-1941
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.064106&domain=pdf&date_stamp=2021-12-06
https://doi.org/10.1103/PhysRevE.104.064106


GÖKMEN, RINGEL, HUBER, AND KOCH-JANUSZ PHYSICAL REVIEW E 104, 064106 (2021)

FIG. 1. The architecture of RSMI-NE. The coarse-graining
transformation extracts the order parameters and relevant operators
via the transformations � and discretizing step τ . The long-range
information I�(H : E ) which � maximize is estimated by f�, all of
which are parametrized by neural networks and cotrained together.

backpropagating through the whole structure (see Fig. 1),
even in the presence of discrete-valued coarse-graining. The
algorithm is several orders of magnitude faster than RSMI
estimation in Ref. [12], allowing us to explore large systems
and length-scales, demonstrating superior convergence and
stability.

The methods presented here were advertised in a com-
panion work [17], where the emphasis was on the extraction
of relevant operators on the lattice. Here, in contrast, we
have two other areas of focus. First, we present and exam-
ine in detail the algorithmic aspects of the method, and the
ML/statistics tools it uses. Second, we study the properties of
a novel object: the ensemble of the coarse-graining transfor-
mations. Taking a step beyond identifying relevant operators
in a single instance of RSMI optimization, we demonstrate
that their distribution, generated by multiple independent op-
timization runs, reveals information about the symmetries of
the system, broken and emergent. We consider application of
the RSMI formalism to further systems, including nonequilib-
rium ones.

The manuscript is organized as follows: In Sec. II we
describe the main theoretical and algorithmic components of
the RSMI-NE. Specifically, in Sec. II A the general idea of
the RSMI approach is briefly described, Sec. II B reviews the
neural-network-based variational lower bounds on MI which
are used and implemented in the RSMI-NE package [18] we
make available. Section II C describes the parametrization of
the coarse-graining as a neural network, and ensuring its dif-
ferentiability for discrete latent variables; Sec. II D combines
these elements into the complete algorithm and discusses
convergence properties. Turning to physics, in Sec. III we
detail the physical information (phase diagram, operators,
symmetries) contained in the algorithm outputs, testing it
in equilibrium statistical systems. Particularly, in Sec. III C,
we show that the ensemble of coarse-graining transforma-
tions allows us to identify the symmetries of the system,
also emergent ones, and retrieve them from incomplete data
using a secondary ML analysis of the ensemble. The pos-

sible extension to nonequilibrium problems is discussed in
Sec. IV, and the algorithm is validated on the example of the
nonequilibrium chipping model. We conclude in Sec. V with
a brief discussion of the scope of the method, and its possible
extensions and applications. Short appendices give technical
details related to the code and data generation.

II. THE RSMI-NE ALGORITHM

A. The RSMI variational principle

RG is rooted in the observation that most microscopic
details are irrelevant for large-scale behavior of physical sys-
tems. It is, however, necessary to define a firm basis for
determining exactly which short-scale details are projected
out in a coarse-grained description. This has proven difficult
in real space [19]. To address this issue, Ref. [12] proposed
that the optimal real-space RG transformation maximizes an
information theoretical quantity, the real-space mutual infor-
mation (RSMI), measuring the information shared between a
coarse-grained degree of freedom and its distant environment
at the original fine level. This constitutes a universal principle
for determining the coarse-grained description for any statis-
tical system. Moreover, it gives direct access to the relevant
operators on the lattice [14,17].

Consider a system of classical DOFs in any dimension
denoted by a multivariate random variable X , whose physics
is encoded in a probability measure p(x), either Gibbsian, i.e.,
p(x) ∝ e−βH (x), or a generic nonequilibrium distribution. Here
we denote by x ∼ p(x) an instance of the random variable
X drawn from the distribution p(x). A coarse-graining rule
X → X ′ is defined as a conditional distribution p�(x′|x),
determined by a set of parameters � to be optimized. It is
a probabilistic map generating a particular compressed repre-
sentation of the original DOFs.

A coarse-graining is typically carried out on disjoint spa-
tial blocks Vi ⊂ X , and it factorises: p(x′|x) = ∏

i p�i (hi|vi),
such that X = ⋃

i Vi and X ′ = ⋃
i Hi, with p�i (hi|vi ) the

coarse-graining rule applied to block i. If the system is transla-
tion invariant, then a fixed �i ≡ � suffices; otherwise, e.g., in
disordered systems, it can be favorable to optimize each block
individually.

The RSMI approach identifies coarse-graining filters ex-
tracting the most relevant long-range features as the ones
retaining the most information shared by a block V ⊂ X to
be coarse-grained, and its distant environment E [12,13], i.e.,
those that optimally compress this information. The environ-
ment is separated from V by a shell of nonzero thickness
constituting the buffer B and forms the remainder of the
system [see Fig. 1(a)]. The “shared information” between
the random variables H and E is formalized by the Shannon
mutual information:

I�(H : E ) =
∑
h,e

p�(e, h) log

[
p�(e, h)

p�(h)p(e)

]
, (1)

where p�(e, h) and p(h) are the marginal probability dis-
tributions of p�(h, x) = p�(h|v)p(x) obtained by summing
over the DOFs in {V , B} and {V,B, E}, respectively. The
size of the buffer B sets the RG scale, and acts a filter,
only allowing the information about large-scale properties to
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be compressed into the coarse-grained variables. Finding the
optimal coarse-graining is thus formulated as a variational
principle maximizing I� as a function of parameters �.

Maximizing mutual information for high-dimensional ran-
dom variables is known to be difficult [20,21], which limited
the usefulness of the RSMI approach [12]. This challenge can
now be overcome with the help of recent ML results com-
bining mathematically rigorous variational bounds on mutual
information [22–24] with deep learning [15,16]. In the follow-
ing section we describe in detail the two components forming
the core of the new fast RSMI-NE algorithm: efficient neural
MI estimation and differentiably parametrizing the coarse-
graining operation.

B. Differentiable lower-bounds of RSMI

We follow the recent approach of Refs. [15,16]. Given
possibly high-dimensional random variables X , Y , a varia-
tional upper or lower bound for I (X : Y ) is constructed, and
parametrized by a sufficiently expressive nonlinear neural net-
work (NN) ansatz f (x, y) modeling the statistical dependence
of X and Y . The weights of the network are updated in an
unsupervised learning scheme using the joint samples of X ,
Y (in our case: H, E), producing a sequence of differentiable
bounds I�, asymptotically exact.

It is possible to either minimize a variational upper-bound
or to maximize a lower-bound of MI. Given our central aim of
maximizing RSMI with respect to the parameters � of some
coarse-graining network, we focus on the latter. We mainly
use the noise-contrastive lower-bound of MI (InfoNCE), a
multisample bound characterized by lower variance, but we
also review the single-sample bounds it is the extension of.
As we shall see, the general form of these bounds is moti-
vated by the interpretation of MI as distinguishing between
independently and jointly distributed random variables.

1. Single-sample lower-bounds

With this motivation in mind, and MI defined as follows:

I (X : Y ) = Ep(x,y)

[
log

p(x|y)

p(x)

]
= Ep(x,y)

[
log

p(y|x)

p(y)

]
,

we introduce the conditional probability distribution q(x|y) as
a variational ansatz approximating p(x|y). We shall first keep
the form of q(x|y) unconstrained, and derive a lower-bound of
I (X : Y ) in its terms. Our goal is to find the optimal ansatz
that makes the bound tight. Subsequently, we explain how the
form of q(x|y) can be constrained at the onset to improve
the corresponding lower-bound, yielding a more tractable
estimator.

Since the Kullback-Leibler (KL) divergence between them:

DKL[p(x|y)||q(x|y)] = Ep(x|y)

[
log

p(x|y)

q(x|y)

]
(2)

is nonnegative, we immediately obtain a lower-bound for
I (X : Y ), known as the Barber-Agakov (BA) bound [23]:

I (X : Y ) � Ep(x,y)

[
log

q(x|y)

p(x)

]
= Ep(x,y)[log q(x|y)] + H (X ) =: IBA(X : Y ), (3)

where H (X ) is the entropy of X . This bound is a functional
of the ansatz: IBA(X : Y ) = IBA(X : Y )[q(x|y)]. Since DKL =
0 if and only if q(x|y) = p(x|y), the BA bound is tight only
when the ansatz q(x|y) equals p(x|y).

The observation that mutual information measures the
correlations between variables motivates the idea that in
modeling p(x|y) the ansatz q(x|y) should focus on the de-
pendencies between the variables X and Y . Consider thus the
following ansatz family:

q(x|y) := p(x)

Z (y)
e f (x,y), (4)

with Z (y) := Ep(x)[e f (x,y)]. In the above energy-based
form, the complex correlations within the possibly high-
dimensional data X are contained in the marginal distribution
p(x). The resulting lower-bounds are sensitive mainly to the
variables’ interdependency. In other words, maximizing the
lower-bound of MI is rephrased as a search for a “critic” [15]
function f (x, y) modeling the relationships, between X and
Y very well. The critic function, distinguishing the “positive”
samples from the joint distribution, from the “negative” ones
generated by the product of marginals, will be approximated
by a neural network.

Substituting the energy-based ansatz into the BA bound,
we obtain the unnormalized BA bound (UBA):

IUBA(X : Y ) := Ep(x,y)[ f (x, y)] − Ep(y)[log Z (y)]. (5)

By the same arguments as above, the UBA bound is tight when
p(x)
Z (y) exp f (x, y) = p(x|y).1 Taking advantage of the strict con-
cavity of the log function, one arrives at the tractable version
of UBA bound [15]:

ITUBA(X : Y ) := Ep(x,y)[ f (x, y)]

−Ep(x)p(y)

[
e f (x,y)

a(y)

]
− Ep(y)

[
log

a(y)

e

]
.

In several studies, see, e.g., Nguyen, Wainwright, and Jordan
(NWJ) [24], f -GAN by Nowozin et al. [25], and MINE- f by
Belghazi et al. [16], the baseline function a(y) is fixed to be
the constant e. This choice simplifies the TUBA bound:

INWJ(X : Y ) := Ep(x,y)[ f (x, y)] − e−1Ep(x)p(y)[e
f (x,y)]. (6)

Note that in this case f (x, y) should be optimized under the
constraint that q(x|y) is normalized. The MINE approach [16]
has also recently been used to estimate entropy in physical
systems [26].

2. Replica lower bounds

Despite the improvement due to the energy-based ansatz,
the above “single-sample” bounds are known to suffer from
a large variance [15,27]. An improved approach is to divide a
single batch of samples (e.g., Monte Carlo) for the pair of ran-
dom variables (X ,Y ) into minibatches of K-fold “replicated”
random variables (Xi,Yi )K

i=1, and to derive the corresponding

1This condition is equivalent to f (x, y) = log p(y|x) + c(y), be-
cause exp f (x, y) = p(x|y) Z (y)

p(x) = p(y|x) Z (y)
p(y) with c(y) := log Z (y) −

log p(y) being a constant in x.
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“multisample” lower-bounds (the confusing dual usage of the
term “sample” is standard). These are obtained by taking the
average of the single-sample bounds, and address the issue
of large variance by means of noise-contrastive estimation
(NCE) [28], first proposed in the context of MI estimation in
Ref. [27].

A multisample bound estimates I (X1,Y ), where
(X1,Y ) ∼ p(x1, y), given K − 1 additional independent
“replicas” for one of the random variables, say X
(drawn from the marginal distribution). We denote
them by X2:K ∼ ∏K

j=2 p(x j ). All of the K independent
replicas of the random variable X are treated as a single
K-dimensional random variable X1:K , and it is easily seen
that I (X1 : Y ) = I (X1:K : Y ) since only X1 was drawn jointly
with Y . Thus, we can apply the “single-sample” bounds to
I (X1:K : Y ).

For example, for the NWJ bound Eq. (6) the optimal ansatz
for the critic f is given by (see Sec. I B in the Supplemental
Material [29]):

f ∗(x1:K , y) = 1 + log
p(y|x1:L )

p(y)
= 1 + log

p(y|x1)

p(y)
. (7)

This critic function can be made to take advantage of the
additional replicas. Observing that by Eq. (4):

p(x1|y)

p(x1)
= e f ∗(x1,y)

Z (y)
,

we can take the following modified critic function:

g(x1, y) := 1 + log
e f (x1,y)

m(y; x1:K )
, (8)

where m(y; x1:K ) is the K sample Monte Carlo estimate of the
partition function Z (y):

m(y; x1:K ) := 1

K

K∑
i=1

e f (xi,y) ≈ Z (y). (9)

Substituting this critic in the NWJ bound for I (X1 : Y ),
and averaging over K replica random variables such that
(Xi,Yi ) ∼ p(xi, yi ), i.e., using the NWJ bound with each Y j

playing the role of Y in turn, we arrive after some simple but
tedious algebra at the InfoNCE lower-bound of MI [15]:

I (X : Y ) � INCE(X : Y ) := 〈INWJ(X : Y )〉

= 1

K
E∏K

k=1 p(xk ,yk )

[
K∑

j=1

log
e f (x j ,y j )

1
K

∑K
i=1 e f (xi,y j )

]
. (10)

This completes derivation of the InfoNCE lower-bound for
MI, which is the default one used in our implementation. In
Sec. I C in the Supplemental Material [29] we discuss some of
its further properties, including the expression in terms of the
categorical cross-entropy and conditions on its upper bound,
which should be taken into account to avoid biased estimates.

3. Neural network architectures for the RSMI
lower-bound estimator

A key idea which made the variational bounds for MI
introduced above computationally relevant was to parametrize

the critic functions by neural networks f� [16]. Their param-
eters � can then be optimized using standard methods, e.g.,
stochastic gradient descent, to maximize the lower bounds.

Multiple multilayer perceptron (MLP) architectures for the
critic function f ≡ f�(h, e) have been considered [15]. Here,
we opt for a separable form, such that

f�(h, e) = vT(h)u(e), (11)

where v and u are array-valued functions (here, neural net-
works, whose weights constitute �) that depend only on
hidden variables and the environment, respectively. The net-
works v and u independently map H and E to a so-called
embedding space. This choice allows construct the scores
matrix Fi j (see below), storing the values of f� for all pairs
of jointly and independently drawn samples, in N passes of
the MLP (N passes for both v and u networks) for a sample
dataset of size N . This is in contrast to N2 passes for all
N (N − 1) independent and N joint samples in a concatenated
architecture f�(h, e) = f�([h, e]).

We opted for two hidden layers each with 32 neurons
fully connected to the layer containing the (H, E ) data. The
embedding dimension is 8. The neurons are activated by the
rectified linear unit (ReLU) function (see, e.g., Ref. [30]). We
note that the results of RSMI-NE are not sensitive to these
architectural details.

C. The coarse-graining network

The second key element of the algorithm is the coarse-
graining probability distribution p�(h|v). To take advantage
of the differentiable nature of the RSMI estimators described
above, and the possibility of efficient gradient descent train-
ing, we consider ansÃ¤tze parametrized by neural networks,
as well. In particular, we use the following composite archi-
tecture (see Fig. 1):

h = τ ◦ (� · v). (12)

Combinations of the local DOFs are selected by an inner
product with the parameters �, which can be understood in
terms of a generalized Kadanoff block-spin transformation,
[2] before being mapped to a discrete variable by the map τ .
In practice the first operation can be represented by a single
layer network with parameters �, and the number of kernels
can be varied according to the symmetries of the system.
We emphasize that the RSMI approach does not rely on the
specific type of the variational ansatz for coarse-graining; the
inner product form is a choice of convenience here. We briefly
discuss the possibility of a more general coarse-graining �

network ansatz, comprising multiple layers, in Sec. III D. The
final step is a nonlinear stochastic mapping τ into a state h of
the coarse-grained variable with a predetermined type (e.g.,
binary spins). This embedding is both crucial [31] and algo-
rithmically nontrivial, as the discretization operation needs to
be differentiable [32].

1. Gumbel-softmax reparametrization trick for discretization
of coarse-grained variables

In the RSMI-NE the coarse-grained variables h are inputs
to the MI estimator. Since the value of MI depends on what
kind of distribution h belongs to, we need to ensure that this
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estimation step is not falsified by, e.g., neglecting to force the
output of the coarse-grainer into a discrete binary variable
form, rather than a real number, if we decided h to be Ising
spins. The apparent problem is that generating stochastic dis-
crete h seems to spoil the differentiability of the whole setup.
This is in fact somewhat similar to the problem encountered
in variational autoencoders (VAEs), which is solved there us-
ing the so-called reparametrization trick, effectively allowing
us to only differentiate w.r.t. to the parameters of the latent
space probability distribution. With this intuition in mind, we
discuss the solution to the issue in RSMI-NE [33].

The solution has three steps. The first result needed is
the Gumbel-max reparametrization: Let h be a categorical
random variable which can be in one of the states {i}N

i=1 with
the set of probabilities {πi}N

i=1. It can be shown that

k∗ = argmax
k∈{1:N}

{gi + log πi}N
i=1 (13)

is a categorical random sample drawn from the distribution
defined by {πi}N

i=1, where {gi}N
i=1 are N parameterless ran-

dom variables drawn from the Gumbel distribution [33,34]
centered at the origin. All the parametric dependence is there-
fore in the constants {πi}N

i=1, separated from the source of
randomness, which in principle allows differentiation of the
distribution.

Since argmax is not differentiable itself, in the second step
it is smoothened, in a controlled and reversible fashion. Given
{gi}N

i=1 we define a vector-valued random variable utilizing the
softmax function Eq. (S12) [29], whose jth component takes
the form

softmax j,ε
({gi + log πi}N

i=1

) = exp[(log π j + g j )/ε]∑N
i=1 exp[(log πi + gi )/ε]

,

(14)

where ε is the smearing parameter. For ε → 0 the softmax
becomes the argmax, mapping the argument vector y = {gi +
log πi}N

i=1 into a N-component one-hot vector (one-hot encod-
ing maps each of N possible states i of a discrete variable
into a N-dimensional vector, with 1 on ith position, and zeros
elsewhere) with some k∗th entry taking the value 1, thereby
marking yk∗ = max y. The result is a Gumbel-softmax random
variable [33], approximately (or pseudo-)discrete, for small
enough ε (do not confuse with a discrete random variable
defined by taking the maximum component of the softmax
function). For ε ≈ 0, a sample vector h ∼ softmaxε ({gi +
log πi}N

i=1) has a single component very close to 1 and all other
components take very small values, comparable to machine
precision. Conversely, in the limit ε → ∞ the distribution
becomes uniform over all components.

This is used in the third step, where we anneal the smooth-
ing parameter. There is a trade-off between small ε which
leads to very noisy gradient estimates, and large ε at which
the gradients have low variance but the samples h are far from
being discrete. To reconcile this, we start the training at a high
value of ε and anneal it exponentially toward a small positive
value during training and thus stiffen the pseudodiscrete vari-
able into an increasingly better approximation of a discrete
one. The annealing procedure is described in more detail in
Sec. II A 3 in the Supplemental Material [29].

D. Unsupervised learning scheme for the combined network

The results of the preceding section enable us to construct
a variational ansatz Ĩ�,�(H : E ), differentiable with respect to
the parameters of the coarse-graining filter � and the estima-
tor �. We stress that it is upper-bounded by the exact value of
RSMI:

max
�

Ĩ�,�(H : E ) � I�∗ (H : E ), ∀�, (15)

where �∗ stands for the optimal solution. The equality holds
if and only if the estimator becomes exact, i.e., for the op-
timal parameters � = �∗ of the energy-based ansatz f of
InfoNCE. Thus, the search for the optimal RSMI coarse-
graining, for any tuning parameters of the system, becomes
a well-defined and tractable variational problem. It can be
solved by simultaneously optimizing both set of trainable pa-
rameters {�,�} toward the same objective in an unsupervised
learning scheme, which we now describe.

The inputs of the RSMI-NE can be e.g., the Monte Carlo
(MC) samples from the desired model, for example as in
Sec. III, but the algorithm can also be run on measured data.
Since we estimate RSMI using the InfoNCE bound, the sam-
pling is divided into minibatches, each containing K samples.
We separate in each sample the visible patch V and its envi-
ronment E , dismissing a finite buffer that separates them. Then
a single minibatch is denoted by the multidimensional random
variable (v1:K , e1:K ) = (v1, . . . , vK , e1, . . . , eK ). As usual, en-
suring good quality MC sampling is important.

Let �s and �s denote the network parameters for the
coarse-graining, and the critic f , respectively, at training step
s. We initialize them as tensors containing random numbers.
At each step s, in the samples in the minibatch vi are coarse-
grained into hi[�s] and the scores matrix Fi j (�s,�s) =
f (hi[�s], e j ; �s) is computed for the InfoNCE at current val-
ues of the network parameters. In Fi j the entries with i = j
denote the jointly drawn samples and the rest denote inde-
pendently drawn samples for the coarse-grained degree of
freedom and the environment. As described above discrete h
are generated by a layer τ .

The InfoNCE prediction (that of p(h, e) being equal to
p(h)p(e) or not, as defined in Eq. (S13) [30]) for the minibatch
is computed using the scores matrix as

Q(h1:K , e1:K ; �s,�s) =
K∑

j=1

exp Fj j (�s,�s)∑K
i=1 exp Fi j (�s,�s)

. (16)

Then log Q(h1:K , e1:K ; �s,�s) + log K gives our single mini-
batch estimate of RSMI.

The gradients of the minibatch estimate of RSMI with
respect to � and � are used to update the network param-
eters. We use the adam optimizer [35] to perform stochastic
gradient-ascent. We found that using the same learning rate for
both � and � leads to efficient training. We repeat the above
over all minibatches, until all samples are fed to the network
once. This constitutes one epoch of training. In Algorithm 1
the training procedure is given in pseudocode.

We train for multiple epochs until convergence criteria are
satisfied (see Sec. II C in the Supplemental Material [29]). For
illustration, we plot in Fig. 2 the time series of the RSMI esti-
mates and the coarse-graining filters during the training for 2D
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critical Ising antiferromagnet and interacting dimer models
below and above the BKT transition point (see Sec. III). Upon
convergence, we are left with an optimized coarse-graining
represented by the final �-parameters, and an estimate of
the RSMI given by a moving average of the time-series of
minibatch estimates.

III. RSMI-NE IN EQUILIBRIUM SYSTEMS

The RSMI-NE algorithm yields a comprehensive char-
acterization of long-distance properties of an equilibrium
statistical system: its phase diagram, correlations, symme-

tries. The companion work [17] discusses in detail the
construction of order parameters, or, more generally, rel-
evant operators. Here we demonstrate how the extracted
quantities, and their dependence on the tuning parameters
of the system and the buffer length-scale, reveal the crit-
ical points and the nature of correlations in the phases.
We illustrate this on the examples of a dimer model with
aligning interactions and the 2D Ising model. We examine
the information, particularly on symmetries, also emergent,
contained in the statistical ensemble of coarse-graining fil-
ters, and show its retrieval with ML techniques, which

FIG. 2. Convergence of real-space mutual information value and the coarse-graining filters. The light-green curve shows the the time
series of RSMI and dark green its exponential moving average. In the top panel, the time series of the coarse-graining filters are given. (a) The
antiferromagnetic Ising model on a 2D square lattice at the critical point. The RSMI converges to log 2 and the optimal filter couples to the
boundary degrees of freedom in V with an alternating sign pattern, due to the onset of antiferromagnetic order. (b) The same for the interacting
dimer model at T = 0.4 < TBKT. (c) For the interacting dimer model at T = 15.0 � TBKT. See Sec. III for details on the Ising and dimer models
and the interpretation of these results.
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(a)

(c)

(b)

FIG. 3. Maximal RSMI as a function of temperature and its scaling with LB. (a) The dependence of the maximal RSMI on temperature
for different buffer widths LB. (b) The scaling of the maximal RSMI with LB at different temperatures. It is found that the RSMI decays
exponentially in the paramagnetic phase, whereas the decay is slower at T � Tc. (c) The evolution of the RSMI-optimal filters with temperature
at LB = 4.

is of practical importance when faced with incomplete
inputs.

We emphasize that, in contrast to many applications of
ML (see Refs. [36,37] for a recent review), the success of
RSMI-NE in extracting physical data is not serendipitous or
due to a particular choice of architecture, but a consequence
of RSMI being a well-defined physical quantity [14], which
the ML methods used approximate numerically.

A. The phase diagram from the parameter dependence of RSMI
and its scaling with buffer size

Real-space mutual information quantifies the totality of
spatial correlations in the system, and thus their changing
structure, especially due to phase transitions, should be re-
flected in its value. This is indeed the case, as shown below.
The nature of these correlations (power-law versus exponen-
tial) further determines the decay properties of RSMI as a
function of the length scale set by the buffer width.

We use the example of the classical 2D Ising model:

K[x = {xi}] = βJ
∑
〈i, j〉

xix j, (17)

with xi = ±1, as the simplest test case for RSMI-NE. It
undergoes a second order phase transition between a fer-
romagnetic for J < 0 or antiferromagnetic order for J > 0,
and a disordered paramagnetic phase at inverse temperature
β = ln(1 + √

2)/2 ≈ 0.44 [38]. We investigate this model in
the temperature range Tc/T ∈ [0, 2.5] by optimizing RSMI at
buffer widths LB ∈ [0, 8].

As shown in Fig. 3(a), the temperature dependence of the
maximal information I�(T ), i.e., the amount of long-range
information attained with the (at given T) optimal �, is a
clear indicator of the second order phase transition, and of
the existence of two phases. At T < Tc, independent of the
buffer width, exactly 1 bit of information is recovered. This
precise quantization is due to RSMI effectively counting the
(two) segregated phase space sectors corresponding to the
ferromagnetic ground states, and reveals the long-range order.

Phase transitions are reflected by nonanalyticities in I�(T )
(cf. the behavior of the mutual information in the absence of
buffer in Refs. [39,40]). At T = Tc we find that the RSMI has
a steplike decay which becomes sharper at larger buffer width
LB. At larger temperatures, the long-range order is destroyed
by the thermal fluctuations. The short-range nature of the
paramagnetic phase results in an exponential decay of the
RSMI with LB, see Figs. 3(b) and 6(a). This is to be contrasted
with the critical phase of the dimer model with power-law
correlations, where the maximal information decays only al-
gebraically with LB; see Fig. 6(b).

We next turn to the more complex example of the interact-
ing dimer model, defined by the partition function:

Z (T ) =
∑
{C}

exp (−EC/T ), (18)

with T the temperature and C denoting dimer configura-
tions on the square lattice obeying the constraint of exactly
one dimer at every vertex; see Fig. 4(a). The energy EC =
NC (||) + NC (=) counts plaquettes covered by parallel dimers
favored by the interaction.
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(a) (b)

FIG. 4. (a) A generic valid dimer covering on the square lattice.
(b) The four ground states of the dimer model with aligning nearest
neighbor interactions break C4 and lattice translation symmetries.

The essence of this system is in the interplay of aligning
interaction energy and entropic effects due to the nonlocal
cooperation of local dimer covering constraints. At low-T ,
the former facilitates long-range order (LRO), crystallizing
the system into one of four translation symmetry breaking
columnar states; see Fig. 4(b). With increasing T the system
undergoes a Berezinskii-Kosterlitz-Thouless (BKT) transition
at TBKT = 0.65(1) [41], entering a critical phase characterized
by algebraic decay of correlations with exponents continu-
ously changing with T . The effective theory of the system
is given by a sine-Gordon field theory [41–43]. In particular,
for T → ∞ the aligning interactions are irrelevant and this
description reduces to a free Gaussian field theory.

To test our method on the dimer model, we generate its
Monte Carlo samples across the whole temperature range,
using the directed loop algorithm [41] (see Sec. III in the
Supplemental Material [29] for implementation details) for
64×64 systems. These are used as inputs to RSMI-NE. We
restrict the coarse-grained variables H to a two-component
binary vector {±1,±1}, a choice suggested by the system-
atic procedure in Sec. III D. Hence, we are looking for a
two-component vector of filters �1, �2 determining how the
visible region V is mapped onto H.

Though the BKT transition is of entirely different nature to
the Ising example considered above, we find that optimizing
the filters �1, �2 for all T readily reveals the structure of the
phase diagram [see Fig. 5(a)]. To wit, for T < TBKT its value is
constant and equal to log 4, or 2 bits. The information shared
between distant parts of the system in the ordered phase is
precisely which of the four columnar states they are in. This
is analogous to the ferromagnetic order of the Ising model,
i.e., the optimal RSMI counts the number of segregated phase
space sectors in long-range ordered phases. Moreover, the
algebraic decay of I�(T ) with the buffer size for T > TBKT,
as seen in Fig. 6, is indicative of a critical phase with power-
law decaying correlations. In particular, we have found that
the RSMI scales as I�(T → ∞) ∼ L−υ

B , with the exponent
obtained from the best fit [see Fig. 6(c)] to be υ ≈ 1.16.

We conclude that the value of the optimal RSMI as a func-
tion of the system’s parameters provides us with information
about position of the critical points, type of phase transition,
the nature of correlation decay in the phases, as well as the
number of sectors in the long-range ordered phases.

B. Correlations from the parameter dependence and flow
of the optimal coarse-graining filters

Much more can be learned about spatial correlations upon
examining the coarse-graining filters �(T ). First, the optimal
filters, with which the highest RSMI value was attained, them-

(a)

(b)

FIG. 5. RSMI analysis of the interacting dimer model. (a) Total
RSMI extracted with the optimal filters as a function of T and its
scaling with the buffer size. (b) Samples of optimal filters obtained
with RSMI-NE for different T [columnar (C), plaquette (P1, P2),
and staggered (S1, S2)].

selves depend on the tuning parameters of the physical system
and in fact carry the information about the phase diagram.
Particularly, they reflect the symmetries of the system (see
also Sec. III C). Moreover, the filters depend on the length
scale LB, reflecting an RG flow. In Ref. [17] we further show
that they correspond to the (lattice discretization of) relevant
operators in the field theory describing the system, in light
of which observation the intriguing results of this subsection
become natural.

1. The optimal coarse-graining filters of the 2D Ising model

The temperature dependence and the relation of the opti-
mal filters to the phase diagram are clear in the Ising model
results, as seen in Fig. 3(c). Here we used a fixed buffer width

(a) (b) (c)

FIG. 6. The scaling of RSMI with the buffer size LB. (a) The
RSMI decays exponentially in the Ising paramagnet (at T = 4). For
LB � 2, the RSMI numerically drops to 0. (b) At the Ising critical
point, the RSMI scales algebraically; the line gives the best fit for
the exponent υ ≈ 0.09. (c) Same as in panel (b) but for the high-
temperature free dimers (T = 15). The fit gives the RSMI scaling
exponent υ ≈ 1.16 for the free dimers.
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(a)

(b)

FIG. 7. Relative strength of coupling to the boundary vs bulk
spins in V , as a function of temperature. (a) The empirical “bound-
aryness” measure [see Eq. (19)] of the optimal coarse-graining filter
at different temperatures and buffer sizes. (b) Near the critical point
Tc the optimal � averages the boundary spins in V . The separation
LB of V from its environment E effectively sets the RG scale ξ .
Growing LB increasingly differentiates the filters � slightly below
and above Tc, which ultimately flow to the ferromagnetic (FM) and
paramagnetic (PM) fixed points. Note the transformations are not
iterated.

LB = 4, a visible region of size 4×4 and a 64×64 grid for the
whole system.

In the high- and low-T limits the paramagnetic and
ferromagnetic phases result in optimal filters, which are re-
spectively random and uniform. The uniform filter acts as the
ferromagnetic order parameter, labeling the configurations by
their magnetization. Consistently, for the antiferromagnetic
Ising model, we found that the optimal filter at low-T is
the staggered magnetization (see Fig. 2). At the second-order
critical point, the filters exhibit a boundary behavior [12], i.e.,
they correspond to the magnetization on the boundary of the
visible block. This is because in the critical Ising system the
information shared between V and E is proportional to the
surface of their interface, and not to the volume of V [39,44].
The boundary filter thus signals the presence of the critical
point.

While the occurrence of the boundary filter is associated
with the critical Tc, the range of temperatures where this
happens depends on LB. Put differently, the accuracy to which
the critical fixed point can be resolved depends on the length
scale set by the size of the buffer. To visualize this in Fig. 7(a)
we plot an empirical measure of the relative strength of the
boundary versus bulk couplings in �(T ), at different values

of LB, which we call the “boundaryness”:

boundaryness := |∑i∈boundary �i|
|∑i∈bulk �i| , (19)

and we rescale by the maximum over T in Fig. 7(a) for clarity
(note that the maximum value was found approximately the
same for all LB except for 0, where it was much greater). This
ratio peaks around T = Tc, becoming increasingly sharp as LB
grows.

This behavior is readily understood, since LB (together
with the total finite system size, cf. Eq. (5) in Ref. [14]) effec-
tively controls the RG scale. Indeed, a corresponding flow of
the optimal filters can be constructed. As shown in Fig. 7(b),
for small LB at T ≈ Tc the optimal filter is a boundary one,
both above or below Tc. At this scale the critical point is not
resolved very well. As LB is increased, however, the T < Tc

and T > Tc cases are increasingly differentiated, and they
eventually flow to the ferromagnetic and paramagnetic fixed
points, respectively. This, of course, is consistent with the
presence of a repulsive fixed-point in the RG flow of the 2D
Ising model.

2. The optimal coarse-graining filters of the interacting
dimer model

The optimal coarse-grainings of the dimer model Eq. (18)
likewise depend on the tuning parameters of the system (i.e.,
the temperature); see Fig. 5(b). In contrast to the 2D Ising
model example, however, this dependence is continuous for
T > TBKT. This, in fact, provides another indication that the
transition is of the BKT type (in addition to the algebraic
scaling of the RSMI curve in the critical phase).

More concretely, in the high- and low-T limits, three
classes of filters emerge: independent optimizations (see dis-
cussion of the filter ensemble in Sec. III C) return exclusively
sets of filters �1,2 that correspond to columnar and plaquette
at low temperatures and staggered ones at high temperatures.
They are denoted as C, P1,2, and S1,2 in Fig. 5(b). We call
these filters “pristine” as they reflect limiting cases. They
also reveal information about the symmetries. In particular,
the pristine plaquette and columnar filters at T → 0 break
the discrete translation or rotation symmetry of the lattice,
respectively. Any pair of �1,2 drawn out of these classes of
filters defines a bijection between the four columnar states in
Fig. 4 and the four distinct states (±1,±1) of the compressed
degrees of freedom in H. They thus label uniquely the ordered
states, (which is the reason the recovered RSMI is exactly
2 bits for T < TBKT), and correspond precisely to the dimer
symmetry breaking order parameter of Ref. [41]. In Ref. [17]
we show the columnar and plaquette filters correspond to the
electrical charge operators of the sine-Gordon field theory, i.e.,
the operators with the lowest scaling dimensions, and so the
most relevant in the RG sense.

The degeneracy of plaquette P1,2 and columnar C filters
in their RSMI value is lifted when the rotation symmetry is
restored at BKT transition: the pristine columnar filter, which
breaks the lattice rotation symmetry explicitly, is not found
above TBKT.

In the limit of T → ∞ the optimal filers are the staggered
S1,2. These can be shown [17] to exactly correspond to the
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spatial gradients of the height field in the sine-Gordon descrip-
tion of the system, or equivalently to the electrical fields. At
T → ∞ these are in fact the only terms in the field theory,
which is then that of a free Gaussian field.

In the critical phase T > TBKT, where the system is
characterized by power-law correlations with temperature-
dependent exponents, the resulting filters continuously inter-
polate between pristine plaquette and staggered ones. This
is due to the competition between the electric field operator
and plaquette correlations, or in other words the gradient and
the cosine terms in the sine-Gordon field theory [41,43]. In a
finite system the correlations due to these operators of slightly
differing (for T � TBKT) scaling dimensions both contribute
to RSMI, though in the thermodynamic limit the more relevant
gradient term would dominate (which indeed happens for
larger T ).

C. The ensemble of coarse-graining filters and its analysis:
Operators and symmetries

1. Extracting the pristine filters (lattice operators)

The above described mixing of the pristine filters in in-
termediate parameter regimes and in finite-size systems may
seem troublesome, but we find it can in fact be resolved, and
the solution to this problem is useful in itself.

The key observation is that due to the RSMI-NE being a
stochastic algorithm it produces in independent runs a dis-
tribution of RSMI-optimal transformations [thus, Fig. 5(b)
shows a sample of filters at each T ]. This distribution defines
the ensemble of filters, a novel concept we introduce.

The ensemble contains physical information, particularly
about the symmetries, and, in contrast to individual filters,
also emergent ones (see below). Crucially, the ensemble also
allows us to address the problem of filter mixing due to
competing correlations. The pristine filters, which correspond
to the (lattice representation of) scaling operators [17], can
be identified not only at the limiting temperatures, but also
through data analysis of the ensemble in a window of inter-
mediate temperatures.

To show this we perform a principal component analysis
(PCA) of the ensemble of RSMI-optimal filters for an in-
termediate temperature range 0.7 < T < 3.7 above the BKT
transition, where the pristine components do not explicitly
appear. The goal is to find the most distinctive features of
the ensemble which vary with the changing system param-
eters controlling the location in the phase diagram (here:
temperature), while filtering out variations due to a specific
realization of statistical noise or the random initial conditions
of the training. As we coarse-grain the dimer model using
8 × 8 two-component filters, we consider a 64-dimensional
vector space where each coarse-graining filter component is
a point. The input to the PCA consists of the ensemble of
coarse-graining filters, flattened into 1D arrays. The resulting
principal components are reshaped back into 8 × 8 arrays, so
that each defines a coarse-graining. To visualize the results
we then project the full space of coarse-graining filters onto
the hyperplane given by the most important principal compo-
nents.

The results are shown in Fig. 8. An important observation
is that the highest principal components are in fact given

FIG. 8. Analysis of the ensemble of coarse-graining rules. PCA
spectrum of the ensemble of filters �(T ) for a restricted tempera-
ture window 0.7 < T < 3.7 above the BKT point. Top-right inset:
projection of the full ensemble on the two highest PCA components.
The overlap with those “plaquette” filters falls with T .

by the pristine filters. This justifies describing the filters in
intermediate regimes as “mixtures,” as suggested by the intu-
itive physical picture of the competing correlations. We can
thus identify the relevant operators, i.e., the plaquette (electric
charge) and staggered (electric field) filters while never seeing
data from parameter regimes where they entirely dominate.
This is important, as MC simulations may be costly, or we
may be dealing with experimental data whose range we do
not have full control over.

2. Discovering broken and emergent symmetries

Here we show how the different symmetries of the model,
including emergent ones, can be observed in the statisti-
cal properties of the filter ensemble. To this end recall first
(Sec. III B2) that a pair of plaquette filters, or a plaquette and
a columnar one are degenerate in RSMI for T < TBKT, and
label uniquely the symmetry-broken states. This degeneracy
is reflected in the equal frequency with which they appear as
the optimal solutions in individual RSMI-NE runs. Likewise,
the disappearance of the rotation-symmetry-breaking colum-
nar filter from the ensemble above TBKT signals the lifting of
the columnar and plaquette degeneracy and restoration of the
rotation symmetry. These observations can be pushed further.

To wit, though each individual instance of RSMI optimiza-
tion returns an object which we can interpret as an operator,
more generally there often exists an RSMI-degenerate sub-
space for the kernels of these operators, i.e., the filters �.
In fact, the ensemble of many optimization instances (at the
same physical parameters) allows us to map out this subspace,
and the resulting distribution contains systematic information
about symmetries. To show this, we project the ensemble of
filters generated in the dimer model from 500 optimization
runs for each temperature onto the orthogonal bases formed by
the pristine staggered and plaquette filters introduced above.

We begin in the ordered phase. In Fig. 9(a), the distribu-
tion of the optimal filters [pairs of ±P1,2, or (±C,±P1,2)]
is shown projected onto the plaquette filters, exhibiting four
distinct peaks corresponding to ±P1,2, and a central peak
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(a) (b) (c)

(d) (e) (f) (g)

FIG. 9. Identifying symmetries in the ensemble of optimal coarse-grainings. (a)–(c) The projection of the ensemble of optimal filters onto
the orthogonal basis (P1, P2) of pristine plaquette filters at temperatures {0.2 < TBKT, 0.7 � TBKT, 1.5}, respectively. The induced action of
the symmetries on the filter components are marked with red arrows (dashed-dotted line) for C4 rotation, and with purple (dashed line) and
light blue (solid line) for horizontal and vertical translations (Tx, Ty), respectively. The central peak in panel (a) corresponds to the columnar
subspace ±C, closed under the action of both translation and C4. We see in panel (b) that there appear two independent representations of the
translation symmetry, namely one with the basis (P1, P2) and also another with (X, Y) := (P1 − P2, P1 + P2), see discussion in the text. For
clarity, we show the Tx,y action in these two representations separately in panels (b) and (c). (d)–(f) The projection onto the orthogonal basis
(Ex + Ey, Ex − Ey ) at temperatures {0.2 < TBKT, 0.7 � TBKT, 15.0}, respectively. (f) The ensemble for high-T is approximately invariant under
continuous rotations in the space of filters. (g) The RSMI is constant as a function of the rotation angle of the electrical field. This degeneracy
in RSMI value is the origin of the emergent U (1) symmetric ensemble.

corresponding to ±C. It can easily be checked that these form
closed subspaces under the action of discrete lattice transla-
tions Tx,y in x and y directions, and C4 rotations. Indeed, since
both families of filter pairs are bijections of the four broken-
symmetry states, they give simultaneous representations of the
two broken symmetries.

More concretely, the action of C4 around a lattice vertex
leads to a Z4-cycle between the peaks, as shown by the red ar-
rows (dashed-dotted line) in Fig. 9(a). Under Tx,y, on the other
hand, ±P1,2 gives a representation of Z2 × Z2, as shown by
the light-blue (solid) and purple (dashed) arrows in Fig. 9(a).
The columnar subspace ±C leads to a trivial representation as
it is left invariant under both symmetries.

Above the BKT transition, a more complex picture
arises [41,42]. Especially in finite systems, the plaquette
correlations remain strong and though the C4 symmetry is
restored, the low-lying excitations consisting of exchanging
horizontally and vertically aligned dimer pairs around plaque-
ttes do not immediately restore the translation symmetry [41].
Since the two broken translation symmetry states differ by
the “site-parity” [e.g., the second and third configurations in
Fig. 4(b)], using one of the coarse-graining components to
label the site-parity the filters can still recover at least one bit
of long-range information (cf. Fig. 5) in a finite-sized system
close to the transition point.

In particular, the pairs (C, P1,2) become immediately sub-
optimal above BKT [cf. the disappeared central peak in
Fig. 9(b)], as they cannot produce a bijective labeling due to
the restored C4 symmetry. In contrast, the pairs consisting of
±P1,2 can still do the identification faithfully if T sufficiently
close to TBKT, so that V contains at most one flipped plaquette.
This is reflected in the persistence of the four ±P1,2 peaks in
Fig. 9(b).

Note, however, the development of four additional peaks
on the diagonals in Fig. 9(b). They are readily understood:
the information-rich “site-parity” identification is insensi-
tive to multiple plaquette flips if the filters (X, Y) := [(P1 −
P2), (P1 + P2)]2 are used instead. This is because they ex-
clusively couple to horizontal or vertical dimers in each
component, hence the notation.

As shown explicitly in Fig. 9(c), Tx (Ty) inverts the sign of
X (Y), whereas Ty (Tx) stabilises it, resulting in a 1D repre-
sentation of Z2. Thus, slightly above the BKT transition there
are two sets of peaks giving two independent representations

2This corresponds to an alternative (but equivalent) form
(cos ϕ, sin ϕ) of the O1 electric charge operator in the continuum
sine-Gordon theory with the height field shifted by π/4 with respect
to the expression in terms of P1,2.
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of the broken translation symmetry, corresponding to the two
labelings above. As T is increased, the ±P1,2 peaks broaden
and disappear; see Fig. 9(c).

For completeness, we note that (X, Y) is suboptimal in the
ordered phase as it cannot deterministically map both the site-
parity and the orientation into binary variables.3 Thus, these
diagonal peaks are absent in Fig. 9(a).

Yet, still a further important question can be asked. The
above discussion was about lattice symmetries, we know
though that in the effective field theory of the dimer model
this discrete C4 symmetry is in fact enlarged to a full U (1).
Can the ensemble of the RSMI-optimal filters provide a hint
of this emergent symmetry?

Surprisingly, the answer is affirmative. This is despite the
fact that the filters are trained on the lattice, and even despite
the imposed discrete-valuedness of the coarse-grainings. The
emergent continuous symmetry is represented on the space of
kernels � of the coarse-graining maps, and reflected in the
ensemble.

To show this we project the filters in the ensemble onto
the orthogonal basis of the pristine filters (Ex + Ey, Ex − Ey).
As shown in Fig. 9(f), at high T the kernel distribution of the
electrical fields returned in individual RSMI runs (all of which
exhibit a, at first glance “similar,” diagonal pattern) is indeed
invariant under continuous rotations! In fact, as plotted in
Fig. 9(g), the RSMI is constant as a function of the angle ϑ of
the rotated electrical fields R(ϑ )(�S1,�S2) ∼ [cos(ϑ )Ex −
sin(ϑ )Ey, sin(ϑ )Ex + cos(ϑ )Ey], thus demonstrating the con-
nection between the (emergent) operator symmetry and the
RSMI-degeneracy. For temperatures below the BKT tran-
sition, the filters do not overlap with the electrical fields
[Fig. 9(d)], while for those closely above [Fig. 9(e)] the con-
tinuous U (1) symmetry is not yet emerged, due to the effect
of the plaquette operators in this finite system [contrast with
Figs. 9(b) and 9(c)].

The above analysis of the ensemble can be improved by
e.g., using more sophisticated methods to disentangle the
mixtures more data-efficiently. Nevertheless, we conclude that
even simple data analysis allows us to extract the most impor-
tant operators, and the symmetries (see also Ref. [45]).

Finally, we remark that the filter ensemble may be a very
useful and natural notion in disordered systems, where the
RSMI approach also applies [13], and the filters may depend
on the quenched disorder realization. We leave this intriguing
possibility to future work.

D. Coarse-graining filters: Type and number of components

In the previous sections we demonstrated among others
that the RSMI-optimal filters label ordered states, and how,
more generally, the symmetries of the system, broken or emer-
gent, even continuous, are manifested on the space of filters
�. An important question is whether and how these results
depend on the constraints imposed on the image of �, i.e., the
type of the coarse-grained variable H.

3Explicitly, it maps the two horizontal (vertical) columnar con-
figurations to tuples of probabilities (for getting +1 for the given
component) � · V = (1 ± 1, 2)/2 ((2, 1 ± 1)/2).

(b)(a) (d)(c)

FIG. 10. Coarse-graining smears the discrete lattice height field
into a sine-Gordon field. (a) The histogram of values taken by the
height field ϕ(ri ) mod 2π (defined on vertices i) for T across the
BKT transition; it is independent of temperature. (b), (c) The his-
togram of values of the block-averaged field 〈ϕ〉ri∈V , respectively,
for 4×4 and 8×8 blocks (corresponding to LV = 8, 16 in dimer
configurations). (d) The range of the continuous sine-Gordon field
ϕ(r).

There are, in fact, two questions: that of continuous- versus
discrete-valued H, and that of the number of H components,
which we address in this section. We begin with the former, in
particular explaining the surprising emergence of a continuous
symmetry in ensemble of filters (as in the high T dimers) even
as H is discrete.

1. Discrete and continuous variables

To this end, let us examine the role of coarse-graining (in a
broad sense) in constructing a continuum low-energy effective
field theory starting from a discrete lattice model, for which
the dimer model is a good example.

On any bipartite planar lattice, a dimer configuration C(ri )
can be mapped onto a unique height profile ϕ(ri ) [43]. In 2D
square lattice, the height at a given site is a four-state variable,
invariant under a shift by 2π , giving it a natural interpretation
as the orientation of the dimer connected to the given site.
Equivalently, the distribution of ϕ(ri ) is uniform over four
discrete values [see Fig. 10(a)].

The continuum effective theory of the interacting dimer
model is given by a sine-Gordon (SG) action:

S[ϕ] =
∫

d2r
{

g(T )

2
|∇ϕ(r)|2 + cos [4ϕ(r)]

}
, (20)

where the lattice height ϕ(ri ) ∈ Z4 is continued into a real-
valued ϕ(r) ∈ [0, 2π ). The first term in Eq. (20) is the energy
density associated to the electrical field E := ∇ϕ, which ac-
counts for the entropy of the dimers and dominates at high
T . The cosine locking potential orders ϕ(r) into a flat pro-
file with one of the four values {π/4, 3π/4, 5π/4, 7π/4},
corresponding to the four ground states of the lattice model.
In other words, the BKT transition happens precisely at the
temperature at which the range of ϕ(r) fragments into four
sectors, which eventually collapse into discrete delta-peaks at
T = 0, as shown in Fig. 10(d).

Numerically, the lattice and the SG pictures are bridged
by mapping the discrete lattice heights onto block-averaged
values 〈ϕ〉ri∈V on the coarse grid. As seen in Figs. 10(b)
and 10(c), this simple procedure indeed smears out the dis-
crete heights into a quasi-continuous variable of the same
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character as the SG field. The larger block size LV , the closer
the coarse-grained variable to a continuous SG field.

This observation is crucial in clarifying the role of dis-
cretization in RSMI-NE, and sheds light on the scale LV .
Particularly, for the case of free dimers the RSMI filter com-
putes the block average of the electric field:

�α · V =
∑

i

�i
αVi =

∑
I

∑
i∈I

�i
αVi︸ ︷︷ ︸

=:EI
α

= 〈Eα〉V , (21)

where i iterates over bonds, and I over disjoint smallest unit
blocks (here this is LV = 4) on which the electric field can be
defined; α denotes the electric field (or filter) component. On
the other hand, in terms of the lattice height field, this means
that (see Supplemental Material of Ref. [17]):

�α · V = 〈∂αϕ〉V = ∂α〈ϕ〉V , (22)

where ∂α is the lattice gradient. In other words, the in-
ner product computes the electrical field averages using the
block-averaged heights (e.g., using LV = 8, as we had in
the discussion of the dimer model), which approximate the
continuous ones of the SG theory. This is the reason why the
emergent continuous U (1) symmetry can manifest itself in the
filter ensemble when the gradient part of the SG action dom-
inates (in the finite system as T → ∞), despite the discrete
input data.

Note that composing �α · V with a binary discretization
map τ does not interfere with the U (1) symmetry in the filter
ensemble. We emphasize the same filters are obtained if no
discretization is assumed. Discretization becomes important,
though, when the support of ϕ starts to get locked into four
values at low T . The information to be retained precisely
comes from identifying these four peaks, and τ increases
the efficiency of finding the filters bijectively mapping the
symmetry-broken states by dramatically restricting the search
space. In this sense it acts as an a posteriori entropy cutoff and
regularization.

We thus conclude that discrete-valuedness of coarse-
graining maps does not interfere with or preclude continuous
symmetries manifesting, and further serves as a regulariza-
tion, which is very useful when the number of configuration
samples is limited.

2. Number of components

Next, we explain how the necessary number of hidden vari-
able components can be discovered systematically, providing
information about the system. This particularly will justify
using a single component variable in the Ising example, and
two for the dimer model.

The essence of the RSMI-NE approach is the efficient
compression of the long-range information. Any compression
method contains a trade-off (explicit or implicit) between
the compression rate, e.g., given by the total number of
bits retained, and the preservation of relevant information.
Ideally one should compress to preserve just sufficiently
enough information relevant for the downstream task the com-
pressed representation is used in—but not more than that.
In RSMI-NE the compression rate is effectively controlled
by the number and the alphabet of allowed values of the

(a)

(b)

FIG. 11. The maximal RSMI versus number of components of
H in the dimer model. (a) For T < TBKT, the only long-range in-
formation is about the type of ground-state the system crystallizes
into. Using two binary components for H suffices to encode this
information and adding further components does not improve this
result, as reflected by the value of I�(H : E ) attained. (b) At T → ∞,
two electric field components recover the maximal long-range infor-
mation ≈ 1

2 log 2 (for LB = 4). This is not improved by additional
components, which converge to filters linearly dependent on the first
two.

coarse degrees of freedom H (for example, {±1}, {↑,↓},
{|0〉 , |1〉 , |2〉}, etc.). The relevant long-range information, on
the other hand, is a property of the physical system, which we
do not have control over.

Since a priori we do not know (though in practice we may
often anticipate) what the amount of long-range information
in the system is, a simple practical procedure to determine
the optimal compression rate is to find the maximal number
of compressed variables |H|, above which the retained RSMI
does not further increase significantly. Figure 11 shows that
this happens at |H| = 2 for the dimer model both in the
high-T limit, and the columnar ordered phase at low T . In
both cases we use a fixed buffer width of LB = 4. We find that
using a single binary component leads to only half the RSMI
value attained with |H| = 2, and is obtained by an optimal
filter equal to one of the components of the two-component
rule. For |H| > 2, the RSMI saturates into either 1

2 log 2 at
T → ∞ or log 4 at T < TBKT. Thus, we verify that at most two
of the components are linearly independent, and additional
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FIG. 12. Phase transition in the chipping and aggregation model. (a) Observing the decay profile of the marginal mass distribution for a
given site at different values of w is one way of qualitatively assessing the different phases of the chipping model. (b) By providing merely the
real-space sample configurations, the peaking maximal value of RSMI signals the nonequilibrium critical point. Furthermore, the aggregated
and low-w phases can be distinguished by the distinct saturated values.

filters do not extract distinct information from V . In the 2D
Ising model example, in contrast, only a single filter suffices
(and it corresponds to magnetization). The physical intuition
behind the above procedure is clear: it finds the number of
relevant operators whose correlations explain the total infor-
mation shared between distant parts of the system.

Finally, we note that while the variational ansatz used for
the coarse-graining was a shallow network dotted into the
configurations (before the nonlinear Gumbel-softmax step),
more general or deeper network architectures can be consid-
ered. RSMI maximization can be performed over any class
of variational functions. For specific systems and inputs a
more expressive ansatz could possibly recover larger RSMI.
In more abstract terms, since the coarse-graining rules are
related to the RG-relevant operators [17], such choices would
be able to extract operators which cannot be written as linear
functions of the local degrees of freedom, should these be
important. Though for such complex multilayered architec-
tures the patterns of the weights themselves may not be
directly interpretable, the extracted � filters can still be used
as operators, as we have done in computing the correlation

functions in Ref. [17]. We again emphasize that the physi-
cal interpretability is not a consequence of the architectural
choices but of the physical nature of the RSMI quantity [14].

IV. POSSIBLE EXTENSION TO NONEQUILIBRIUM:
A MODEL WITH CHIPPING AND AGGREGATION

The RSMI-NE algorithm we described does not in any
way use or rely on the existence of a Hamiltonian generating
the probability distribution. It can thus be directly applied
to general nonequilibrium distributions, though the formal
understanding of the optimal filters in this situation, analogous
to results of Refs. [14,17], is currently missing. This is an
exciting research direction, whose development we leave to
future work. Here, however, we provide a short validation of
the idea.

To this end we consider the nonequilibrium example of the
1D chipping and aggregation model of Ref. [46]. Its stochas-
tic dynamics is defined by the update rules given below. At
any time increment �t , masses mi on site i in the chain are
modified according to the following moves:

chipping, at rate p = �t :

{
if mi > 0 : mi �→ mi − 1, mi±1 �→ mi±1 + 1,

if mi = 0 : do nothing,
(23)

aggregation, at rate p = w�t : mi �→ 0, mi±1 �→ mi±1 + mi. (24)

We consider the case with mass density ρ = 1, so that∑
i mi = L, where L is the length of the chain for which we

impose periodic boundary conditions.
This system undergoes a nonequilibrium transition be-

tween phases, whose qualitative difference is reflected in the
marginal probability distribution p(m) of masses at each site,

as shown in Fig. 12(a). For low aggregation w, the distribution
p(m) is an exponentially decaying function with increasing
mass per site. At high w, a macroscopic proportion of the
masses aggregate (or condense) to a single site, corresponding
to a delta-function peak around m ≈ L, with an algebraically
decaying part for the remainder of the masses. Criticality of
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the intermediate w region is reflected by a purely algebraically
decaying distribution p(m).

The shape of the marginal distribution p(m) clearly demon-
strates the different phases and the transition between them.
Instead of, however, investigating such specific quantities,
which requires at least an intuitive understanding of the
physics of the system, one can generically identify the
nonequilibrium critical point using RSMI-NE directly applied
to the full real-space configurations. As shown in Fig. 12(b)
the dependence of the optimal-RSMI at w readily points to
a transition between the phases with different spatial correla-
tion characteristics. We performed RSMI optimization on the
model with L = 256, for a range of values of w, and used a
buffer of width LB = 8. While at all values of w we found
that the optimal coarse-graining rule averages the mass for
the region V , the value of the maximal information saturates
into different values in the low-w and the aggregated phases.
Moreover, the transition point is marked by a slight peak in
the RSMI.

These results demonstrate the in principle applicabil-
ity of the RSMI maximization to nonequilibrium problems.
While this example reaches the steady-state distribution very
quickly, in a more general scenario involving far-from-
equilibrium systems the formalism can be extended to screen
out short-time correlations by introducing a buffer in the
temporal direction. This line of research merits a full devel-
opment, which we leave for future study.

V. CONCLUSIONS AND OUTLOOK

In this work, accompanying and extending Ref. [17], we
demonstrate how recent rigorous results in ML-based es-
timation of information theoretic quantities [15,16] can be
combined with other algorithmic ingredients [33,34] to yield
a formally interpretable and numerically efficient algorithm
extracting information about long-range properties of statisti-
cal systems from its raw configurational samples. We dub this
unsupervised algorithm RSMI-NE, or the real-space mutual
information neural estimator, from the key physical quantity
of interest [12–14], and we provide a detailed introduction to
the method and background concepts, as well as an examina-
tion of its properties.

The optimal real-space coarse-graining filters extracted de-
pend on the parameters of the physical system and in fact
are lattice representations of its most relevant operators in
the sense of renormalization group (RG) [17]. The filters,
along with the RSMI value, and its dependence of systems’
parameters and length-scales, provide a comprehensive phys-
ical picture. Particularly, the position and nature of the critical
points, decay and structure of the spatial correlations, together
with the type of order is revealed by these quantities, which
we demonstrate explicitly in equilibrium examples. Though
we focused on statistical models on regular lattices, the al-
gorithm can be applied to continuum or graph models as
well.

We further introduce the notion and examine the properties
of the ensemble of the optimal coarse-graining filters. We
show that it contains important physical information, most

notably about the symmetries, including emergent ones. The
ensemble can be the object of statistical analysis itself, allow-
ing us to extract the relevant operators from partially complete
data, or from restricted parameter regimes.

We also examined and validated the possibility of ex-
tending the applicability of the algorithm to nonequilibrium
systems on the example the chipping model with aggre-
gation [46], for which the presence and position of a
nonequilibrium phase transition was detected.

Motivated by the above example, the full extension of the
framework to the case of nonequilibrium systems is among
the most promising and exciting future research directions.
This requires investigating the RSMI approach with spa-
tiotemporal coarse-graining rules, and the information shared
between temporally ordered states [47] and extending the
theoretical results of Ref. [14]. The existing algorithm does,
however, already allow the investigation of spatial correlations
in complex real-world systems, such as, e.g., meteorological
precipitation data exhibiting critical points, possibly related to
self-organized criticality [48].

Previous formal results [13] and the numerical possibil-
ity of individually optimizing the coarse-graining rules for
each block invite the application of RSMI-NE to disordered
systems. In particular, the ensemble of coarse-graining rules
would be inherited naturally from the disorder distribution and
the further statistical analysis may identify certain equivalence
classes within this ensemble. This would be especially helpful
in identifying the relevant DOFs in these challenging systems.

Finally, we emphasize that the RSMI-NE provides an im-
portant step toward the goal of automating certain aspects of
theory building. The constructed outputs (the coarse-graining
transformations) are effectively black-box algorithmic ob-
jects, which, however, can be assigned the formal identity of
order parameters or scaling operators of the physical theory.
They can explicitly be used as such to compute correlations
functions or scaling exponents, as shown in the companion
work Ref. [17]. The above results clearly invite further work
in this direction.
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