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Memory effect and phase transition in a hierarchical trap model for spin glasses
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We introduce an efficient dynamical tree method that enables us to explicitly demonstrate the thermorema-
nent magnetization memory effect in a hierarchical energy landscape. Our simulation nicely reproduces the
nontrivial waiting-time and waiting-temperature dependences in this nonequilibrium phenomenon. We further
investigate the condensation effect, in which a small set of microstates dominates the thermodynamic behavior in
the multilayer trap model. Importantly, a structural phase transition of the multilayer tree model is shown to
coincide with the onset of the condensation phenomenon. Our results underscore the importance of hierarchical
structure and demonstrate the intimate relation between the glassy behavior and structure of barrier trees.
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I. INTRODUCTION

Understanding the nature of spin-glass dynamics remains
a challenging task in modern statistical and condensed mat-
ter physics. The glass phase is intrinsically nonstationary: A
glass system in the thermodynamic limit continues to relax
toward its ground state with an ever slower rate. A hallmark
of spin glasses at low temperatures is the aging phenomena,
which originate from a history-dependent relaxation dynamics
of these systems [1–4]. One particularly intriguing dynami-
cal behavior related to aging is the memory effect [5]. For
example, in the so-called zero-field-cooled (ZFC) aging ex-
periments [6–8], a spin glass is quenched below its freezing
temperature in the absence of magnetic field. After a wait-
ing time tw, an external magnetic field is turned on and the
resultant magnetization M often depends on the duration of
the waiting period. Various experimental setups with different
cooling and heating protocols have been employed to investi-
gate the memory effect of glassy systems [9–19].

The memory effect is intimately related to the rejuvenation
phenomena, which are manifestations of the extreme sensi-
tivity of spin-glass systems to temperature changes [11–14].
Specifically, for example, when a spin glass is subject to a
small negative temperature jump in the glass phase, the system
behaves as if it had been quenched from above the glass tran-
sition temperature Tf . However, a perfect memory of the time
spent at the initial temperature below Tf is somehow kept,
as demonstrated by the so-called memory-dip experiments
[13–19]. These intriguing nonequilibrium behaviors are be-
lieved to be related to a certain “coherence” length that keeps
on growing in an aging spin glass [20–24]. The relaxation
dynamics in the glass phase is thus characterized by multiple
timescales that govern the dynamics of the spin glass at differ-
ent length scales. This dynamic temperature-chaos picture that
involves multiple timescales and length scales is supported by
numerical simulations based on the real-space droplet models
[25–27] and recent large-scale Monte Carlo simulations of
three-dimensional Edwards-Anderson spin-glass models [28].

While valuable insights and intuition about the aging
dynamics can be gained from the real-space approaches
[22–24,28–33], the multiscale nature of the memory and
rejuvenation phenomena makes such direct simulations com-
putationally very difficult, if not impossible. On the other
hand, theoretical approaches based on the state-space or en-
ergy landscape methods have long been successfully applied
to quantitatively model the aging phenomena in glass systems.
This is because multiple energy scales and timescales can be
easily encoded into dynamical models based on energy land-
scapes [34–51]. A canonical example is the random energy
model [34,35], in which the lifetime of the many metastable
states of the glass system is assumed to be a random vari-
able described by a broad power-law distribution. The aging
phenomenon in such models can be attributed to a divergent
relaxation time when averaged over all the local minimum
states.

Various studies have emphasized the hierarchical struc-
ture of the energy landscape for spin glasses [41–45,52–
55]. A diffusion process in such hierarchical structures can
naturally lead to nontrivial relaxational dynamics such as
stretched exponential decay or power-law decay with a
temperature-dependent exponent [41–43]. Moreover, the hier-
archical diffusion problem can be mapped into a random-walk
problem on a tree structure, with its nodes corresponding
to the many metastable states of the energy surface. Highly
nontrivial glassy phenomena can be quantitatively reproduced
by such tree models coupled with a master-equation approach.
For example, the magnetization response observed in the stan-
dard ZFC experiments can be nicely reproduced by the binary
tree models [42–44]. Nonequilibrium dynamical responses,
such as the ac susceptibility memory effect, can be described
by the tree models with random-walk dynamics [46–48].
In addition to phenomenological hierarchical tree models, a
quantitative barrier tree representation of specific spin models
can also be realized based on the concept of disconnectivity
graphs [56–64].
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In this paper we develop a hierarchical tree model and
apply it to simulate the thermoremanent magnetization (TRM)
memory-dip phenomena observed in several spin glasses
[12–19]. In such experiments, the sample is first cooled down
from well above Tf to a base temperature with a single stop
for a waiting time tw at an intermediate temperature Tw in
zero magnetic field. Once at the base temperature, the system
is heated back to high temperature and its magnetization M
is measured with a small probing field. The waiting period
allows the system to evolve toward equilibrium at the tem-
perature Tw. Interestingly, the quasiequilibrium established
during the stop seems to be kept in memory, and the dc
magnetic susceptibility exhibits a remarkable dip at Tw when
heated back. Our random-walk simulations on the proposed
dynamical tree model capture essential features of the TRM
memory effect, particularly the nontrivial waiting-time and
waiting-temperature dependences of the susceptibility dip.

We further show that the magnitude of the memory effect
depends crucially on the structure of the hierarchical tree,
which is quantitatively characterized by a parameter λ. Es-
sentially, this parameter controls the branching probability of
the backbone tree, which consists only of saddle points. In the
tree representation, a node with large branching indicates a
larger configuration entropy associated with this saddle point.
In order to efficiently model the effect of large branching, a
dynamical tree method where the relevant nodes are generated
on the fly is introduced. We find that the hierarchical tree
of the energy landscape exhibits a structural phase transition
at a critical λc above which glassy behaviors disappear. This
critical point is further associated with the condensation phe-
nomenon that results from a competition between energy and
entropy.

The rest of the paper is organized as follows. In Sec. II
we review the basics of the barrier tree representation of the
hierarchical energy landscape. We next discuss the dynamical
tree method and the random-walk simulations for simulating
the TRM memory-dip experiments. The effect of the tree
structure on the memory effect is further explored in Sec. III.
We show that a structural transition of the tree at λc = 1
coincides with the condensation transition, which plays an
important role in the nonequilibrium behaviors of the glassy
systems. We provide a summary in Sec. IV.

II. DYNAMICAL HIERARCHICAL TREE MODEL
FOR THE MEMORY EFFECT

We begin with a discussion of the tree representation of
the hierarchical energy landscape [41,60]. Two examples of
the barrier trees are shown in Fig. 1. Each node of the tree,
denoted by a circle, represent either a saddle point or a local
energy minimum. The closed and open red circles correspond
to boundary and internal saddle points, respectively, of the en-
ergy landscape. Each line emanating from a circle represents a
downward path from the saddle point of the energy landscape.
These lines could end at another saddle point at a lower energy
or at a local minimum. For simplicity, both types of nodes
descended from a saddle point are called the daughters of the
saddle node. A boundary saddle point (closed red circle) only
has local minima as its daughters, while an internal saddle
(open red circle) could also have other saddle nodes at a

FIG. 1. Schematic diagram of hierarchical barrier trees with
(a) λ = 0.5 and (b) λ = 2.0. Each node, represented by a circle, of
the tree corresponds to either a saddle point or a local minimum. Red
closed (open) circles denote the boundary (internal) saddle points,
while black circles represent local minima. The backbone of the
tree is highlighted by red lines, which also show the connectivity
of the saddle points. Note that the level index l increases from top to
bottom.

lower level as its daughter. Each local minimum node (black
circles in Fig. 1) in the tree represents a phase-space pocket in
which the system can be trapped. The edge between two nodes
indicates a possible dynamical pathway; the corresponding
barrier height is indicated by the edge length. Finally, a level
index l is introduced to count the distance, or the number of
branching, of a node from the root.

The barrier energy εl of local minima at the lth level or
that of saddle points at the (l + 1)th level is a random number
drawn from an exponential distribution

ρl (εl ) = e−εl /Tl /Tl . (1)

Importantly, this probability density gives rise to a divergent
trapping time for minima at level l when the temperature T <

Tl . In order to compute the magnetic susceptibility χ , a mag-
netization parameter ml is assigned to each node following the
random magnetization model [46–48], where ml is a random
number uniformly distributed in the interval [−Ml ,Ml ]. One
can then characterize the system trapped at the lth level of the
tree by a series of energies {ε0, ε1, ε2, . . . , εl} and magnetiza-
tions {m0, m1, m2, . . . , ml}. The energy and magnetization of
the system are given by the sums

E = ε0 + ε1 + ε2 + · · · + εl ,

M = m0 + m1 + m2 + · · · + ml . (2)

The characteristic temperatures Tl at different levels are as-
sumed to decrease geometrically with l , i.e., Tl = T0 rl , where
r < 1 is a constant. This provides a simple way to encode
multiple energy scales into the tree structure while maintain-
ing a finite average total energy 〈E〉 = 〈ε0〉 + 〈ε1〉 + 〈ε2〉 +
· · · + 〈εl〉 for all l . Consistent with the energy barriers which
become smaller with increasing level, we assume the range of
magnetization Ml also decreases geometrically with increas-
ing l .

Following previous works on the hierarchical diffusion
models, the relaxation dynamics in a barrier tree is mod-
eled by a random-walk Markov chain process. The transition
probability from node α to β is governed by the Metropolis
dynamics:

Pα→β = Qα→β min{1, e−β(Fβ−Fα )}. (3)
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Here Fα = Eα − HMα is the effective energy of node α, H
is a small external probing magnetic field, β ≡ 1/kBT is the
inverse temperature, and the coefficient Qα→β encodes the
structural information of the tree. As in standard Metropolis
dynamics, at every time step, there is a finite probability Pα→α

that the walker stays at the same node; it is determined by the
conservation of probability Pα→α = 1 − ∑

β �=α Pα→β .
Given a complete representation of the barrier tree, which

requires careful labeling of all the nodes at different levels
and their connections, the standard Monte Carlo method can
be used to simulate the random walk on the barrier. However,
although it is possible to explicitly build simple tree structures
such as binary trees or single-layer trees, explicit construction
of the hierarchical trees with a large number of branching
is a computationally demanding task, which requires large
runtime memory for storing the tree data. It is also highly in-
efficient as most of the nodes will not be visited by the walker.
To overcome this difficulty, here we develop a dynamical tree
method such that new nodes are generated on the fly according
to the statistical properties of the tree.

Explicitly, the history of a random walker at level l is kept
in two dynamical lists: Lε = {ε0, ε1, ε2, . . . , εl} and Lm =
{m0, m1, m2, . . . , ml}. These are the energy barrier and mag-
netization, respectively, of the nodes visited by the walker at
each level. If the walker decides to make a down transition to a
lower level, random variables εl+1 and ml+1 are sampled from
their respective probability density and added to the respective
history list. On the other hand, the last entries εl and ml are
deleted from the respective lists if the walker decides to go
up. In doing so, we neglect the possibility that the walker will
later visit exactly the same state at the lth level. Nonetheless,
this is a reasonable approximation for barrier trees with a
large number of branchings, which is usually the case in the
thermodynamic limit.

We note that our dynamical tree method is similar to
the multilayer random energy model (MREM) used in
Refs. [46–48]. The main difference is that their MREM as-
sumes an infinite number of daughters from each node and all
nodes except the one at the lowest (outermost) level are saddle
points. By excluding local minimum states at intermediate
levels, the MREM of [46–48] cannot describe barrier trees of
the type shown in Fig. 1(a), which, as will be shown below,
exhibits a strong TRM memory effect.

As discussed above, the structure of the barrier tree is
encoded in the coefficients Qα→β in Eq. (3). In our dynamical
tree method, these coefficients can also be viewed as a set of
transition probabilities that define a separate Markov chain
process. Compared with the random walk governed by tran-
sition probabilities Pα→β , the Markov process corresponding
to Qα→β can be viewed as a random-walk process on the
tree without the energy constraint. Here we assume these
probabilities are given by a few parameters depending on the
types of nodes α and β. Explicitly, for a walker stuck in a
local minimum α, it can only make a transition to the saddle
node β above it. On the other hand, there are three possible
transitions that can take place at a saddle point at the lth
level: The walker can go to a local minimum of the same level
with probability p0, jump to a saddle node at the upper level
l − 1 with probability p−, or jump to a saddle node at the
lower level l + 1 with probability p+. We summarize these

FIG. 2. (a) Protocol for temperature variation for simulating
memory effect in multi-layer trap model. The system is initially
cooled with a constant rate until the temperature reaches Tw . The
system then stays at Tw for a finite period of waiting time tw before
further cooling to a base temperature. During the subsequent mea-
surement, a small magnetic field is applied to induce magnetization
while the system is heated with a constant rate. (b) shows the system
energy averaged over many independent runs as a function of time.
Panels (c)–(e) show the temperature dependence of zero-field-cooled
DC magnetic susceptibility χ , generated by Monte Carlo simula-
tions. The data are taken after waiting during the cooling process
with the waiting time tw in units of 5 × 106 Monte Carlo steps at
(a) Tw = 0.2Tf , (b) Tw = 0.4Tf , and (c) Tw = 0.6Tf .

transition probabilities as follows:

Qmin→saddle = 1,

Qsaddle→min = p0,

Qsaddle→saddle = p±. (4)

Here we have assumed that the probabilities p0 and p± are
independent of the levels for simplicity. Physically, the prob-
ability p0 that the system will make a transition from a saddle
point α to a local minimum depends on the number of down-
ward pathways from α to one of the minima. For a randomly
generated barrier tree with a fixed structure, the number of
downward pathways varies from one saddle node to another.
Consequently, some saddle node might have more local min-
ima attached to it, hence a larger p0. The simplification that
these probabilities p0 and p± are constant independent of
nodes thus amounts to a mean-field approximation for the
tree structure. We note that the introduction of two different
probabilities p± for moving down and up the backbone tree is
similar to the degeneracy factor in, e.g., the binary tree models
of Refs. [41–44].

The above dynamical tree generation and the Metropo-
lis random-walk dynamics are used to simulate the TRM
memory-dip experiments [18]. The cooling and measurement
protocol is summarized in Fig. 2(a). The system is first cooled
down from well above Tf to the base temperature with a single
stop at an intermediate temperature Tw for some period of time
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FIG. 3. (a) Memory effect in terms of maximum depth of the rel-
ative change of magnetization (M − Mref )/Mref versus the structural
parameter λ = p+/p−. The red line is a guide to the eye. (b) A few
examples of the temperature dependence of (M − Mref )/Mref .

tw under zero field. Once cooled down to the base tempera-
ture, the susceptibility χ = 〈M〉/H is measured by applying
a small field upon heating at a constant rate. As demonstrated
in Figs. 2(c)–2(e), our simulations successfully reproduce the
memory effect which manifests as a prominent dip at Tw when
the system is heated back. Moreover, the dip becomes more
pronounced with increasing waiting time tw. The sensitive
dependence on both waiting temperature Tw and waiting time
tw is the hallmark of the memory effect in thermoremanent
magnetization measurement [15–19].

To gain a better insight into this remarkable phenomenon,
we plot the average energy 〈E〉 as a function of time (in terms
of Monte Carlo steps) in Fig. 2(b). The energy 〈E〉 decreases
with time initially until the cooling stops at Tw. During this
waiting period, the walker cannot efficiently explore those
levels l∗ whose characteristic energy scales as Tl∗ � Tw. This
is because the average energy barrier separating nodes at
these levels ε∗

B ∼ Tl∗ is greater than or of similar order to the
waiting temperature Tw, hence a small transition probability
P ∼ exp(−Tl∗/Tw ). However, a longer waiting time tw at Tw

allows the walker to overcome the energy barrier ε∗
B through

thermal activation and find energetically lower nodes in those
levels l∗. This partial equilibration thus gives rise to an ad-
ditional energy reduction �Ew from this waiting period [see
Fig. 2(b)]. Upon reheating, again the average energy and level
increase with time initially. As the temperature approaches Tw,
the system needs to overcome this additional energy barrier
�Ew, leading to a dip in susceptibility.

Having demonstrated the memory effect in the hierarchical
trap model, one natural question is how it is affected by the
tree structure. To answer this question, we examine the depen-
dence of the memory effect on a crucial structural parameter

λ ≡ p+/p−, (5)

which is the average branching ratio of the backbone tree,
i.e., the tree with all local minima removed (see Fig. 1). The
backbone tree consists of only the saddle points. Figure 3(a)
shows the λ dependence of the relative change of magnetiza-
tion (M − Mref )/Mref that provides a quantitative measure of
the memory effect, where M and Mref are the magnetization
at Tw with and without waiting, respectively [Fig. 3(b)]. Our
results show that a pronounced memory effect is obtained
with a small λ, corresponding to barrier trees with a smaller

FIG. 4. (a) Schematic diagram of a semi-infinite 1D random
walk. In this 1D model, all the saddle nodes at the same level are
treated identically, which are represented by red dots. (b) Averaged
position 〈x〉 of the walker as a function of time for different value
of λ = p+/p−. Here the average is computed from 105 independent
Monte Carlo runs.

probability of descending to lower levels. A representative
example of such trees is shown in Fig. 1(a).

III. STRUCTURAL PHASE TRANSITION
AND CONDENSATION PHENOMENON

Interestingly, the memory effect quickly disappears as λ

approaches 1, indicating a potential critical λc = 1. Here we
show that this critical pint λc = 1 corresponds to the critical
point of a structural transition of barrier trees. To this end, we
consider a random-walk process which is unaffected by the
energy barrier. As discussed above, this Markovian process
is governed by the transition probabilities Qα→β , which only
depend on the statistical property of the barrier tree. Since a
walker at a local minimum will always return to the saddle
node according to Eq. (4), we can focus only on the random
walk among the saddle nodes, or the backbone tree. The finite
probability p0 that the walker visits the local minima from
a given saddle point translates to a finite probability that the
walker stays at the same saddle point. The effect of this finite
p0 can then be accounted for by a redefinition of the time step
which corresponds to the average time the walker stays at the
same saddle node. The Markov chain process described by
Qα→β is now effectively reduced into a random-walk problem
along a line. In this mapping, the position x of the walker cor-
responds to the level l of the tree [see Fig. 4(a)]. At each time
step, the walker can move to a lower level with probability

p+
p++p−

or to the upper level with probability p−
p++p−

.
A crucial observation here is that the walker cannot go

above level l = 0, which means that the random-walk prob-
lem has a perfectly reflecting boundary condition at the top.
Figure 4(b) shows the time dependence of the average position
〈x〉 (in units of the level index l) of the walker who is initially
at level 0. Our results clearly show two distinct dynamical
regimes separated by the critical λc = 1. For small λ < λc, the
average 〈x〉 saturates to a finite value in the long-time limit.
Physically, this can be understood as a balance between the
tendency of the walker to move upward and the reflection at
the boundary l = 0. As a result of this balance, the walker
never wanders too far away from the root. This is consistent
with the analytical calculation showing that a walker starting
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at position l �= 0 will always visit the root in finite time, i.e.,
the return probability is 1 [65–67]. On the other hand, for
λ > λc, the average position 〈x〉 increases linearly with time,
which is expected for a biased random walk without boundary.
In the special case of λ = λc, corresponding to p+ = p−, we
find that, even in the presence of a reflecting boundary, the
walker obeys the well-known time dependence 〈x〉 ∼ t1/2 for
a symmetric random walk [see Fig. 4(b)].

The two distinct dynamical regimes of the one-dimensional
(1D) random walk indicate a structural transition of the bar-
rier trees at the critical point λc = 1. The average position
〈x〉 of the walker provides a measure of the average depth
of the hierarchical tree. The above results indicate that trees
with λ � λc could grow indefinitely in depth in our dynamical
tree scheme, which means local minima at deep levels (l 	 1)
contribute significantly to the “volume” of the phase space.
It is worth noting that, although the hierarchical trees could
have an infinite number of levels, our choice of temperature
parameters Tl ensures that the average energy is bounded,
as discussed above. Moreover, the exponential distribution of
barrier energy (1) indicates that local minima at lower levels
(larger l) are not necessarily deep in terms of energy.

For barrier trees with λ < λc, the fact that the average posi-
tion 〈x〉 is finite indicates that such barrier trees are dominated
by local minima at shallow levels. This can also be understood
from the detailed balance condition that is required for the
steady-state random walk. Let Nl be the average number of
saddle nodes at level l; the detailed balance means Nl p+ =
Nl+1 p−. Consequently, we have Nl ∼ N0 λl , which means
that the number of saddle nodes decreases geometrically with
increasing levels for trees with λ < λc = 1; an example of
such trees is shown in Fig. 1(a).

Importantly, our simulations in Sec. II show that the sub-
critical trees with λ < λc exhibit a strong memory effect. The
fact that such trees are dominated by local minima at a few
shallow levels plays an important role in the emergence of
the memory effect and is also related to the so-called con-
densation phenomenon of glassy systems. To this end, we
numerically compute the average participation ratio Y (T ),
which provides a measure of the glassy behavior. It is essen-
tially the sum of squared Boltzmann probabilities [68,69]

Y (T ) ≡
〈∑

α

Wα (T )2

〉
=

〈
1

Z2

∑
α

e−2Eα/kBT

〉
, (6)

where the summation is over all local minima α, Z =∑
α e−Eα/kBT is the partition function, and 〈· · · 〉 denotes the

average over different realizations of the barrier trees. The
participation ratio Y (T ) is used to quantitatively characterize
the so-called condensation phenomenon, in which a smaller-
than-exponential set of microstates dominates the Boltzmann
measure. Intuitively, the inverse 1/Y (T ) gives an estimate
of the effective number of configurations that contribute to
the partition function. In the case that a large number of
microstates contribute equally to the Boltzmann sum, the par-
ticipation ratio Y ≈ 0. Condensation happens when the sum
is dominated by a few states. The participation ratio can be
computed analytically for the random energy model (REM)
[70,71], which is similar to a one-layer random trap model. In
the thermodynamic limit, the REM exhibits a critical temper-

FIG. 5. (a) Participation ratio Y vs temperature for barrier trees
obtained from the dynamical tree method. (b) Glassy order parameter
A, defined as the area under the Y (T ) curve, vs the tree-structure
parameter λ.

ature Tc, above which Y = 0. Condensation occurs at T < Tc

and the participation ratio grows linearly upon lowering the
temperature: Y (T ) ∼ 1 − T/Tc.

Here we perform the Monte Carlo simulation to numeri-
cally compute Y (T ) for the randomly generated hierarchical
trees. It is worth noting that, with our dynamical tree method
encoded in transition probabilities Qα→β , the Monte Carlo
simulation based on Pα→β automatically provides both the
thermal and the disorder average for the calculation of the par-
ticipation ratio. The numerical temperature dependence of Y is
shown in Fig. 5(a) for varying structure factor λ. The behavior
of Y (T ) here is similar to the REM for λ < 1. Moreover, the
condensation temperature Tc decreases with increasing λ. We
can introduce an order parameter

A =
∫ ∞

0
Y (T )dT, (7)

which is the area under the Y (T ) curve, to characterize
the overall degree of condensation or the glassy behavior.
Consistent with our random-walk simulation results, the λ de-
pendence of A indeed shows a critical point at λc = 1, above
which the glassy order parameter A vanishes [see Fig. 5(b)].
The glassy transition at λc = 1 can be viewed as a result
of the competition between energy and entropy. While the
glassy phase (λ < 1) is characterized by condensation of a few
dominant microstates, the proliferation of energetically shal-
low minima in trees with λ > 1 overwhelms those few deep
minima, leading to the disappearance of the glassy behavior
and memory effect.

IV. CONCLUSION

To summarize, we have numerically demonstrated the
memory effect in a dynamical model of hierarchical bar-
rier trees. This numerical simulation successfully shows the
nontrivial dependence of the memory effect on the waiting
time as well as the waiting temperature. Our results strongly
support the crucial role of the hierarchical structure in the
memory effect. We further show that trees with a smaller
branching ratio, i.e., fewer and fewer saddle points as one goes
deeper, tend to exhibit a strong memory effect. In fact, a struc-
tural transition of the barrier tree is found to coincide with
the glassy transition. This picture is supported by our result
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showing that condensation phenomena, in which a few deep
local minima dominate the partition function, only occur in
trees with a small branching ratio.

We further established a structural transition at the critical
point λc = 1, above which the memory effect vanishes. In
fact, trees with a large branching ratio λ > λc do not exhibit
glassy behavior due to the exponential increase of the number
of energetically shallow minima. This picture is supported by
our result showing that condensation phenomena, in which a
few deep local minima dominate the partition function, only
occur in trees with a small branching ratio. The glassy transi-
tion at λc = 1 can also be viewed as a result of the competition
between energy and entropy. While the glassy phase (λ < 1) is
characterized by condensation of a few dominant microstates,
the proliferation of energetically shallow minima in trees with
λ > 1 overwhelms those few deep minima, leading to the
disappearance of the glassy behavior and memory effect.
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APPENDIX A: DYNAMICAL TREE METHOD

In the Appendixes we provide the pseudocodes for the
algorithms used in this work, including the dynamical tree
methods for the thermoremanent magnetization simulation,
the 1D random-walk simulation, and the participation ratio
simulation. Details of the simulations are also discussed.

In order to avoid the extremely large memory to precreate
the entire tree, we generate the tree nodes on the fly. In the
dynamical tree method, only the node level l and the lists of
barrier energies and magnetizations, i.e., Lε and Lm, respec-
tively, are kept tracked of during the simulation. An additional
parameter is_min is used to label whether the current node
is a local minimum or a saddle point. The simulations are
performed on a temperature series T s along with a magnetic
field series Hs. At each temperature point, the total magnetic
moment is averaged over nsweep iterations and recorded in a
list Ms. In each iteration, the system can choose to walk up,
l → l − 1, or down, l → l + 1, based on the node condition
and the Metropolis-Hastings algorithm. See Algorithm 1 for
details.

The parameters we used to produce Fig. 2 in the main text
are the total number of tree levels L = 100 and the branching
number at each saddle point, Nb = 20; both the characteristic
energy Tl and characteristic magnetization Ml follow geo-
metric distributions, i.e., Tl = T0rl and Ml = M0rl , where

T0 = 1, M0 = 0.5, and r = 0.97; the parameter λ is also level
dependent, λ = 1−pL−1−l

Nb
, where p = 0.9998.

Based on the thermoremanent magnetization experiments,
the temperature and magnetic field series T s and Ms, re-
spectively, are set to be four processes: (i) zero-field cooling,
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with no magnetic field H = 0 and a linearly decreasing tem-
perature from T = Tmax to T = Tw in Tmax−Tw

Tmax−Tmin
Nc steps; (ii)

zero-field waiting, with H = 0 and T = Tw in Nw steps;

(iii) zero-field cooling, with H = 0 and from T = Tw to
T = Tmin in Tw−Tmin

Tmax−Tmin
Nc steps; and (iv) field reheating, with

H = 1 and from T = Tmin to T = Tmax in Nh linear steps,
where the minimum temperature is Tmin = 0.01, the max-
imum temperature is Tmax = 3.00, the waiting temperature
is Tw = 0.2Tf , 0.4Tf , 0.6Tf (Tf ≈ 1.22), the total number
of cooling steps is Nc = 2 × 104, the number of heating
steps is Nc = 5 × 104, the number of waiting steps is Nc =
0, 103, 104, 105, 106, and the iteration number at each temper-
ature point is nsweep = 50. In addition to the thermal average,
the final temperature-dependent magnetization and suscepti-
bility are averaged over nsample = 105 simulations.

In order to simulate the λ dependence in Fig. 3 in
the main text, we changed the λ parameter to a level-
independent uniform value, and the total tree level is extended
from L = 100 to L = 200. Furthermore, Tmax is changed
to accommodate the different Tf values, i.e., Tmax = 1.2Tf ,
where Tf ≈ 1.24, 1.40, 1.59, 1.87, 2.37, 3.54, 5.16 for λ =
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and the waiting temperature
is set at Tw = 0.5Tmax.

APPENDIX B: 1D RANDOM WALK

As is discussed in the main text, to map the dynamical tree
method to a 1D random walk, the probability to move to a
lower level and a high level from l > 0 should be p+

p++p−
=

λ
λ+1 and p−

p++p−
= 1

λ+1 . The algorithm for the 1D random-walk
simulation is shown in Algorithm 2, where the parameter λ is
chosen to be 0.8–1.2. In addition, the results were taken for
t = 106 steps and averaged over nsample = 105 samples.

APPENDIX C: PARTICIPATION RATIO SIMULATION

The algorithm for the participation ratio simulation is
shown in Algorithm 3, which is the T → 0 limit of the dynam-
ical tree method. The parameters used are the geometrically
distributed characteristic energy Tl = T0rl , where T0 = 1, r =
0.95, the branching number Nb = 100, and λ = 0.00–1.20.
The participation ratios are calculated based on a linear tem-
perature series T s = {0.005, 0.010, 0.015, . . . , 1.995, 2.000}
and averaged over nsample = 104 samples and over ncount =
106 iterations after thermal equilibrium in nwait = 106 walking
steps.
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