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Relaxation of saturated random sequential adsorption packings of discorectangles aligned on a line
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Relaxation of the packing of elongated particles (discorectangles) aligned on a line was studied numerically.
The aspect ratio (length-to-width ratio) for the discorectangles was varied within the range ε ∈ [1; 50]. The
initial jamming (saturated) state was produced using the basic variant of the random sequential adsorption model
with random positions and orientations of particles. The relaxation was performed by allowing rotational and
translational diffusion motions of the particles while their centers remained located on the line. The effects of
the aspect ratio ε on the kinetics of relaxation, the orientation order parameter, and the distribution function of
the distances between nearest-neighbor discorectangles were analyzed. The transport properties of the resulting
one-dimensional systems were also analyzed by using the diffusion of a tracer particle (random walker) between
the nearest-neighbor discorectangles. In the relaxed states the anomalous diffusion was observed having a
hopping exponent dw > 2 dependent upon ε.
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I. INTRODUCTION

The problem of one-dimensional (1D) random sequential
adsorption (RSA) onto a line (the so-called car parking prob-
lem) has been studied in many works in the past [1–6]. In
this model, particles of a given shape are placed randomly
and sequentially without overlapping any previously placed
particles, as their centers are located onto a line. Finally, after
a sufficiently long period of deposition (t → ∞), a jamming
state is formed such that no additional particles can be added
due to the absence of appropriate holes. In the basic variant
of RSA, the absence of any relaxation (particle rotations or
translations) is assumed.

The problems of assemblies in 1D or quasi-1D systems
have also attracted great attention from practical points of
view. These assemblies can be useful for the fabrication
of photonic and electronic devices, sensors, and biomedical
structures [7]. In particular, the microassembly in 1D chan-
nels realized by optical tweezers [8], the fabrication of 1D
nanoparticle-assembled architectures with excellent optical
and electrical performance [9], 1D micro/nanostructures of
organic semiconductors for field-effect transistors [10], and
1D micro/nanomotors for biomedicine [11] have been dis-
cussed.

The different 1D-RSA problems for particles with arbitrary
shapes, e.g., segments (sticks), disks, ellipses, rectangles, dis-
corectangles, etc., have been analyzed [12–14]. For elongated
particles, this problem is commonly referred to as the “Paris
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car parking problem” [15]. For the parking of 1D segments of
identical length, the kinetics of the RSA have been described
analytically [1,2]. In the jamming state, the following value
for the parking coverage (coverage of the line by segments)
ϕR = 0.747 597 920 3 . . . (Rényi’s parking constant) has been
obtained [1,16].

Similar problems have been analyzed for modified parking
problems where there is the possibility of moving segments
[17]; where there are segments of different lengths [18–20];
packing of spins [21]; the presence of arbitrary interaction
potentials with finite ranges [22]; where there are “marking
street” effects [23]; or psychophysiological packing interac-
tions (involving visual perception of space) [23].

For RSA of particles of a given shape, the jamming
coverage depends upon the aspect ratio ε (the length-to-
diameter ratio). In particular, for discorectangles it increased
from ϕ = 0.7476 for ε = 1 (disks), goes through a maximum
ϕ = 0.781 249 ± 0.000 020) at ε ≈ 1.5, and then decreases
at higher aspect ratios [14,15]. This nonmonotonic ϕ(ε)
dependence has been explained by the interplay between ori-
entational degrees of freedom and excluded volume effects
[12].

The basic variant of the 1D-RSA problem produces out-of-
equilibrium systems. By contrast, a diffusionally equilibrated
system corresponds to a 1D Tonks gas [24]. The gap distri-
bution functions of totally irreversible and fully equilibrated
1D depositions of line segments demonstrate the presence
of strong differences between these two systems [25]. In a
modified adsorption-desorption RSA model, the particles can
be adsorbed with a rate of k+, or desorbed with a rate of k−.
The properties of such packings depend on the ratio k+/k−
[6,26,27]. In such a model, the systems reach equilibrium.
However, their kinetics exhibit a succession of regimes be-
fore reaching equilibrium. To the best of our knowledge, the
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FIG. 1. Schematic picture of the RSA packing of elongated parti-
cles onto a line. The particles are hard discorectangles of length l and
width d . Intersections of the particles are forbidden. Each deposited
particle covers a distance a(θ ) on the line. Periodic boundary condi-
tions are applied along the line (x axis). Here, L is the total length
of the line, ε = l/d is the aspect ratio, θ is the angle between the
particle’s long axis and the line, and δ and γ are, respectively, the
shortest distance and the angle between nearest-neighbor particles.

relaxation of 1D-RSA packings of elongated particles still
needs to be studied.

The present paper analyzes, numerically, the relaxation of
RSA packings of elongated particles (discorectangles) on a
line. The initial state was produced using the basic variant
of the 1D-RSA problem [15]. The relaxation was performed
while accounting for the rotational and translational diffusion
motions of the particles. The rest of the paper is constructed
as follows. In Sec. II, the technical details of the simulations
are described, all necessary quantities are defined, and some
examples of the patterns are presented. Section III presents
our principal findings. The transport properties of 1D systems
are also analyzed using the diffusion of a tracer particle (ran-
dom walker) between the elongated particles along the line.
Section IV summarizes the main results.

II. COMPUTATIONAL MODEL

The initial state before relaxation was produced using an
RSA model [3]. Hard discorectangles (rectangles with a semi-
circle at each of a pair of opposite sides) with length l and
width d were randomly and sequentially deposited onto a line.
Overlapping of a particle with any previously deposited ones
was forbidden, the orientations of particles were random, and
their centers were localized on the line (along the x axis). Each
particle has two nearest neighbors from the left and right side
on a line (Fig. 1).

A jamming state is where no additional particle can be
added to the system due to the absence of any pores of
appropriate size. To generate the jamming state a compu-
tationally efficient technique based on the tracking of local
regions was employed (more detailed information can be
found elsewhere [15]). Problems for particles with aspect
ratios ε ∈ [1; 50] were analyzed. To simplify presentation, all
distances were measured in units of particle width. Periodic
boundary conditions were used to minimize any finite-size
effects. To determine the importance of the system size, a
preliminary finite-size scaling analysis for L in the interval
L/ε ∈ [4096; 32 768] was performed. Typically, the scaling
effects were almost negligible for the length of the line L/ε =
215 = 32 768 [15], therefore, this value of L was used in all
simulations (Fig. 1).

The number density was calculated as ρ = Nl/L, where
N is the total number of deposited particles. Each deposited
particle covers a distance a on the line, thus, the packing
coverage was evaluated as ϕ = ∑N

i ai/L. The orientation of
the particles was characterized by the order parameter defined
as

S = cos 2θ, (1)

where · · · denotes the average over all particles, and θ is the
angle between the long axis of the particle and the line (x axis)
(Fig. 1). Note that S = 1 and S = −1 correspond to ideally
oriented particles—along the x axis or perpendicular to it,
respectively.

The relaxation procedure was performed using the Monte
Carlo (MC) approach as follows. At each step, an arbitrary
particle was randomly chosen, and its translational and rota-
tion diffusion motions were taken into account.

The translational diffusion coefficients were calculated as
[28]

D‖ = D0(ln ε + γ‖)

2π
, (2a)

D⊥ = D0(ln ε + γ⊥)

4π
, (2b)

for the motions along and perpendicular to the direction of
the long axis, respectively. Here, D0 = kBT/(ηl ), kBT is the
thermal energy, and η is the viscosity of the surrounding
medium.

The rotational diffusion coefficient was calculated as [28]

Dr = 3D0(ln ε + γr )

π l2
. (3)

In the above Eqs. (3) and (2) the hydrodynamic end-correction
factors γr, γ‖, and γ⊥ can be evaluated as [28]

γ‖ = −0.207 + 0.980/ε − 0.133/ε2, (4a)

γ⊥ = 0.839 + 0.185/ε + 0.223/ε2, (4b)

γr = −0.622 + 0.917/ε − 0.050/ε2. (4c)

The centers of the particles were always fixed on the line
(x axis). One MC time step (
tMC = 1) corresponded to
attempted translational displacements along the line and ro-
tations about the center for each of the particles in the system.
The amplitudes of the Brownian motions were proportional
to the square root of the corresponding diffusion coefficients.
The values of these translational 
x and rotational 
θ ampli-
tudes were evaluated using the following equations [29],


x =
√


r2
‖ + 
r2

⊥ = βl

√
1 + ln(ε) + γ⊥

2[ln(ε) + γ‖]
, (5a)


θ = β

√
6[ln(ε) + γr]

ln(ε) + γ‖
. (5b)

Here, the value of β was chosen to be small enough (β =
0.02–0.05) in order to obtain satisfactory acceptance of the
MC displacement [30].

064104-2



RELAXATION OF SATURATED RANDOM SEQUENTIAL … PHYSICAL REVIEW E 104, 064104 (2021)

�=2

�=10

Hole

Holes

After relaxation

Jamming

After relaxation

Jamming

Domains

FIG. 2. Examples of the patterns in a jamming state and after complete relaxation for particles with aspect ratios ε = 2 and ε = 10. The
relaxation resulted in the appearance of rather large holes (shown as hatched areas). For relatively long particles (ε = 10) domains of nearly
parallel particles are also formed.

The Brownian dynamics time increment was evaluated as
[31]


tB = Ai

3

tMC, (6)

where Ai is the acceptance coefficient for the ith MC step
[30], and the total Brownian dynamics time was calculated as

tB = 
tMC

3

tMC∑
i=1

Ai, (7)

where tMC is the MC time.
Time counting was started from the value of tMC = 1,

being the initial moment (before relaxation), and the total
duration required for the complete relaxation of the system
in the equilibrium state was typically 104-105 MC time units
(more detailed information can be found elsewhere [29,32]).
The completeness of relaxation was controlled by checking
the changes in the order parameter S [Eq. (1)].

Figure 2 compares examples of the patterns in the jamming
state and after complete relaxation for particles with aspect
ratios ε = 2 and ε = 10. Relaxation resulted in the appearance
of rather large holes (they are shown as hatched areas) suitable
for further packing with new particles. For relatively long
particles (ε = 10), domains of nearly parallel particles are
also formed both in the jamming state and after complete
relaxation. Therefore, the relaxation of RSA packings may
result in considerable changes in the structure of such systems.

For each given value of ε, the computer experiments were
averaged over 10–100 independent runs. The error bars in the
figures correspond to the standard errors of the means. When
not shown explicitly, they are of the order of the marker size.

III. RESULTS AND DISCUSSION

Figure 3 shows the order parameter S versus the number
density ρ during the RSA process with different values of the
aspect ratio ε. At small values of ρ the orientations of the par-
ticles were random (S ≈ 0), while with an increase of ρ, the
order parameters decreased and reached their minimum values
at the jamming state. This reflected the tendency toward parti-
cle ordering perpendicularly to the line, i.e., along the y axis.
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FIG. 3. Order parameter S vs the number density ρ during the
RSA process with different values of aspect ratio ε. The dashed line
corresponds to the S(ρ ) dependence in the jamming state. The inset
shows the coverage ϕ and density ρ of packings in the jamming state
vs ε.
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FIG. 4. Order parameter S vs number density ρ in the jamming
state and after complete relaxation with different values of aspect
ratio ε. In the limit of infinitely thin sticks (ε → ∞ and ρ → ∞) the
order parameter approached the values of Sj ≈ −0.47 and Sr ≈ −1 in
the jamming state and after complete relaxation, respectively. Here,
the symbols correspond to the simulation results, while solid lines
are drawn using a Lorentzian cumulative function (see the text for
the details).

The dashed line shows the S(ρ) dependence in the jamming
state. This line was obtained using a Lorentzian cumula-
tive function S = S∞ + a(arctan{[log(ρ) − b]/c} + π/2)/π
with parameters S∞ = −0.47 ± 0.01, a = 1.67 ± 0.49, b =
−0.22 ± 0.03, c = −0.12 ± 0.02, and a coefficient of de-
termination r2 = 0.9999. The inset to Fig. 3 compares the
coverage ϕ(ε) and the number density ρ(ε) dependencies in
the jamming state. The well-defined maximum in the ϕ(ε) de-
pendency (ϕ = 0.7822 ± 0.004 at ε ≈ 1.46) can be explained
by the competition between the orientational degrees of free-
dom and the excluded volume effects [12,14,15]. The value ρ

grows continuously with (ρ ≈ 0.7476ε0.66).
Figure 4 presents the order parameter S vs the number

density ρ in both the jamming state (Sj) and after complete
relaxation (Sr) with different values of the aspect ratio ε.
It is remarkable that, after complete relaxation, the systems
had become orientationally ordered. The effects were more
pronounced for particles with large values of ε. Particularly,
in the limit of infinitely thin sticks (ε → ∞ and ρ → ∞),
the order parameter approached the values of Sj ≈ −0.47 and
Sr ≈ −1 in the jamming state and after complete relaxation,
respectively.

The transition to a more oriented state during relaxation
was characterized by changes in the reduced order parameter
defined as S∗ = (S − Sj )/(Sr − Sj ). The value of S∗ varied
between 0 at S = Sj (jamming state) and 1 at S = Sr (complete
relaxation) (solid line in the inset of Fig. 5). To characterize
the kinetics of transition from jamming to the complete relax-
ation state, the characteristic time t∗

B was determined from the
maximum in the first derivative curve dS∗/dtB (dashed line).

Figure 5 presents the characteristic time t∗
B versus the as-

pect ratio ε. The inset shows an example of the reduced order
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FIG. 5. Characteristic time t∗
B vs the aspect ratio ε. The inset

shows an example of a reduced order parameter, S∗ = (S − Sj )/(Sr −
Sj ), vs the Brownian time tB for the aspect ratio ε = 5 (solid line).
Here, the symbols (solid squares) correspond to the simulation re-
sults, while a solid line is provided simply as a visual guide. The
value of t∗

B was determined from the maximum of the derivative
dS∗/dtB (dashed line). Here, Sj and Sr are the order parameters in
the jamming state and after complete relaxation, respectively.

parameter S∗ versus the Brownian time tB for the aspect ratio
ε = 5. The slowest relaxation into the more oriented state
was observed for particles with small aspect ratios. For this
case, the relaxation has not affected significantly the order
parameter (Fig. 4), hence, it is assumed that slow kinetics
may reflect translational displacements and the formation of
large holes between particles [see Fig. 2(a)]. The value of t∗

B
went through a minimum at ε ≈ 7. For elongated particles
with large values of ε, slow relaxation may be related to the
formation of domains of nearly parallel particles (Fig. 2). For
this case, the relaxation resulted in significant changes of the
order parameter and a transition to the more oriented state
(Fig. 4). The observed passing of the t∗

B value through the
minimum may reflect competition between the orientational
degrees of freedom and the excluded volume effects similar to
that observed in the behavior of ϕ(ε) (Fig. 4). Moreover, it can
be also speculated that this extremum reflects the different ef-
fects of the particle stacking on the rotational and translational
displacements of particles.

Deeper insight into the differences in the systems in the
jamming state and after complete relaxation can be obtained
by analyzing the distribution functions of the minimum dis-
tances f (δ) [Fig. 6(a)] and angles f (γ ) [Fig. 6(b)] between
nearest-neighbor discorectangles. In the jamming state, the
distribution functions of the minimum distances f (δ) were
nonzeros in the interval 0 � δ < 1 and were almost identi-
cal for different values of ε. Note that for disks (ε = 1) the
obtained function f (δ) was similar to that observed earlier for
the distribution function of the gaps between line segments
[25,33].
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FIG. 6. Distribution functions of the minimum distances f (δ)
(a) and angles f (γ ) (b) between nearest-neighbor discorectangles
with different aspect ratios ε in the jamming state and after complete
relaxation.

However, after complete relaxation, the function of f (δ)
changed considerably [Fig. 6(a)]. The values of δ above 1
correspond to the formation of large holes suitable for the
deposition of new particles. The effects were more significant
for longer particles, with larger values of ε. In particular,
the fractions of f (δ) with δ above 1 constituted ≈7.8% and
≈50.3% for ε = 2 and for ε = 20, respectively. A significant
modification of the distribution functions has also been ob-
served for thermally relaxed line segments (the Tonks gas)
[25].

The distribution functions of the angles f (γ ) between
nearest-neighbor discorectangles were descending functions
of γ with the maximum located at γ = 0 [Fig. 6(b)]. More-
over, the values of the function f (γ ) were dependent on
ε, being sharper for longer particles, and the effects were
more pronounced for the systems that had undergone com-
plete relaxation [Fig. 6(a)]. The observed effects reflected the
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FIG. 7. Mean-square displacement of a tracer particle (random
walker) along the line x2 vs the time t (number of hopping steps) for
systems in the jamming state and after complete relaxation for the
aspect ratios ε = 2 (squares) and ε = 20 (triangles). The hopping
particle jumps between the nearest-neighbor discorectangles with
probability p = exp(−δ/λ), where δ is the minimum distance be-
tween these discorectangles, and λ is a diffusion distance parameter.
The data are presented for λ = 1 (solid symbols) and λ = ∞ (open
symbols). Dashed lines represent the slopes for the hopping exponent
dw = 2 and dw = 3.

formation of domains of nearly parallel particles (Fig. 2).
This transition to a more oriented state during relaxation was
accomplished with a significant sharpening of the function
f (γ ).

Finally, the transport properties of a quasi-one-dimensional
system were analyzed using the diffusion of a tracer particle
(random walker) between elongated particles along the line
[34]. In the model, the point tracer particle performed random
jumps (either left or right) to the nearest-neighbor discorect-
angle with a probability

p = exp(−δ/λ), (8)

where λ is a diffusion distance parameter. Note that at λ = ∞
the jump probability is p = 1 and the model is equivalent
to unconstrained 1D diffusion. The tracer jumps across the
shortest distance δ between discorectangles, and, therefore,
diffuses in both the x and y directions. This model assumes a
high diffusivity of tracer particles inside the discorectangles
and total transport is controlled by the distribution of the
distances between nearest-neighbor discorectangles.

In simulations, the mean-square displacement of a tracer
particle x2 as a function of a discrete time t was analyzed. In
the general case, in disordered systems diffusion law can be
represented by the following equation [35–39],

x2 = (t/τ )2/dw , (9)

where the parameter dw (the hopping exponent) characterizes
the deviation from normal diffusion, and τ is the characteristic
diffusion time.
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FIG. 8. (a) Characteristic diffusion time τ and (b) hopping ex-
ponent dw vs the aspect ratio ε for systems in the jamming state
(squares) and after complete relaxation (triangles) for λ = 1 (solid
symbols) and λ = ∞ (open symbols). The solid lines are provided
simply as a visual guide.

For normal Fickian diffusion, dw = 2, and for 1D systems
the diffusion coefficient is D = (2τ )−1. The nontrivial hop-
ping exponent dw > 2 corresponds to the subdiffusion that
occurs in disordered systems (e.g., gel-like or fractal) [40].

Figure 7 shows examples of the mean-square displacement
of a tracer particle (random walker) along the line x2 ver-
sus the time t (number of hopping steps) for systems in the
jamming state and after complete relaxation. The data are

presented for the aspect ratios ε = 2 (squares) and ε = 20
(triangles), and for the diffusion distance parameters λ = 1
(solid symbols) and λ = ∞ (open symbols). The dashed lines
represent the slopes for the hopping exponent dw = 2 and
dw = 3.

No effects of anomalous diffusion were observed for the
systems with λ = ∞, i.e., for normal 1D diffusion. In the
jamming state, normal diffusion with the hopping exponent
dw = 2 was always observed for all values of ε. However,
after complete relaxation, the effects of anomalous diffusion
with dw > 2 were evident and could be observed for λ = 1.

Figure 8 presents examples of the characteristic diffusion
time τ [Fig. 8(a)] and the hopping exponent dw [Fig. 8(b)]
versus the aspect ratio ε for systems in the jamming state
(squares) and after complete relaxation (triangles) for λ = 1
(solid symbols) and λ = ∞ (open symbols). The characteris-
tic diffusion time τ decreased with an increase of ε (Fig. 8).
For normal diffusion, it corresponded to the increase of the
diffusion coefficient D = 1/(2τ ). This increase of D with ε

may reflect the increase in the length of the discorectangles.
A significant increase in the value of the hopping expo-

nent dw was observed after relaxation. This behavior is in
correspondence with the observed effects of relaxation on the
distribution functions f (δ) [Fig. 6(a)].

IV. CONCLUSION

Numerical studies of relaxation packings of elongated par-
ticles (discorectangles) on a line were performed. The initial
jamming state was produced using the basic variant of the
1D-RSA problem [15]. During the RSA deposition, the orien-
tations of the particles were selected at random. In the RSA
state, a tendency towards particle ordering perpendicularly
to the line (x axis) was observed. This self-organization was
more pronounced for particles with large values of aspect ratio
ε. Our findings provide insight into how the value of ε affects
the transition from the jamming to the relaxed state. This
transition into the more oriented state was accompanied by
the formation of domains of nearly parallel particles, and the
appearance of rather large holes, suitable for the placement of
additional particles. The relaxed systems also demonstrated
anomalous transport properties when tested using the diffu-
sion of a tracer particle (random walker).
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