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Moment-generating function zeros in the study of phase transitions
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Partition function zeros play a central role in the study of phase transitions. Recently, energy probability
distribution (EPD) zeros were proposed as an alternative approach that solves some of the implementation issues
present in the Fisher zeros method by allowing drastic reduction of the polynomial. Here, a formulation based
on the EPD zeros that can reduce even more the polynomial degree while maintaining its accuracy is presented.
This method has shown to be computationally cheaper than the EPD zeros, allowing the study of systems by
using partition function zeros that would be unfeasible otherwise. In addition, the method can be easily extended
to study phase transitions in external fields while maintaining all of its improvements.
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I. INTRODUCTION

Systems that undergo phase transitions as a control param-
eter changes have a nonanalyticity in their free energy at the
phase transition point. This behavior is better understood with
the concept of the zeros of the function partition, introduced
by Yang and Lee in their seminal papers [1,2]. In these pa-
pers, by making a complex extension of the fugacity to the
complex plane, they showed that all the system thermody-
namic information is contained in the partition function zeros
density. More specifically, they showed that as the system
size goes to the thermodynamic limit, this density of zeros
approaches the real axis signaling that a phase transition oc-
curred. The zeros that pinch the real axis are called dominant
zeros and they are responsible for the free energy nonanalytic-
ities. Furthermore, the partition function zeros are considered
a cornerstone of statistical physics and were applied to a
variety of systems [3–5] and have even been determined in
experiments [6–8]. It was also extended by Fisher [9] to the
canonical ensemble where a complex extension of the tem-
perature is made.

Although the Fisher zeros were applied to diverse mod-
els [3,10,11] and have been determined in experiments [8],
this method has two main problems in its practical imple-
mentation. To apply this method it is necessary to know the
density of states (DOS), a quantity difficult to find, and solve
a high degree polynomial with coefficients given by the DOS
that can span over many orders of magnitude. Recently [12],
some of these issues were solved by the energy probability
distribution (EPD) zeros. In the EPD zeros approach, the
polynomial coefficients are given by an energy probability
distribution, a quantity much simpler to obtain numerically
than the DOS, and its degree is reduced by recognizing that
states with low probability to occur at a given temperature can
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be discarded without losing relevant thermodynamic informa-
tion in the vicinity of the considered temperature. This method
was successfully applied to systems that undergo discontin-
uous, continuous, and topological phase transitions [12–14].
Despite that, although the EPD zeros solve most of the issues
of the Fisher zeros method, it is still necessary to solve a
high degree polynomial with the degree increasing as the
system size increases. Moreover, as will be shown, the EPD
zeros method is not very efficient in reducing the polynomial
degree for systems that undergo discontinuous phase transi-
tions. In other methods, such as the one proposed by Alves
et al. [15], there is no need to solve a polynomial, but the
knowledge of the DOS for all energy states, a quantity difficult
to obtain for very large systems, is still demanded. Last, the
method recently proposed by Sarkanych et al. [16] seems to be
promising, deserving further investigations and comparisons
with the mentioned methods.

In this paper, we present an approach to study phase
transitions in which, instead of using the partition function
zeros, the moment-generating function (MGF) zeros are used.
This approach is based on the EPD zeros, but it has several
improvements such as the smaller dependence of the poly-
nomial degree on the system size, absence of discretization
requirements, lower polynomial degree than the EPD zeros
approach, and coefficients that are given by simple thermo-
dynamic averages. In addition, it is computationally faster
than the EPD zeros. In what follows we briefly review the
Fisher and EPD zeros, introduce the MGF zeros, and apply it
to the two-dimensional (2D) Ising and six-state Potts models.
Furthermore, estimates of the computational time spent to an-
alyze simulations of the three-dimensional (3D) Ising model
using EPD and MGF zeros is shown, highlighting the fact that
the present method allows the study by zeros of the partition
function of systems that would be otherwise unfeasible.

II. FISHER ZEROS

The Fisher zeros [9] approach is developed in the same
way as the Yang-Lee zeros approach [1,2], but instead of
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considering a complex extension of the fugacity to the com-
plex plane, the temperature is extended. Thus, the canonical
partition function is written as

Z =
∑

E

g(E )e−βE = e−βεo
∑

n

gnzn, (1)

where z = e−βε, β = 1/kBT is the inverse temperature, kB

is the Boltzmann constant, g(E ) is the DOS, and the energy
E was discretized by setting it to En = εo + nε [17] with
n ∈ N. ε0 is the ground state energy, ε is the energy bin,
and gn = g(En). As the temperature, and consequently z, is
seen now as a complex quantity, this polynomial has complex
conjugate roots (zeros) and any real root must be negative
since g(E ) � 0. Moreover, in the thermodynamic limit, one
expects that the dominant zero touches the real positive axis,
signaling that a phase transition occurs at the temperature
that corresponds to the point it touches the real axis. Indeed,
this is the signature of the nonanalyticity present in the free
energy at a phase transition. For finite systems, however, the
dominant zero lies close to the real positive axis, once there
is no nonanalyticity in finite systems, and can be used to find
the pseudocritical temperature Tc(L), where L is the system
lattice size. Of course, proper finite size scaling must be done
to confirm the presence of a phase transition.

III. THE ENERGY PROBABILITY DISTRIBUTION ZEROS

The EPD zeros [12] method is obtained by rescaling the
Fisher zeros. To see this, note that if we multiply Eq. (1) by
e−βoE eβoE = 1 and write Z as a polynomial, we find

Z =
∑

E

g(E )e−βoE e−�βE = e−�βεo
∑

n

hβo (n)xn, (2)

where βo = 1/kBTo is an arbitrary inverse temperature,
�β = β − βo, x = e−�βε, and hβo (n) = gne−βoEn is the non-
normalized energy probability distribution function at βo.
Note that so far no approximation was made and since x =
z/e−βoε, the set of roots {xi} are only the Fisher zeros roots
{zi} rescaled. Thus, because the coefficients of the above
polynomial are given by the energy probability distribution,
a threshold ht can be defined so that states with low prob-
abilities to occur can be discarded without losing relevant
thermodynamic information in the neighborhood of βo. It is
this discarding process that drastically reduces the polynomial
degree when compared with the Fisher zeros approach once
most of the energy states are not relevant at βo.

Nonetheless, the EPD zeros have a distinctive character-
istic: the dominant zero is always close to point (1,0) for
βo(L) ≈ βc(L), where βc(L) is the inverse critical temperature
and L is the system lattice size. To understand this, remember
that the EPD zeros are just the Fisher zeros rescaled and,
therefore, for βo = βc the Fisher dominant zero zc = e−βcε

will be rescaled to xc = zc/e−βcε = 1. Furthermore, this can
be used as a criterion to identify for which values of βo a
phase transition occurs. Therefore, in Ref. [12] an algorithm
was proposed to iteratively estimate βc. Using the dominant
zero xc(L) and the finite lattice critical temperature Tc(L), the
critical temperature Tc and the critical exponent ν can be found
by applying the finite size scaling equations [12,18].

IV. MOMENT-GENERATING FUNCTION ZEROS

Before introducing the MGF zeros method, it is better to
remember that if we know all the moments mk = 〈X k〉 of a
random variable X , it is possible to reconstruct the entire prob-
ability distribution P(X ) [19]. Therefore, all the information
contained in P(X ) is also contained in its moments, in such a
way that one can use the MGF instead of the actual probability
distribution to write the partition function [20].

Considering that the MGF equation is given by

MX (t ) =
∞∑

k=0

〈X k〉t k

k!
=

∞∑

k=0

mktk

k!
, (3)

where t is an arbitrary variable, and its moments are defined
by

mk = dkMX (t )

dtk

∣∣∣∣
t=0

, (4)

it is easy to show that with a series expansion of the exponen-
tial in the partition function,

Z (β ) =
∑

E

hβo (E )e−�βE , (5)

it can be written as

Z (β ) = Z (βo)
∞∑

k=0

mk (βo)

k!
yk, (6)

where Z (βo) is a constant, y = −�β, and mk (βo) = 〈Ek〉βo =
(
∑

E hβo (E )Ek )/Z (βo) are the moments of the energy. Notice
that the term within the summation is the definition of an
MGF, Eq. (3), with t = y. Therefore, since Z (βo) is only a
constant, the zeros of the canonical partition function and the
zeros of the MGF contain the same information [20].

The main improvement of this method when compared to
the EPD zeros is that the polynomial degree can be reduced by
a series truncation at kmax, instead of the introduction of an ar-
bitrary discard threshold as in the EPD zeros method. Indeed,
a series truncation is a much more elegant and controllable
way to approximate the partition function. Moreover, in this
approach, since only some of the energy moments, 〈Ek〉β0 ,
are necessary, one does not need to impose a discrete energy
spectrum, eliminating arbitrary parameters such as the energy
bin ε.

Note that the EPD zeros and the MGF zeros are related by
the transformation x = eyε and it is straightforward to expand
some properties of the EPD zeros to the MGF zeros. For in-
stance, since the EPD dominant zero is at xc = 1 for βo = βc,
the MGF dominant zero must be at the point (0,0) for βo = βc.
Furthermore, it is possible to adapt the EPD zeros algorithm
presented in Ref. [12] to the MGF zeros. With this in mind, the
following modified algorithm can be used to estimate βc(L)
considering a truncation at a sufficiently large value kmax:

(1) Find the energy moments mk (βo) = 〈Ek〉 at β
j
o (L).

(2) Find the zeros of the polynomial with coefficients
given by mk (β j

o )/k!.
(3) Find the dominant zero, y j

c (L).
(a) If y j

c is close enough to the point (0, 0), stop.
(b) Else, make β

j+1
o (L) = β

j
o (L) − Re{y j

c (L)} and go
back to step 1.
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Notice that the MGF zeros are related to the Fisher zeros
because we chose to make a complex extension of the control
parameter β. However, we can make a complex extension
of other control parameters, such as the magnetic field, and
make a relation with the Yang-Lee zeros. This development is
presented in Appendix A.

V. DOMINANT ZERO SCALING

Close to a continuous phase transition we may argue (see
Appendix B) that the MGF dominant zeros follow the scaling
law given by

yc

L−1/ν
= Re{yc} + Im{yc}i

L−1/ν
= g(x) + f (x)i, (7)

where g(x) and f (x) are scaling functions. And, since
Re{yc} = 0 close to the critical point, the imaginary part scal-
ing is given by

Im{yc} = L−1/ν f (x). (8)

This scaling behavior may be expected since the EPD zeros
scale in the same way [12]. To find the critical temperature Tc

and the critical exponent ν using the MGF zeros, the following
finite size scaling equations are used:

ln Im{yc(L)} ∼ b − 1

ν
ln(L) (9)

and

Tc(L) ∼ Tc + aL−1/ν . (10)

VI. MODELS

In this work, we applied the MGF zeros method and the
EPD zeros method to the six-state Potts model and to the
3D and 2D Ising models. Except for the 3D Ising model,
the other models are benchmarks for studying continuous
and discontinuous phase transitions since exact results for the
critical temperature and critical exponents are known. The 3D
Ising model is used only to highlight the MGF zeros method
efficiency in contrast with the EPD zeros method. In what
follows, we briefly present these models.

The Ising model Hamiltonian is given by

H = −J
∑

〈i, j〉
σiσ j − h

∑

i

σi, (11)

where J is a coupling constant, h is an external field, σi is
a spin at site i with value ±1, and 〈i, j〉 means a sum over
nearest neighbors and M = ∑

i σi is the system magnetiza-
tion. In this paper we consider the 2D and 3D Ising models in
a square and cubic lattice, respectively, with J = 1, kB = 1,
and h = 0. Both lattices have continuous phase transition,
but only the 2D Ising model has exact results known for
the critical temperature Tc = 2/ ln(1 + √

2)J/kB and critical
exponent ν = 1 [21].

For the q-states Potts model, the Hamiltonian is given by

H = −J
∑

〈i, j〉
δ(σi, σ j ), (12)

where J is a coupling constant, σi is on site i with values
ranging from 1 to q, δ is the Kronecker delta, and the sum

FIG. 1. EPD zeros (circles) with ht = 10−4 and the MGF ze-
ros (squares) for (a) kmax = 9, (b) kmax = 19, (c) kmax = 37, and
(d) kmax = 60 and kmax = 90, for the Ising model at T = 2.2793
and lattice size L = 90. Notice that the MGF zeros emerge close to
point (0,0) for lower kmax and expand towards the EPD zeros as kmax

increases. To allow comparison among them we draw the EPD zeros,
x, in the same scale of the MGF zeros using the relation y = ln x/ε,
such that the unit of the MGF zeros is kB/J .

is taken over the nearest neighbors. For a 2D Potts model with
J > 0, the model has a continuous or discontinuous phase
transition depending on the value of q. For q > 4 it has a
discontinuous phase transition and for q � 4 it has a con-
tinuous phase transition. Its critical temperature is given by
Tc = 1/ ln(1 + √

q)J/kB [21]. In the following, we considered
the Potts model with q = 6, J = 1, and kB = 1.

VII. RESULTS

First we present a preliminary analysis of the MGF zeros
for the 2D Ising and six-state Potts models. We used conven-
tional Monte Carlo simulations for square lattices of sizes L =
[90, 120, 150, 180] using 106 Monte Carlo steps (MCS) and
five different simulations for each simulated temperature. For
the Ising model, 3 temperatures close to the critical one were
simulated [22] while for the Potts model 15 temperatures were
used [23]. A multiple histogram reweighting technique [24]
was used to estimate the EPD and moments of energy at βo.
In fact, it is more convenient to use central moments mk (βo) =
〈E − 〈E〉〉k than the moments mk (βo) = 〈E〉k as the MGF
coefficients. This change can be done without any further
modification in the method. Statistical errors were estimated
by averaging results over these five sets of simulations.

Let us first explore the effects of different values of kmax

on the map of zeros. A general feature we observed is that
for low enough kmax the MGF zeros lie in an almost elliptic
curve centered at (0,0). Considering increasing values of kmax,
this ellipse size increases until some zeros start to deviate
from the elliptical pattern, staying fixed in some points as
can be seen in Fig. 1. Thus, the EPD zeros distribution is
recovered in the limit of sufficiently large kmax values once
the zeros that deviate from the elliptical pattern coincide with
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FIG. 2. The minimum degree of the MGF polynomial, kmax, nec-
essary to recover the dominant zero of the EPD zero with eight
significant figures using the MGF zeros approach. (a) The Ising
model considering a threshold in the EPD zeros of 10−100, (b) the
Potts model with a threshold of 10−100, and (c) the Potts model
with a threshold of 10−4. As can be clearly seen, near the transition
temperature (measured in units of J/kB) the minimum degree is
smaller.

the EPD zeros. Although we still do not have an argument for
this behavior, it was observed for the Ising and six-state Potts
models even far from the transition temperature. We speculate
that this may be related to the expansion around the point (0,0)
made in the partition function albeit we did not explore it in
depth. Thus, the dominant zero, the one closest to point (0,0)
for βo = βc, can be easily found using small values of kmax as
the first one to deviate from the elliptic pattern. In general, it
is advisable to use a kmax value large enough to ensure that
a good accuracy in the dominant zero location is obtained
and that several other zeros are recovered. Remember that
as a series expansion truncation, larger kmax implies higher
accuracy in the zeros determination. As a rule of thumb one
can choose kmax as the smaller value that allows to clearly
identify a dominant zero at the temperature where the iterative
process begins. During the iterative process this choice can be
revisited to reduce the computational effort.

Of course, for β0 far from βc large values of kmax must
be used in order to obtain the dominant zero with reasonable
accuracy. Indeed, as shown in Fig. 2, the polynomial degree,
kmax, increases when β0 is not close enough to βc.

A. 2D Ising model

Now, considering an arbitrary “large” value for kmax, the
convergence process to the critical temperature obtained from
the MGF zeros is compared to the EPD zeros convergence
in Fig. 3(a) for the 2D Ising model. Both methods converge
to a similar critical temperature, although the number of it-
erations necessary to achieve the convergence is different for
each method. This has a major impact on the computational

FIG. 3. (a) The convergence process for the MGF zeros with
kmax = 60 and EPD zeros with ht = 10−1, 10−100 for lattice size L =
180 for the Ising model. Both methods converge towards the same
critical temperature (measured in units of J/kB). (b) The convergence
process for the EPD zeros with ht = 10−1, 10−100 and MGF zeros
with kmax = 220 for the six-state Potts model. Both figures were
made with L = 90.

time for the algorithms to estimate the critical temperature. In
addition to that, the computational time is largely impacted by
the degree of the polynomial to be solved. Indeed, considering
a discard threshold of 10−1 for the EPD method and L = 180
the polynomial degree is about 600, while in the MGF method
it was 60 [25]. Thus, this difference in the polynomial degree
together with the smaller number of iterations necessary to
achieve the transition temperature leads to a reduction in the
computational time spent to estimate the critical temperature
of about two orders of magnitude (from 0.13 CPU min in the
EPD method to 0.0012 CPU min in the MGF method). We
considered in this calculation the time spent to achieve con-
vergence from a given temperature, including the time spent
reconstructing the histogram, the polynomial coefficients, and
its roots.

It is also worthy of note that the polynomial degree in-
creases with the system size in the EPD method as more
energy values become accessible to the system while it can
be kept almost size independent in the MGF method. As a
consequence, the speedup we observed is larger for larger
lattice sizes.

To estimate the critical temperature Tc and the critical
exponent ν, the finite size scaling equations described ear-
lier were used. Using the EPD zeros method with discard
thresholds at ht = 10−1, 10−100 [26], we found for the criti-
cal temperature Tc = 2.2692(9), 2.2692(5) and for the critical
exponent ν = 1.02(2), 1.07(1). The estimates for the MGF
zeros using kmax = 60 are Tc = 2.2687(8) and ν = 1.02(2).
Both methods gave results in good agreement with the exact
values ν = 1 and Tc = 2.2691.

B. Six-state Potts model

The six-state Potts model has a more complex energy prob-
ability distribution due to its discontinuous phase transition,
with the energy probability distribution showing two larger
peaks (see, for example, Fig. 2 of Ref. [12]). Because of that,
and considering that states between the two peaks cannot be
discarded [12], the EPD zeros method has problems reduc-
ing the polynomial degree. However, the MGF zeros are not
limited by the shape of the histogram; its discard process
is made by a series truncation and showed no problem in
reducing the polynomial degree. Indeed, we found that at the
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(b)(a)

FIG. 4. Computational time spent in the convergence process of
the EPD (a) and MGF (b) methods for the 3D Ising model starting
at β = 0.221654. The data were averaged over five samples and we
used a 2.80 GHz Intel CoreTM i7 CPU with 16 GB RAM and the
package MPSOLVE [30,31], configured to use eight cores in parallel.

phase transition temperature a polynomial of degree about 12
is sufficient to find the dominant zero. Despite the difference
in the polynomial degree, both methods converge to the same
critical temperature as can be seen in Fig. 3(b).

The critical temperature was found using the finite size
scaling equations shown earlier. For the EPD zeros method
with ht = 10−1, 10−100 and the MGF zeros method with
kmax = 220 the results were shown to be the same, Tc =
0.80763(3). This value is in good agreement with the exact
one of Tc = 0.80761.

Again, huge speedups can be obtained. Indeed, the MGF
method has been shown to be at least 290 times faster than
the EPD method for the largest lattice size considered (L =
180). This is understandable, since the EPD method has a
polynomial with degree close to 10 000 while the MGF has
a polynomial with degree 220.

C. 3D Ising model

The speedup obtained by using the MGF in comparison
with the EPD method can be highlighted by considering the
3D Ising model, where the use of the EPD zeros is shown to
be unfeasible. Following the seminal works of Ferrenberg, Xu,
and Landau [27,28] we simulated the 3D Ising model using
the Wolff cluster flipping algorithm [29] to simulate cubic
lattices with linear sizes L = 24, 32, 48, 64, 80, 96, 112, 128,
144, 160, 192, and 256 with 5 × 106 MCS for each sample,
500 samples for each lattice size at β = 0.221654, following
closely what was done in Ref. [28] but with smaller lattice
sizes and fewer samples. Again, histogram reweighting [24]
was used to estimate the EPD and moments of energy at βo.
Here, only a preliminary comparison between the EPD and
MGF zeros is presented while a more detailed study of the 3D
Ising model using partition function zeros is still in progress
and will be presented elsewhere.

The preliminary analysis was focused on the estimate of
the computational time that would be spent in the calculation
of zeros for both methods to analyze the data for all lattice
sizes and samples. In Fig. 4 we compare the time spent to
achieve convergence starting at the simulation temperature,
β = 0.221654, for each lattice size, L, for the 3D Ising model
averaged over five different samples using both the EPD ze-
ros and MGF zeros. As can be seen, EPD convergence time
seems to scale exponentially with lattice size while MGF

zeros scale almost linearly. Using this result, we estimated that
the time needed to analyze all samples considering the EPD
zeros without cutoffs would be ≈ 326 days. Using a cutoff
at 10−1 the total time was estimated to be 591 days, since in
many cases the convergence took more steps as compared to
the EPD without cutoffs. In contrast, the total computational
time estimated to analyze all the data using the MGF is ≈ 4
hours. It is the huge reduction in polynomial degree provided
by the MGF method in comparison to the EPD method that
is mainly responsible for this speedup with negligible loss
of accuracy as shown, since most of the computational time
considered here is spent solving polynomials. Indeed, for the
largest lattice size we considered, L = 256, the number of
EPD zeros is about 70 000, while for the MGF we considered
only 100 zeros. In addition, as we were close enough to the
transition temperature, a more detailed analysis would permit
us to use even fewer zeros, reducing even more the time spent
in this analysis. These times were obtained in a 2.80 GHz
Intel CoreTM i7 CPU with 16 GB RAM, and the package MP-
SOLVE [30,31], configured to use eight cores in parallel, was
used to solve the polynomials. This result clearly shows that
the methodology presented in this paper offers the possibility
to analyze through the zeros of the partition function (in this
case the zeros of the MGF) systems otherwise inaccessible to
this kind of analysis.

VIII. CLOSING REMARKS

In summary, this paper introduced the MGF zeros method,
a method to study phase transition that was based on the EPD
zeros. The MGF zeros are shown to reproduce the same results
of the EPD zeros method with the advantage to consume fewer
computational resources. This is achieved because the MGF
method can accurately represent the partition function polyno-
mial in the vicinity of the transition temperature with a much
lower degree polynomial. Besides that, the EPD zeros method
depends on the shape of the energy probability distribution to
reduce the polynomial degree, while the MGF zeros reduce
its degree by a truncation in a Taylor series expansion of the
partition function. This was shown to be a great improvement
for studying discontinuous phase transitions, where the EPD
zeros method has difficulties to reduce the polynomial degree.
In addition, the requirement to discretize the energy spectra
present in the Fisher or EPD zeros method is absent in the
MGF zeros method.

By considering a preliminary analysis for the 3D Ising
model, we have shown that the study of the phase transition
by Fisher or EPD zeros is unfeasible. Indeed, the estimated
computational time that would be required for the precise de-
termination of the dominant zero location in the EPD method
is about 326 days, while using the MGF zeros, the determina-
tion of the same information requires only about 4 h. Through
the improvement provided by the MGF zeros, the study by
means of partition function zeros of large enough systems as
a 2563 3D Ising model becomes feasible. We must remark,
however, that methods such as the logarithmic summation
procedure proposed in Ref. [15] may allow the study of phase
transitions by means of partition function zeros in such a large
system provided that the DOS is known. However, the present
method can be applied using only the partial knowledge of
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the DOS provided by Monte Carlo simulations performed at a
single temperature close enough to the transition temperature
instead of the full knowledge of the DOS.

Although the MGF zeros were used to identify the critical
temperature, it is not limited to that. The MGF can be used
to identify critical points for other control parameters such as
an external field, as shown in Appendix A. Moreover, since
the MGF polynomial coefficients are given by thermodynamic
observables such as the energy moments 〈Ek〉 or the mag-
netization moments 〈Mk〉, this method can be used in any
analytical, numerical, or experimental method, provided that
it is possible to estimate these thermodynamic means.
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APPENDIX A: BEYOND β AND ENERGY

The MGF zeros method presented here was developed
using the energy probability distribution and considering a
complex extension of β. However, this method can be ex-
tended to other probability distributions with different control
parameters. For example, consider the Ising model Hamilto-
nian with a magnetic field h,

H(J, h) = −J
∑

〈i, j〉
σiσ j − hM. (A1)

The canonical partition function is given by

Z =
∑

E ,M

g(E , M )eβJ
∑

〈i, j〉 σiσ j eβhM , (A2)

where M is the system total magnetization and a complex
extension of h was made. Multiplying it by 1 = e−βhoMeβhoM ,
we find

Z =
∑

E ,M

g(E , M )e−βH(J,ho)eβ�hM , (A3)

where �h = h − ho. Expanding the last exponential in a Tay-
lor series and rearranging the terms, the partition function can
be rewritten as an MGF equation,

Z = Zo

∞∑

k

〈Mk〉
k!

(β�h)k, (A4)

where 〈Mk〉 are the moments of the magnetization at (β, ho).
Therefore, the MGF zeros can be used to find the magnetic

field for which a phase transition occurs. Furthermore, a sim-
ilar approach can be made for the EPD zeros using Eq. (A3)
but that is outside the scope of this paper.

APPENDIX B: DOMINANT ZERO SCALING

Close to a continuous phase transition, it is well known that
thermodynamic observables follow scaling laws [32] such as

cv = Lα/νFCv (x), χ = Lγ /νFχ (x), (B1)

where x is a quantity that goes to zero at the critical temper-
ature and Fi is a scaling function that is constant as x → 0;
i.e., these functions are independent of the system size L for
x = 0. Therefore, since the cumulants and moments scale in
the same way [33], the moments scale as mk = Lk/νFk (x) [34]
and Eq. (6) when properly normalized is given by

Z = Z (βo)
∞∑

k=0

Fk (x)

k!
yk

s = C
∏

i

(
yi

s(x) − ys
)
, (B2)

where ys = y
L−1/ν and yi

s is the ith rescaled zero. Notice that this
polynomial scales as a thermodynamic observable and at the
critical temperature it is independent of the system size L. The
same is valid for the set of zeros {yi

s}; at the phase transition
all the zeros are independent of the system size. Therefore,
the rescaled MGF dominant zero given by yc

s = yc/L−1/ν must
scale as

yc

L−1/ν
= Re{yc} + Im{yc}i

L−1/ν
= g(x) + f (x)i, (B3)

where g(x) and f (x) are scaling functions. And, since
Re{yc} = 0 close to the critical point, the imaginary part scal-
ing is given by

Im{yc} = L−1/ν f (x). (B4)

This scaling behavior is expected since the EPD zeros scale in
the same way [12].

Finally, to estimate the critical temperature Tc and the crit-
ical exponent ν using the MGF zeros the following finite size
scaling equations are used:

ln Im{yc(L)} ∼ b − 1

ν
ln(L) (B5)

and

Tc(L) ∼ Tc + aL−1/ν, (B6)

where a and b are unimportant scaling constants with no
special meaning in this context.
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