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Marco A. Amaral 1 and Marcelo M. de Oliveira 2

1Instituto de Artes, Humanidades e Ciências, Universidade Federal do Sul da Bahia, Teixeira de Freitas-BA, 45996-108 Brazil
2Departamento de Física e Matemática, Universidade Federal de São João del Rei, Ouro Branco-MG, 36420-000 Brazil

(Received 24 August 2021; revised 8 November 2021; accepted 22 November 2021; published 2 December 2021)

The perceived risk and reward for a given situation can vary depending on resource availability, accumulated
wealth, and other extrinsic factors such as individual backgrounds. Based on this general aspect of everyday
life, here we use evolutionary game theory to model a scenario with randomly perturbed payoffs in a prisoner’s
dilemma game. The perception diversity is modeled by adding a zero-average random noise in the payoff entries
and a Monte Carlo simulation is used to obtain the population dynamics. This payoff heterogeneity can promote
and maintain cooperation in a competitive scenario where only defectors would survive otherwise. In this work,
we give a step further, understanding the role of heterogeneity by investigating the effects of quenched disorder
in the critical properties of random games. We observe that payoff fluctuations induce a very slow dynamic,
making the cooperation decay behave as power laws with varying exponents, instead of the usual exponential
decay after the critical point, showing the emergence of a Griffiths phase. We also find a symmetric Griffiths
phase near the defector’s extinction point when fluctuations are present, indicating that Griffiths phases may be
frequent in evolutionary game dynamics and play a role in the coexistence of different strategies.
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I. INTRODUCTION

A wealthy person can perceive the risk of losing a car in
a bet as a minor nuisance, while the same situation could
be viewed as a huge loss for a less fortunate individual. The
reward and risk perception of the same situation can greatly
vary from one person to another, depending on many factors
such as accumulated wealth, food availability, psychological
situation, and so on [1,2]. Evolutionary game theory (EGT)
[3,4] has been one of the most successful frameworks to
model rational decision making in conflicting situations. Its
many applications range from economics [5] to epidemiology
[6–8], rumor spreading [9], quantum mechanics [10], and
even the evolution of moral behavior [11]. Yet, a common
assumption in this framework is that all individuals during a
game share the same perceptions of the reward and risk, in
terms of absolute values. This is a reasonable hypothesis when
trying to simplify all the complexities of human and animal
interactions, but important and subtle effects may be left out
when using such assumption [12–16].

In the context of EGT, one of the most long-standing ques-
tions is how cooperation can emerge in a competitive scenario
[17–20]. A lot of effort has been dedicated into uncovering
which mechanisms may promote cooperation [3,4,18–26].
Among the most famous, we have kin selection [27], direct
and indirect reciprocity [28,29], network reciprocity [30–36],
and group selection [37]. Specifically, heterogeneity (some-
times deemed as diversity) has recently gained a lot of interest
as another mechanism that allows emergent phenomena to
help increase cooperation [26,38–46].

While traditional EGT has provided fundamental models
and methods that enable us to study the evolution of coopera-

tion, the complexity of such systems also requires methods of
nonequilibrium statistical physics to be used to better under-
stand the emergence and dynamics of cooperation, and also
to reveal the hidden mechanisms that promote it [47]. The
effects of disorder in nonequilibrium phase transitions have
been an important topic of research in statistical physics in the
last decades [48–50]. Both quenched (frozen) [51–55] as well
as time-dependent (temporal and annealed) disorder [56–60]
have provided rich phenomena and phase diagrams. Depend-
ing on the universality class of the nondisordered (clean)
model, disorder can be a relevant perturbation, changing the
critical exponents, and exotic phases with unusual scaling
can emerge [61–64]. For example, in models belonging to
the directed percolation (DP) universality class, such as the
imitation dynamics for an evolutionary game [4,65], quenched
uncorrelated randomness may produce rare regions which are
locally supercritical even when the whole system is subcrit-
ical [63]. Those have been observed in magnetic systems
[66,67] and epidemic dynamics [53,68–70], for example, but
not in evolutionary game systems until now. The lifetime
of such “active rare regions” grows exponentially with the
domain size, usually leading to slow dynamics, characterized
by nonuniversal exponents towards the extinction, for some
interval of the control parameter. This interval of singularities
is called Griffiths phase [64,66,71].

As in nature, clean systems are more of an exception than
the rule, and in real social systems, heterogeneity is an un-
avoidable ingredient. On the other hand, most of the studies
in EGT do not focus on the temporal dynamics towards the
stationary dominant state. In this work, we aim to provide a
detailed investigation of such dynamics as well as to under-
stand the role of the heterogeneity in the population.
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In particular, here we model the diversity of perceptions
between individuals by introducing perturbations in the payoff
matrix of a two-player prisoner’s dilemma game. The use
of payoff perturbations (sometimes deemed as multigames,
random games, or stochastic games) has recently attracted
a lot of attention since it describes a common phenomenon
regarding perception diversity [1,15,72–86]. Following the
work initially done in [12,13], we use small, zero-average,
random perturbations in the agent’s payoff to better under-
stand how said fluctuations can affect the dynamics of a
population modeled by evolutionary game theory. We will fo-
cus on analyzing the critical properties and the emergent phase
that occur near the phase transitions when there is disorder in
the payoff structure. While heterogeneity has been shown to
be a strong promoter of cooperation in competitive games,
the exotic phases that may appear in such states are up to
now not well understood. We study such states in the light of
statistical physics, looking for general properties that indicate
the emergence of a Griffiths phase when there is perturbation
on the system.

II. THE MODEL

We consider pairwise, two-strategy games whose agents
can either cooperate (C) or defect (D). Mutual cooperation
yields a payoff R (reward), while mutual defection yields P
(punishment). If one player cooperates with a defector, the
defector receives a payoff T (temptation) while the cooperator
receives a payoff S, known as the Sucker’s payoff [4]. We
model the perception diversity as small random perturbations
in the payoff values, as done in [12,13]. Each payoff entry
is independently perturbed with a random value with zero
average, as we want the perturbations to be symmetrical and
not favor any specific strategy on average. We denote the
perturbations as ε, where they are drawn from a uniform
distribution with range � (e.g., −� < ε < �) and they are
not cumulative. Here, � is the control parameter that gives
the perturbation strength. In general, the payoff matrix (G) is
denoted as

C D
C
D

[
R + εR S + εS

T + εT P + εP

]
.

(1)

We set R = 1 and P = 0 without loss of generality [4,26].
This allows us to organize the main classes of dilemma
games in a T × S parameter diagram, with T ∈ [0, 2] and
S ∈ [−1, 1], as can be seen in Fig. 1. We delimit four quad-
rants with the harmony game (HG), stag-hunt (SH), snow-drift
(SD), and prisoner’s dilemma (PD).

Regarding the perturbations, previous works [12–16] have
shown that perturbations on the payoff matrix main diagonal
may lead to slightly different results when compared with the
matrix off diagonal, depending on how the disorder is applied.
We chose to perturb all four payoff entries since initial sim-
ulations showed that, for our model, the main aspects of the
Griffiths phase in a quenched disorder setting are more evident
when all entries are perturbed. Additionally, here we focus
on the quenched disorder, i.e., a “frozen” disorder fixed in
time [51–55]. The perturbation on the payoff matrix is done
only once, at the beginning of the simulation for every single
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FIG. 1. T × S parameter space with R = 1, P = 0, spanning
four game classes. Fluctuations can act over [T, S, P, R] simulta-
neously and uncorrelated. The payoff matrix has parameters that
fluctuate around a four-dimensional box with 2� size edges, centered
on the original game. Note that the perturbations may lead agents to
(locally) play different classes of games.

agent, and remains fixed for the rest of that simulation. That
means that each site i will have its own perturbed matrix Gi,
which will not change over time. Note that the payoff matrices
of two sites will have different values of perturbations, as
expected since we model different perceptions of risk and
reward. On the other hand, the annealed disorder corresponds
to a temporal disorder and initial results did not find traces
of Griffiths phases utilizing this approach, therefore, we did
not explore this setting deeply. Nevertheless, we stress that
other systems with some kinds of temporal disorder can show
a more exotic “temporal Griffiths phase” [56,60], and this may
be also the case for temporal perturbations in game theory.
Since the scope of this work is focused on the usual Griffiths
phase, we leave this analysis for future works.

For the population dynamics, we implement the usual
Monte Carlo protocol with an imitative update rule weighted
by the Fermi distribution [4,26,87], in a spatially distributed
population with the square lattice topology and periodic
boundary conditions. For the population update, first a player
i accumulates its payoff by playing against its four nearest
neighbors (Von Neumann neighborhood). Next, i updates its
strategy by comparing its payoff with one randomly chosen
neighbor j (we also obtain j’s payoff by making it play against
all its nearest neighbors). Agent i adopts the strategy of agent
j with probability

P(ui, u j ) = 1

1 + e−(u j−ui )/k
, (2)

where k is the irrationality level [4], and ui represents the
payoff of agent i. We set k = 0.1 for all simulations. One
Monte Carlo step (MCS) is comprised of N repetitions of this
unitary update procedure, where N is the number of agents
in the population. We run the simulations for at least 104

MCS’s for the system to reach equilibrium, but this number
can increase considerably near the phase transition or during a
Griffiths phase. After the equilibrium, we average the fraction
of cooperators over 1000 steps. We used lattices of linear
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FIG. 2. General effects of the perturbation in the cooperation
levels. The graph shows the final cooperator fraction ρ as a function
of the temptation to defect T for various perturbation strengths �

in the weak prisoner’s dilemma (S = 0). Payoff perturbation can
continuously increase cooperation for T > 1, and the effect is re-
versed for T < 1. For the clean model (� = 0) cooperation is extinct
around Tc = 1.036. The payoff perturbation increases the survival
range of cooperation in the T parameter as � increases. Inset: similar
figure but comparing the clean and quenched perturbation model for
different perturbation settings. We set � = 0.3 and show the full per-
turbation (FP), main-diagonal perturbation (MDP), and off-diagonal
perturbation (ODP). We will focus mainly on the full perturbation
model.

size L = 200 and repeat this procedure for 100–200 different
simulation runs (samples) to obtain more accurate averages.
Regarding the system size, we have also considered linear
sizes varying from L = 100 up to L = 1000 agents. We ob-
served that the behavior is almost identical for sizes L > 100,
with minor quantitative deviations only for L = 100.

III. RESULTS

We begin by presenting the general effects of the perturba-
tion on the population. We remind that a study of the general
benefits of random payoffs to cooperation can be found in
Refs. [12–16]. Here we shall focus more on the phase tran-
sition points and the Griffiths phase.

In Fig. 2 we show the usual behavior of the cooperator’s
fraction ρ versus the temptation to defect T for various per-
turbation strengths � in the weak prisoner’s dilemma (S = 0).
We chose the weak prisoner’s dilemma scenario so as to
better focus our attention of the Griffiths phase in a classical
game setting. Note, however, that the obtained results strongly
indicate that such phases may emerge in other games near
the phase transition points. We stress that the perturbation
is supposed to represent a small deviation in the risk and
reward perception of each player. In this sense, we expect
that reasonable values of the perturbation strength would be
around 0 < � < 0.5, as the maximum payoff is T = 2 in this
parametrization. The main effect of the payoff perturbation
is to continuously increase the cooperation for T > 1 when
compared to the clean model (zero perturbation). Also, note
that in the region of the harmony game (T < 1) this effect
inverses, and cooperation diminishes with the perturbation.

The inset in Fig. 2 presents ρ as a function of T for a
fixed perturbation strength � = 0.3, and shows the results
for three possible payoff perturbations, i.e., full perturbation
(FP), main-diagonal perturbation (MDP), and off-diagonal
perturbation (ODP). While the settings can present small dif-
ferences, here we will focus on the FP model since it is the
one with stronger disorder effects, that are usually associated
with the emergence of a Griffiths phase.

Now, we investigate the temporal dynamics via decay sim-
ulations (also called seed simulations) [50], a common tool
from nonequilibrium statistical physics to obtain important
features during a phase transition. To do so, we run simula-
tions starting with 99% of the lattice filled with cooperators,
in a region of high T where cooperation should not survive.1

Our results are shown in Fig. 3, presenting the evolution of
cooperators for the clean [Fig. 3(a)] and perturbed [Fig. 3(b)]
models near their respective phase transitions where coopera-
tion is extinct. Here we use � = 0.3 for the perturbed model,
but the general behavior is consistent for 0 < � < 1.

Looking at Fig. 3(a), the clean model exhibits three distinct
behaviors. Before the critical point T < Tc � 1.0356(4), co-
operators stay stable in the long term of the temporal evolution
(at these values of the control parameter T the system is
in the supercritical regime). For T > Tc there is an expo-
nential decay, with cooperation quickly reaching extinction
(subcritical regime). Finally, at criticality (exactly at T = Tc)
one observes a power-law decay ρ ∝ t−δ . We find the expo-
nent δ = 0.46(5), in agreement with the value δ = 0.4505(10)
exhibited by (2 + 1)-dimensional models in the directed per-
colation (DP) universality class [48].

On the other hand, the decay dynamics of the disordered
model presents a different behavior. It is characterized by an
activated dynamic scaling near the critical value of T where
cooperation is extinct, showing a range of T values where we
observe a power-law decay (with diverse inclinations depend-
ing on the T value and perturbation strength �). This is a
typical behavior of a Griffiths phase. Note that in Fig. 3(a) we
present a range of 1.0 < T < 1.05 for the clean model, where
Tc � 1.0356(4) whereas in Fig. 3(b) we show the perturbed
version using 1.1 < T < 1.4. Let Tg be the temptation value
for the perturbed model where cooperation begins to decay
as a power law, indicating a Griffiths phase. In this regime,
cooperation should tend to zero for infinite times, but at a
much slower rate than the exponential decay of the clean
model after the critical point Tc. We see that for � = 0.3, this
value is around T > Tg � 1.18(1).

An interesting point to note is that the clean and perturbed
dynamics have different asymptotic values of cooperation
even before the Griffiths phase, that is, Tc < T < Tg. In this
region of T , the Griffiths phase does not appear, the time
evolution of the perturbed model behaves in a supercritical

1We stress that usually, in the context of EGT, population dynamics
is done with homogeneous starting conditions, i.e., both strategies
start with equal densities. Nevertheless, such an approach is less
useful for characterizing the power-law decay of a given strategy
during a Griffiths phase. We note, however, that the simulations
with homogeneous conditions were run and presented similar results
regarding the final fraction of cooperators.
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FIG. 3. Decay dynamics for the cooperation fraction (ρ) versus Monte Carlo steps (MCS), of the population using different T values near
the cooperation extinction point for the clean (� = 0) (a) and perturbed (� = 0.3) (b) dynamics. The simulations start with 99% of the lattice
occupied by cooperators, so as to better observe when the decay becomes a power law for the perturbed model. For the clean model we can
see that the system transitions from a stable state to an exponential decay. The point that marks the transition of the two regimes behaves as a
power law, with ρ ∝ t−δ; δ = 0.46(5). The perturbed model presents power-law decay for a range of T values, with varying decay exponents.

regime, with ρ being stable. Even so, cooperation is still
increased by the perturbation when compared with the clean
model. The effect of disorder is to create a Griffiths phase for
high values of T . Nevertheless, for Tc < T < Tg, the disorder
is still able to promote cooperation in a region where it should
have been extinct.

We can also visualize the decay dynamics looking at the
lattice snapshots. Figure 4 presents the sequential snapshots
of a clean (top row) and perturbed model (botton row) in
a specially prepared initial condition. The lattice begins the
simulation with only a small cluster of defectors surrounded
by cooperators. Here we use � = 0.6, T = 1.364 for the
perturbed model and T = 1.046 for the clean model. The T
values are chosen so that cooperation should be extinct in
both models for long times. The main aspect to note here is
how cooperator clusters are able to survive for much longer
times in the perturbed model. This can be seen by looking

at the expansion border of the defectors. In both models we
see small cooperator clusters near the border, but only in the
perturbed model that those clusters are able to survive for
longer times (due to the Griffths phase). Note that eventu-
ally all clusters will succumb to defection, but this will be
a very slow decay as a power law, and not an exponential
decay.

Now, we study the dynamics through spreading simula-
tions, that allow us to obtain the critical point in a more
precise manner. To do so, we set the initial conditions as a
sea of defectors and only a single cooperation seed, made by
a 3 × 3 cluster of cooperators. The system size is taken large
enough so that activity never reaches the boundary before the
end of the simulation. In this setup we are interested only
in the initial evolution of the cooperation cluster, and not in
the final stable state of the system. We run such dynamics
near the critical point Tc, where cooperation is extinct. For

FIG. 4. Lattice snapshots for the evolution of the clean (top) and perturbed (bottom) models. We use prepared initial conditions with just a
few defectors (light red) in the center surrounded by cooperators (dark blue). The T values are chosen such that cooperation will tend to zero
in both cases. We can see that even if cooperation should be extinct in the long run, the perturbed model allows the survival of cooperative
clusters in a metastable state for long periods, leading to the slow power-law decay of cooperation. Here T = 1.046 for the clean model and
T = 1.364 for the perturbed model with � = 0.6.
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FIG. 5. Number of cooperators (NC) as a function of time, MCS, for diverse values of temptation T in a spread dynamic for 1000 samples
in the clean (a) and perturbed model (b). We use a cluster of 3 × 3 cooperators as the initial seed, from where the spread will begin. Here
� = 0.3 for the perturbed model. The clean model exhibits a power-law behavior in the critical point as N (t ) ∝ tη; η = 0.243(6). The inset
shows the average probability of survival for a given spread simulation as a function of time. The critical point for the perturbed model is
Tg < 1.19(1).

the clean system, at the critical point, we observe a power-law
behavior of the mean number of agents N (t ) ∝ t−η. From the
data in Fig. 5(a) we obtain η = 0.243(6), close to the value
η = 0.2295(10) exhibited by models falling in DP class [48].
We also present the behavior of the average probability of
survival for a given spread simulation as a function of time
in the inset of Fig. 5(a). We expect that P(t ) ∝ t−δ , where we
find δ = 0.42(4), in agreement with the value δ = 0.4505(10)
for the DP universality class.

In the disordered system, the critical value Tg is defined
as the smallest value supporting asymptotic growth [88]. This
criterion avoids misinterpretations associated with the effects
due to the Griffiths phase, in which power laws in ρ(t ) are
observed for a range of values of the control parameter [54]
in the decay dynamics such as Fig. 3(b). Figure 5(b) presents
the obtained results for the spreading dynamics. For the per-
turbed model, the critical point is located near Tg � 1.19(1)
when � = 0.3. We stress that the critical point will change
depending on the perturbation strength.

Note that the payoff perturbation is also responsible for
lowering the cooperation value when T < 1. Conversely, this
can be seen as increasing the defector’s fraction near their
extinction point. Based on this observation, we also analyzed
how perturbations can induce a symmetric Griffiths phase in
the defectors. In the perturbed model, for the region around
0.87 < T < 1.18 (� = 0.3), both cooperators and defectors
are in a subcritical regime, where both quickly reach the
equilibrium state and do not fluctuate significantly around the
average values. For T > 1.18, a clear Griffiths phase appears
for the cooperators, where it decays as a power law with
generic exponent, as shown in Fig. 3(b). However, we also see
that for T < 0.87 a similar behavior appears for the fraction
of defectors when the model is perturbed, that is, the decay in
defection is a generic power-law behavior.

This phenomenon can be seen in Fig. 6, which presents
the fraction of defectors as a function of time in the region
of defectors extinction for the clean [Fig. 6(a)] and perturbed
model [Fig. 6(b)]. We set � = 0.3 for the perturbed model,
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FIG. 6. Time evolution of defectors 1 − ρ for the clean (a) and perturbed (b) models near the transition points in the usual population
dynamics, i.e., homogeneous starting condition. Here we use � = 0.3. When looking at the defectors, we can also observe a Griffiths phase in
the specific region of T for the perturbed model.
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FIG. 7. (a) Fraction of cooperators ρ as a function of T for the
strongly perturbed model (� = 0.6) in comparison with the clean
model. For T < 0.85 there is a Griffiths phase for the defectors
(DGP) and another for the cooperators (CGP) when T > 1.3. The
perturbation strength makes the Griffiths phase become broader in
the parameter T and more evident in the time evolution of the strate-
gies. (b), (c) Present the temporal evolution of the defectors 1 − ρ

and cooperators, respectively. After a given T value, both populations
start to decay as a power law with generic exponent.

but general results hold for other perturbation values. We use
the typical population dynamics, with homogeneous starting
conditions (half the players are cooperators and half are defec-
tors). The clean model shows the typical stable behavior (for
defectors) when T > 0.92 and an exponential decay otherwise
(with an expected power-law decay at the critical point). On
the other hand, for the perturbed model, if T < 0.88 we can
see the power-law decay with a varying exponent but this time
for the fraction of defectors. The perturbation is responsible
for inducing Griffiths phases in both populations, cooperators,
and defectors, for different ranges of the temptation parameter
T . We note that the decay dynamics, starting with 99% of the
lattice populated by the strategy that will disappear in the long
run, is better for evidencing the Griffiths phase. Nevertheless,
even in the usual homogeneous setting, shown in Fig. 6, we
can see the power-law decay of the Griffiths phase.

Figure 7(a) summarizes the results from both observed
Griffiths phases. It shows the cooperation fraction ρ as a
function of T for the clean and a strongly perturbed model (we
use � = 0.6 to make more evident the effects of the Griffiths
phase). We can see that the system has an extended stable
phase centered around T = 1, where both cooperation and
defection coexist and quickly reach a stable equilibrium in the
dynamics. Nevertheless, near the regions where cooperation,
or defection, is extinct we can observe two different Griffiths
phases on each end, for each strategy (depicted as cooperator’s
Griffiths phase, CGP, and defector’s Griffiths phase, DGP).
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FIG. 8. Decay dynamic of the quenched model, using different
T values for the strong perturbation dynamics (� = 0.6). After the
critical point (Tg � 1.35) the decay behaves as a power law with
diverse exponents. We can obtain the exponents by fitting the power-
law regime as ρ ∝ t−2/z′

. We expect that z′ ∝ (T − Tg)ψν , where
ψν ≈ 0.60. Results from the simulation give us ψν = 0.56(5).

As we increase the perturbation intensity, such regions get
broader. Our results have shown that for weak perturbations
(� = 0.1) there is faint evidence of a Griffiths phase, but the
simulation times involved make it prohibitive to verify if this
is the case with proper precision. For strong perturbations,
� = 0.6, the Griffiths phase is clearly seen for both coop-
erators and defectors. We present the population temporal
evolution in Fig. 7(b) for the defectors and Fig. 7(c) for the
cooperators. In general, the introduction of disorder changes
the phase transition of the clean model from a continuous,
although steep, decline of cooperation (as a function of T ) into
an almost linear decline for 0.85 < T < 1.3. The two extreme
points for cooperation (T > 1.3) and defection (T < 0.85) are
the regions where both population dynamics leave the stable
regime and start a slow temporal decay as a power law. Note
that for infinite times, the graph should present a sharp ex-
tinction at these points. Nevertheless, as we have a power-law
decay corresponding to the aforementioned Griffiths phases,
realistic simulation times make both extreme points smoothly
decay into the extinction of cooperation and defection.

Indeed, in the Griffiths phase scenario, the lifetime of the
process follows a power-law decay as ρ(t ) ∝ t−2/z′

, with z′
being the nonuniversal dynamical exponent in the Griffiths
region [54], which will depend on perturbation strength �

and control parameter T . Figure 8 presents this analysis for a
model with strong perturbation (� = 0.6) for different values
of T . We obtain z′(T ) by fitting the power-law decay of the
population dynamics for diverse T values. When approaching
the phase transition, z′ diverges as z′ ∝ |T − Tg|−ψν , where ψ

and ν are the exponents of the new critical point Tg. From
the data in Fig. 8, we find ψν = 0.56(5), consistent with
the expected value ψν ≈ 0.60 of the random transverse Ising
model universality class [54].

Given that the Griffiths phase is mainly characterized by a
slow, power-law decay of the order parameter near the phase
transitions, a useful measure is the variance of said order
parameter σ 2. More specifically, let σ 2 = 〈ρ2〉 − 〈ρ〉2, where
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FIG. 9. Variance σ 2 as a function of T for the clean and perturbed
models with different perturbation strengths �. The inset presents
the x axis displaced by T ′ (the peak position) to make all peaks be
centered around 0. The clean model presents a sharp and localized
peak in the variance at the critical point, whereas the perturbed model
has a spread in σ 2 for a wide range of T values. This happens because
of the power-law decay observed for a range of the control parameter
T during a Griffiths phase. The effects increase continuously with the
perturbation strength.

〈ρ〉 denotes the cooperation, averaged over the last N = 1000
Monte Carlo steps and 300 different simulations. During the
subcritical phase, where the population fluctuates around a
defined and well-behaved average value, σ 2 will be small,
representing the variance over the average value. Trivially,
σ 2 will tend to zero in the supercritical regime of the clean
model, where cooperation will go to zero exponentially. In
the clean model, we expect σ 2 to have a localized and sharp
spike only during the phase transition. Nevertheless, during
a Griffiths phase, ρ will tend to zero in a very slow manner.
This effect does not happen only in the exact transition point,
instead, we expect ρ to decay as a power law for any T > Tg

(e.g., Tg = 1.35 for � = 0.6). This results in a fluctuation of
ρ around its average value that is larger for a wide range of T ,
when compared with the clean model.

In Fig. 9 we present this analysis, showing σ 2 as a function
of T for different perturbation strengths. The inset shows the
same information with the x axis displaced by T ′, where T ′
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FIG. 10. T × � parameter diagram for (a) the final cooperation
fraction ρ and (b) the variance σ 2. The increase in � expands the
region where cooperation (defection) survives for high (low) T .
When the Griffiths phase is present, the variance is distributed along a
range of T values, making it an initial indicator of where the Griffiths
phase occurs.
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FIG. 11. T × S parameter diagram for the final cooperation level
ρ (a) clean model, (b) perturbed model with � = 0.6. The pertur-
bation alters the dynamics mainly near the phase transition regions
of the parameter space, making the transition more smooth and
continuous.

is the position of the peak in σ 2 for each perturbation. This is
done so as to facilitate the comparison of the relative widths
of different peaks. We see that the variance spike in the clean
model is strong and very well localized around the transition
point (small variations occur due to the finite size and time of
the simulations, as expected). On the other hand, the variance
for the perturbed model is distributed in a range of T values,
where the Griffiths phase is present. This is another way of
observing a possible Griffiths phase in a given model and let
us further observe that the characteristics associated with this
phase grow continuously with the perturbation strength.

Finally, in Fig. 10 we present the final cooperation level in
the parameter diagram T × �. As can be seen, the perturba-
tion has the effect of inducing cooperation for T > 1, while
at the same time promoting defection for T < 1. This is an
almost linear effect with the perturbation strength �. In sum-
mary, the perturbation tends to make the sharp phase transition
more smoothly and different strategies able to coexist. We also
present in Fig. 10(b) the value of the variance σ 2, measured
for the last 104 MCS’s in a long run of 105 MCS’s. This is
done so as a way to detect the very slow decay, characteristic
of the Griffiths phase. As expected, we see that the higher σ

region lies inside the region where perturbation alters the final
cooperation fraction and the variance is distributed in a range
of T , instead of having a single peak in the exact transition
point.

Finally, we present in Fig. 11 the whole T × S parameter
diagram for the final cooperation level ρ in the clean (a) and
perturbed model (b). We fix the perturbation at � = 0.6 and
let the system run for 104 MCS. Note that the perturbation
sustains the coexistence of strategies near the phase transition
for the whole parameter space. In the clean model we have
a very sharp transition from full cooperation to full defection
in the stag-hunt (S < 0, T < 1) and the prisoner’s dilemma
game (S < 1, T > 1). On the other hand, the perturbed model
has a more smooth transition between those regions, due to the
slow power-law decay that allows both strategies to coexist for
longer periods of time.

IV. CONCLUSION

In this work, we have investigated the effects of quenched
disorder in the phase transitions of dilemma games through
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the lens of evolutionary game theory (EGT). Here, the
quenched disorder is included as a small and random
perturbation on the payoff matrix of two-player games, rep-
resenting the typical fluctuations in the perception of risk
and reward of a given situation between different individuals.
A common hypothesis in EGT is that all players share the
same payoff matrix, and therefore can objectively compare
their gains and losses with other players. Nevertheless, in
real situations, the perception of a given scenario is much
more subjective and can vary due to extrinsic factors. We
model such effects as small and random fluctuations, with
zero average, around the payoff value. This gives rise to a
quenched (i.e., frozen) disorder in the payoff structure of the
players. Quenched disorder is a phenomenon widely studied
in condensed matter, especially in magnetic medium, since it
can give rise to many nonintuitive effects and may drastically
alter the properties of a system during phase transitions. Our
main goal here was to study how such disorder can affect EGT
phase transitions.

Our results reveal that the disorder is able to sustain coop-
eration in high temptation regions of the prisoner’s dilemma
game. At the same time, disorder boosts defection for low
values of temptation, indicating that such fluctuations tend to
allow the coexistence of different strategies for regions where
polarization occurs. We also see that the parameter region
where both strategies coexist is greatly enhanced when the
disorder is present, with its range increasing with the per-
turbation strength. However, a more interesting phenomenon
is observed when we look at the temporal evolution of the
population when the disorder is present. The unperturbed
(clean) model has a very distinct behavior before and after the
classical phase transition point in the parameter T (temptation
to defect). Before Tc, cooperators behave in a supercritical
state, quickly reaching stability, presenting only small fluc-
tuations around a fixed average value. For T > Tc they decay
exponentially, quickly reaching extinction. Only when T = Tc

we observe a power-law decay (with a unique power-law ex-

ponent matching the directed percolation universality class),
where cooperators tend to zero in a very slow manner. On
the other hand, we observed that the perturbed model presents
a power-law decay for a wide range of T values (instead of
only when T = Tc), with varying exponents that depend on
T and �. Such behavior is in contrast with the clean model,
where there is only a stable or exponential decay regime. This
phenomenon is also present for small values of T when we
observe how defectors get extinct in the perturbed model.

Such kind of behavior is known as a Griffiths phase, an
extended critical-like region that appears in distinct systems,
such as disordered magnetic media [67], epidemic models
[53,68–70], and brain networks [89]. In such an exotic phase,
quench disorder can create spatial regions that are locally
supercritical even when the parameters of the system are in
the subcritical phase. Such local supercritical stable states pre-
vent the exponential decay near the classical phase transition,
creating the power-law decay for a range of the control pa-
rameter. In other words, the payoff diversity is able to extend
the lifetime of cooperators in a system where cooperation
would be extinct otherwise. Our work shows that Griffiths
phases can appear in evolutionary game theory models and
it can promote cooperation in regions of high temptation to
defect. Even more, we show that this exotic phase may be a
common phenomenon in game theory when perception diver-
sity (random payoff perturbations) is present. Given how, in
real life, different agents may have different perceptions of
the same situation, Griffiths phases may be frequent in social
interactions. We expect that this work opens a new avenue
to study rare phases in evolutionary game theory, especially
regarding diverse phenomena that emerge from disordered
systems.
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