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In the last few years the derivative expansion of the nonperturbative renormalization group has proven
to be a very efficient tool for the precise computation of critical quantities. In particular, recent progress
in the understanding of its convergence properties allowed for an estimate of the error bars as well as the
precise computation of many critical quantities. In this work we extend previous studies to the computation
of several universal amplitude ratios for the critical regime of O(N) models using the derivative expansion of the
nonperturbative renormalization group at order O(∂4) for three-dimensional systems.
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I. INTRODUCTION

The theoretical analysis of critical phenomena has made
significant progress in recent years. This has been asso-
ciated with advances in at least four different theoretical
approaches. Among those progresses, let us first mention the
important progress generated by the development of the three-
dimensional conformal bootstrap [1–3]. This made possible
to calculate exponents in the three-dimensional Ising uni-
versality class with unprecedented precision.1 More recently,
significant progress took place in three other types of theoret-
ical tools. On the perturbative side, seventh order calculations
have been achieved within the ε-expansion techniques that
improve previous sixth-order results [5–9]. In parallel, a
significant improvement in the precision has been achieved
within Monte Carlo techniques [10–12]. Finally, and this will
be central for the present work, a qualitative and quantitative
change in the quality of the results coming from the derivative
expansion (DE) of the nonperturbative renormalization group
(NPRG) have been achieved recently [13,14].

Let us discuss this last point in some detail. The NPRG
can be seen as a modern version of Wilson’s renormalization
group [15,16]. At odds with classical exact Wilsonian renor-
malization group equations, the NPRG determines the flow
of the Gibbs free energy, which includes only one-particle
irreducible contributions [17]. This technique has a long his-
tory of successes but these remained controversial because
the approximations implemented within this framework were
seen as uncontrolled. In relation to this, proper estimates of
error bars of the results were usually not discussed. Recently,
this situation has drastically changed with strong evidence
supporting that the most employed approximation scheme

*gdepolsi@fisica.edu.uy
1Recently the conformal bootstrap also managed to achieve a preci-

sion comparable to Monte Carlo simulations in the O(2) universality
class [4] with a similar numerical cost.

in this context (the DE) has a finite radius of convergence
[13,14]. This is associated with an almost model-independent
“small parameter” that varies in the range 1/9–1/4 and that
characterizes the improvement of precision in critical prop-
erties at successive orders of the DE [13]. This allowed for
the estimate of controlled error bars [14]. The resulting preci-
sion for critical exponents turned out to be competitive with
the most precise methods in the literature at third order of
the DE [usually denoted O(∂4)]. From a practical point of
view, the DE has been implemented for the calculation of
critical exponents in the O(N) universality classes at order
O(∂4) achieving very precise and accurate results (reaching
the world-best determination of critical exponents in some
cases) [14,18]. In the Ising universality class this analysis has
been pushed to order O(∂6) with even higher precision [13],
of course, not as precise as conformal invariance techniques
[2] but better than all other field-theoretical techniques.

The aforementioned progresses have been centered on
the calculation of universal properties dominated by critical
points. They are characterized by the presence of scale and (in
most cases) conformal invariance.2 Typical examples of such
quantities are critical exponents. However, there are many
universal properties that are associated with the neighbor-
hood of the critical point (the critical domain) which are not,
strictly speaking, determined by the critical point alone. In
the language of the renormalization group, there are universal
properties that are not determined by the fixed point. The
most important and well-studied examples of such quantities
are the universal amplitude ratios (UARs). Many UARs are
intimately related to the universal equation of state. They are

2For three-dimensional Ising and O(N) models considered in the
present work, proofs of the presence of conformal symmetry at the
critical point can be found in Refs. [19,20]. An extremely strong
indication of the presence of conformal symmetry in the Ising uni-
versality class is the success of the conformal bootstrap for this
universality class [1–3].
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not dominated by the critical fixed point alone but include also
information from the full renormalization group trajectory
going from the fixed point to the high- (or low-) tempera-
ture region in the coupling constant space, more precisely
joining the Wilson-Fisher (WF) fixed point to the high- or
low-temperature fixed point. As a consequence, at least in
principle, they cannot be determined from techniques that are
based on conformal symmetry alone. Indeed, methods based
exclusively on conformal symmetry are extremely powerful to
tackle the strictly critical properties but are not able to handle
the behavior of the theory away from the critical point. This
is different from perturbation theory, Monte Carlo methods or
the NPRG where, at least in principle, all properties of the
theory can be calculated (as long as the employed approxima-
tions remain valid). The simplest example is the calculation
of nonuniversal properties such as critical temperatures or the
full phase diagram. Of course, in order to compare with actual
experiments, this requires the use of a realistic microscopic
Hamiltonian. We consider in the present article UARs that are
in an intermediate situation: they are universal, so one does
not need a precise knowledge of the microscopic Hamiltonian,
but they they are sensitive to the physics of the systems under
study beyond the critical point.

In the present article we perform the calculation of many
UARs in O(N) universality classes employing the DE of
the NPRG at order O(∂4). We employ essentially the same
techniques and numerical codes as in Ref. [14]. The main
difference is that we need now to follow the renormalization
group flow along a trajectory going very close to the WF fixed
point and departing to the high-temperature fixed point. In
principle, one should also study the trajectories that depart
towards the low-temperature fixed point. However, it is much
more difficult to numerically control these trajectories since
the corresponding free energy eventually becomes nonana-
lytic because of the presence of the coexistence curve. The
direct numerical approach to the low-temperature phase has
been successfully studied within the NPRG [17,21,22] at first
and second order of the DE. However, in the present study, in-
stead of studying the trajectories going from the critical fixed
point towards the low-temperature one, we employ a stan-
dard technique in the literature (here denoted “parametrization
technique”) in order to extract low-temperature amplitudes
from high-temperature ones. This simplifies tremendously the
numerical study but, as will be discussed below, turns out to be
the principal source of error3 in our calculation of amplitudes
related to the low-temperature phase at order O(∂4). It is clear
that avoiding the use of this technique becomes a natural
extension of the present work but the associated numerical
cost goes beyond the present study, and it will be considered
in a forthcoming work.

The existence of a small parameter for the DE is employed
here in order to implement controlled error bars as proposed
in [14]. The obtained results have the level of precision and
accuracy of the best estimates in the literature for all UARs

3As discussed below, uncertainties associated to the parametriza-
tion technique are, generically speaking, of the same order of
magnitude than those of DE at order O(∂2).

studied and, in some cases, achieving an even higher level of
precision.

Before finishing the introduction, let us mention that UARs
have been studied with the NPRG in the pioneering works of
Refs. [21,23–27]. In particular, the critical equation of state
has been studied both for second and for weakly first order
phase transitions by using the DE of the NPRG. Let us point
out, however, that these results were obtained in the early
period of development of the NPRG. They have been done at
leading O(∂0) or local potential approximation (LPA) order
(or, in some cases, in the LPA′ approximation that includes
the anomalous dimension of the field) and do not include
the now standard O(∂2) contributions [or the more recently
studied O(∂4) ones]. See, however, Ref. [28] where the order
O(∂2) was implemented in order to study the critical Casimir
forces. Moreover, they have been done before the recent de-
velopments concerning the convergence of the DE and, as
a consequence, do not include estimates of error bars. The
purpose of the present article is to reconsider the calculation
of UARs within the DE of the NPRG including the up-to-date
developments.

In the next section we review the definition and main char-
acteristics of UARs. In Sec. III we present a brief introduction
to the NPRG and the DE. Then, we present our main results in
Sec. IV, and, finally, we discuss our conclusions. More tech-
nical material concerning numerical and procedural details is
presented in Appendixes.

II. UNIVERSAL AMPLITUDE RATIOS:
DEFINITIONS AND EXAMPLES

In this section we discuss the key ideas behind the univer-
sality of UARs, introduce those that will be calculated in this
work and briefly review earlier results in the literature.

A. Brief review on the origin of universality

Just like critical exponents, UARs are—as their name
implies—universal, in the sense that their values do not de-
pend on the details of the microscopic physics, but rather on
general properties of the model under consideration such as
the dimension of space, the symmetry group of the model
and the representation of this group spanned by the order
parameter. Most of the presented material in this subsection
is elementary but, nevertheless, we included it for notational
purposes and to make the presentation self-contained. Our
presentation follows classical references on the topic, such as
[29–31].

As is well known, in the models we consider, correspond-
ing to the O(N) universality class, critical phenomena are
characterized by the fact that the RG flow possesses a non-
trivial fixed point, known as the Wilson-Fisher (WF) point.
Crucially, the basin of attraction of this fixed point has codi-
mension two4 in the space of coupling constants. Let us

4As explained in subsequent paragraphs, these correspond to a Z2

even perturbation (usually associated with the temperature) and a
Z2 odd perturbation (usually associated with the external magnetic
field).
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parametrize the couplings {ui}i>0 in such a way that close to
the WF fixed point u1 and u2 coincide with the two unstable
eigendirections of the linearized RG flow.5 For sufficiently
small but nonzero control parameters t and/or H , the resulting
RG orbit passes sufficiently close to the fixed point where
t = 0 and H = 0 and departs along some unstable trajectory.
While this unstable trajectory is close to the fixed point, it
is well approximated by the linearized flow, which, with an
appropriate parametrization of coupling constants, is given by,
to leading order in H and t ,

u1 ≈ c1tey1s, u2 ≈ c2Hey2s, ui ≈ bie
yis i > 2, (1)

for some constants c1, c2, and bi which depend on the de-
tails of how the two-parameter family of initial conditions is
defined, the bi being generically independent of t and H to
leading order in these quantities. The ci and bi coefficients
carry the information of the particular microscopic theories
defining our family of RG flows. Here s is the RG “time” and
the yi are the eigenvalues of the linearized flow. The unstable
eigenvalues y1 and y2 are negative and all other eigenvalues
are positive. These two parameters are interpreted, in the case
of magnetic systems, as the reduced temperature t = (T −
Tc)/Tc and the external magnetic field strength Hi = Hni,
nini = 1, respectively.

To study the behavior of macroscopic quantities for these
theories, we need to examine how the thermodynamic func-
tions evolve under the flows described in the previous
paragraph. Let us consider, for instance, the Gibbs free energy
F as a function of the parameters ui. For the RG flows we are
considering, it can be seen that, in the scaling region where
Eq. (1) is valid, the singular part of F flows according to

Fsing(u1, u2, . . . , ui>2, . . . )

≈ λ−dFsing
(
c1tλy1 , c2Hλy2 ,

{
biλ

yi
}

i>2

)
, (2)

where λ ≡ es and d is the dimension of space. The crucial
aspect of this formula as far as universality is concerned is
that the r.h.s. has no implicit dependence on λ but rather all
dependence on the RG time is in the evolution of the ui as
shown. Indeed, all of the usual statements about universality
follow from this fact.

B. High-temperature universal equation of state

To see more precisely how the aforementioned universal
behavior comes about let us for now restrict our discussion to
the high-temperature phase, where t > 0. Then, if we evaluate
the r.h.s. of Eq. (2) at λ = (c1t )−1/y1 , we get

Fsing = (c1t )
d
y1 F+(y), (3)

where we have defined

F+(y) ≡ Fsing(1, y, 0, . . . , 0), (4)

5Notice that we are assuming that there are no marginal operators
in the spectrum of the fixed point and thus the codimension of its
basin of attraction coincides with the number of its unstable eigendi-
rections.

with

y ≡ c2(c1t )−
y2
y1 H. (5)

Crucially we have assumed that the value of λ at which we
have evaluated the r.h.s. of Eq. (2) is such that the dependence
on the ui>2 coupling constants can be neglected. Notice that
the previous statement about the r.h.s. of Eq. (2) not depending
implicitly on λ beyond the dependences shown in Eq. (2)
implies that the function F+(y) is universal. From Eq. (2) we
may calculate the susceptibilities at zero external field

χ2n ≡ − ∂2nF
(∂Hi∂Hi )n

∣∣∣∣
H=0

, (6)

and find6

χ2n = −c2(c1)−γ2n Rn,NF (2n)
+ t−γ2n , (7)

where

Rn,N ≡ N (N + 2) · · · (N + 2n − 2)/(2n − 1)!!, (8)

F (2n)
+ ≡ ∂ (2n)

y F+|y=0, (9)

γ2n ≡ y2

y1
2n − d

y1
. (10)

Before we proceed further let us make a small aside to
point out an important subtlety in the procedure just described.
In writing Eq. (1) we have mentioned that this holds for the
linearized flow. However, taking λ = (c1t )−1/y1 would appear
to correspond, for small values of t , to choosing a value of s
which may be outside of the region where the linearization of
the flow is valid. The way to take care of this apparent con-
tradiction is to consider a recoordinatization of the space of
coupling constants such that the flow has an exponential form
similar to Eq. (1) in a finite region around the WF fixed point
(see, for instance, [32]). This amounts to a modification of
(1) which ends up affecting the scaling relations only through
corrections to the leading scaling behavior which do not affect
the conclusions that follow (see [29] for details).

In Eq. (7)7 the factor multiplying t−γ2n is clearly not univer-
sal since it depends on c1 and c2. However, it is proportional
to the F (2n)

+ , which are indeed universal, since they are ex-
tracted from the function F+(x), and, in fact, it is possible to
determine this universal information through appropriate quo-
tients of physical quantities. In order to do this it is useful to
note that the two-point correlation function satisfies a similar
scaling equation to Eq. (2) and that from such an equation
it is straightforward to obtain that, for small positive t , the
correlation length behaves as

ξ = c−ν
1 t−ν, (11)

where

ν = − 1

y1
. (12)

6To get the factors correctly the relation (∂H ∂H )n(H H )n = N (N +
2) · · · (N + 2n − 2)2nn! is useful.

7It is important to point out that what is shown in Eq. (7) is in fact
the behavior at leading order in t ; there will be corrections although
they will not concern us here.
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We now review how some standard results about univer-
sality are obtained. First, from Eq. (8) and Eq. (12) we see
that the critical exponents γ2n and ν satisfy the hyperscaling
relations

γ2n = γ2n + νd (n − 1). (13)

Similar arguments using also Eq. (7) and Eq. (11) allow
to write a quotient of universal quantities F (2n)

+ in terms of
appropriate ratios of powers of the susceptibilities and corre-
lation length

F (2n)
+

(F (2)
+ )n

= χ2n

(χ2)nξ d (n−1)

Rn
1,N

Rn,N
. (14)

Notice that the hyperscaling relations Eq. (13) imply that
the r.h.s. of this equation is t independent to leading order
in t . Just to connect with the usual expressions found in the
literature, we note that if the scaling forms of χ2n and ξ to
leading order in t are written as

χ2n = Rn,NC+
2nt−γ2n , (15)

ξ = f +t−ν, (16)

then the ratio in (14) is usually written as

F (2n)
+

(F (2)
+ )n

= C+
2n

(C+
2 )n( f +)d (n−1)

. (17)

The quantities given by Eq. (14) are our first example
of UARs: a ratio of—nonuniversal—physical quantities that
yields a universal result. These particular UARs characterize
universal features of the high-temperature phase of the O(N)
models. In particular, one such quantity which will be calcu-
lated in this paper is

g4 ≡ − F (4)
+

(F (2)
+ )2

, (18)

where the extra minus sign is conventional. For higher values
of n the corresponding ratios are not usually discussed in the
literature but rather combinations of them which are obtained
as follows. We first write the magnetization at nonzero exter-
nal field H in terms of the Gibbs free energy to get

Mi = −∂HiFsing = −c2(c1t )
d−y2

y1 ∂yF+(y)
Hi

H
. (19)

Using that in the high-temperature phase the expansion of F+
around zero involves only even powers of y it is straightfor-
ward to invert the previous relation to obtain

Hi = Mi

M
c−1

2 (c1)
y2
y1

(−F (4)
+

F (2)
+

)−1/2

t
y2
y1 G(z), (20)

where

z ≡ Mc−1
2 c

y2−d
y1

1

( −F (4)
+

(F (2))3

)
t

y2−d
y1 . (21)

The factors in the r.h.s. of Eq. (20) are chosen in such a way
that the expansion of G(z) around zero is of the form

G(z) = z + z3

3!
+

∑
n>1

r2n+2
z2n+1

(2n + 1)!
. (22)

The function G(z) is universal as its coefficients rn are easily
obtainable in terms of the F (2n)

+ . For instance, we have

r6 = 10 − F (2)
+ F (6)

+
(F (4)

+ )2
, (23)

r8 = 280 − 56
F (2)

+ F (6)
+

(F (4)
+ )2

+ (F (2)
+ )2F (8)

+
(F (4)

+ )3
, (24)

r10 = 15400 − 4620
F (2)

+ F (6)
+

(F (4)
+ )2

+ 126

(F (2)
+ F (6)

+
(F (4)

+ )2

)2

+ 120
(F (2)

+ )2F (8)
+

(F (4)
+ )3

− (F (2)
+ )3F (10)

+
(F (4)

+ )4
. (25)

Using Eq. (15) and Eq. (7) they can be written in terms of
ratios of the C+

2n as

r6 = 10 − C+
2 C+

6

(C+
4 )2

, (26)

r8 = 280 − 56
C+

2 C+
6

(C+
4 )2

+ (C+
2 )2C+

8

(C+
4 )3

, (27)

r10 = 15 400 − 4620
C+

2 C+
6

(C+
4 )2

+ 126

(
C+

2 C+
6

(C+
4 )2

)2

+ 120
(C+

2 )2C+
8

(C+
4 )3

− (C+
2 )2C+

10

(C+
4 )4

, (28)

which we reproduce here for completeness as it is in this form
that these quantities are often found in the literature.

C. UARs beyond the high-temperature regime

So far we have discussed only UARs that are built out of
ratios of quantities obtained in the high-temperature phase.
However, through a similar reasoning to that we have pre-
sented so far it can be seen that there are UARs that can
be obtained by combining quantities corresponding to the
high-temperature phase, the low-temperature phase and at the
critical temperature. We will not discuss them in the same
level of detail as presented so far for the g4 and ri but merely
give the definitions of those that will be calculated in this
work. In order to do so, we first review the leading scaling
behaviors in each of the phases of some of the quantities
involved in these definitions, mainly to set up notations for
the definitions of the UARs.

In the high-temperature phase at zero external field, aside
from the quantities discussed so far, we also have the leading
scaling behavior at t → 0+ of the specific heat, which is given
by

TcCH = A+t−α. (29)

In the low-temperature phase at zero external field the sys-
tem presents a nonzero magnetization, whose leading scaling
behavior with the reduced temperature t is written as

M = B(−t )β (30)

In this phase the specific heat presents, to leading order in t , a
power-law behavior similar to Eq. (29), which we write as

TcCH = A−t−α. (31)
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We also consider the system at the critical temperature t =
0 but nonzero external field H , which is known as the critical
isotherm. Here the magnetization presents at leading order in
the external field a power-law behavior which we write as

M = BcH1/δ. (32)

Having fixed these notations, the following quantities are
universal in the sense previously described and for the same
reasons:

U0 ≡ A+

A− , (33)

Rχ ≡ C+
2 Bδ−1

Bδ
c

, (34)

Rc ≡ αA+C+
2

B2
, (35)

R4 ≡ −C+
4 B2

(C+
2 )3

, (36)

Rα ≡ 1 − U0

α
, (37)

R+
ξ ≡

(
RcR4

g4

)1/3

. (38)

Notice that the last two quantities are not independent of
the other UARs. We introduce the definition of these for
completeness, given that in the literature results are often
presented in terms of them.

Finally, some UARs involve quantities calculated at what
is known as the crossover line, which is by definition the
value of the reduced temperature tm for which the longitudinal
susceptibility χL is maximum at fixed external field H . Here
the scaling laws are

tm = TpH1/(γ+β ), (39)

χL = Cpt−γ
m . (40)

In these terms one may define

Pm ≡ T β
p B

Bc
, (41)

Rp ≡ C+
2

Cp
, (42)

Pc ≡ P2δ
m

R2
χR4

, (43)

which complete the list of UARs that will be calculated in
this work. Notice that once again these quantities are not
independent, as Pc is defined exclusively in terms of other
UARs.

The universal quantities that we have described in this
section have been previously calculated for O(N) models
through a variety of methods such as the ε-expansion, the
high-temperature expansion, or Monte Carlo methods. In the
next section we present a summary of some of the previous
results that can be found in the literature for the most com-
monly studied values of N . We refer the reader to [29] for a
more exhaustive list of results.

III. NONPERTURBATIVE RENORMALIZATION GROUP
AND THE DERIVATIVE EXPANSION

We give in this section a short review of the NPRG method
and of the approximation scheme to be employed in the
present article, namely, the derivative expansion. The main
purpose here is to fix notations. A recent detailed review of
these topics can be found in [17]. A detailed analysis of the
DE in the O(N) models, where the convergence of the method
and a procedure to estimate error bars has been studied, can be
found in [13,14]. We follow here the main lines of presenta-
tion of [14] for completeness purposes but we refer the reader
to [13,14,17] for a more detailed discussion.

A. The nonperturbative renormalization group

The NPRG is based on Wilson’s ideas of integrating over
modes with a wave number larger than some scale k while
keeping the long-distance modes frozen. This is done by in-
troducing an infrared regulator in the theory.

In order to do so we add to the Hamiltonian a quadratic
term in the fields [16], S[ϕ] → S[ϕ] + Sk[ϕ] with

Sk[ϕ] = 1

2

∫
q
ϕa(−q)Rk (q2)ϕa(q), (44)

where
∫

q = ∫ dd q
(2π )d . Here and below, the Einstein convention

is employed for sums over internal indices. To properly act as
an infrared regulator, Rk (q2) should

(1) Be a smooth function of the momentum squared q2

(2) Rk (q) ∼ Zkk2 for q � k, where Zk is a field renormal-
ization factor to be specified below

(3) Rk (q) → 0 faster than any power law when q � k.
One can then define a scale-dependent free-energy Wk[J]

[33–35]:

eWk [J] =
∫

Dϕ e−S[ϕ]−Sk [ϕ]+∫
x Ja(x)ϕa (x), (45)

where
∫

x = ∫
dd x. The scale-dependent effective action

�k[φ], is defined as the modified Legendre transform of Wk[J]:

�k[φ] =
∫

x
φa(x)Jφ

a (x) − Wk[Jφ] − Sk[φ], (46)

where Jφ is an implicit function of φ, obtained by inverting

φa(x) = δWk

δJa(x)

∣∣∣∣∣
J=Jφ

. (47)

From the properties of the regulator Rk listed above and
Eq. (46), it can then be shown that at scale k = �, ��[φ] ∼
S[φ]. This will provide the initial condition of the exact RG
flow given below in Eq. (49).

�k[φ] is the generating functional of infrared-regularized
one-particle irreducible (1PI) correlation functions or proper
vertices (that we choose to evaluate at a uniform field). Its
Fourier transform is defined as

�(n)
a1...an

(p1, . . . , pn−1; φ)

=
∫

x
ei

∑n−1
m=1 xm pm�(n)

a1...an
(x1, . . . , xn−1, 0; φ). (48)
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where, due to translational invariance, �(n) depends only on
n − 1 independent wave vectors.

The evolution of �k[φ] with the RG time s = log(k/�)
[33–35] can be easily obtained:

∂s�k[φ] = 1

2

∫
x,y

∂sRk (x − y)Gaa[x, y; φ]. (49)

Here Rk (x − y) is the Fourier transform of Rk (q2) and
Gab[x, y; φ] is the dressed propagator in an arbitrary external
field φ(x). The latter can be obtained from the two-point
vertex by∫

y
Gac[x, y; φ]

[
δ2�k[φ]

δφc(y)δφb(z)
+ Rk (y − z)δcb

]
= δ(x − z)δab.

(50)

We omit the k-dependence of the propagator and proper ver-
tices to alleviate the notation. Taking successive functional
derivatives of Eq. (49), one can derive equations for all proper
vertices. For instance, evaluating Eq. (49) in a uniform ex-
ternal field one deduces the exact equation for the effective
potential Uk (or “0-point vertex”):

∂sUk (ρ) = 1

2

∫
q
∂sRk (q)Gaa(q; φ), (51)

where ρ = φaφa/2 and Gab(q; φ) is the Fourier transform of
the propagator evaluated in a uniform field. In the same way,
the equation for the two-point function in a uniform external
field can be deduced, yielding

∂s�
(2)
ab (p; φ) =

∫
q
∂sRk (q)Gmn(q; φ)

[
− 1

2
�

(4)
abno(p,−p, q; φ)

+ �
(3)
anl (p, q; φ)Glr (p + q; φ)�(3)

bro(−p,−q; φ)

]

× Gom(q; φ). (52)

The equation for a given vertex �(n) depends on all the vertices
up to �(n+2). As a consequence, one has an infinite hierarchy
of coupled equations for the vertex functions. Solving this
equation typically requires approximations.

The advantage of Eq. (49) with respect to other field-
theoretical approaches is that it is well suited to formulate
approximations going beyond perturbation theory. We now
present the most employed approximation in the NPRG con-
text: the DE.

B. The derivative expansion

The DE procedure corresponds to expanding all proper
vertices in power series of the momenta to a finite order
(except for the two-point function where, at order zero, one
keeps the bare momentum dependence in the propagator).
As a consequence, this approximation is valid only for the
low-momentum physics. In fact, this has proven to be a very
precise approximation scheme in three dimensions for the cal-
culation of critical exponents in the Z2 and O(N) universality
classes (see, for example, [13,14,17,18]). In the past, various
reasons for the success of the DE in O(N) models have been
proposed in the literature [21,36–41]. A first reason is that
integrals in equations for proper vertices such as Eq. (51)

or Eq. (52) include the derivative of the regulating function
∂sRk (q) in the numerator. The integral over q is then dom-
inated by the range q � k. As a consequence, expanding in
all momenta (including the internal one) gives equations that
couple only weakly to the large momentum sector p � k. This
allows for the formulation of the DE approximation scheme
for momenta smaller than the maximum between k and the in-
verse of the correlation length. For critical phenomena, when
k → 0 the DE applies only to those quantities dominated by
zero momenta (such as thermodynamic properties or criti-
cal exponents). Even if the expansion makes sense at low
momenta, it had been unclear, until recently, why it should
give good results because a priori the associated expansion
parameter would be q2/k2, which reaches values of order one
because the derivative of the regulator in equations such as
(51) or (52) suppresses all momenta beyond typically k. This
is the main reason why the DE has been seen for a long time
as an “uncontrolled” approximation.

This changed recently with some studies on the radius of
convergence of the DE [13,14,17].8 Although there is some
dependence on the model considered and on the chosen reg-
ulating function Rk , the convergence is governed by very
general features as was shown in [13]. To be precise, in
models described by Ginzburg-Landau Hamiltonians whose
analytical continuation to the Minkowskian space gives uni-
tary models, the radius of convergence has been shown to be
of the order q2

radius/k2 	 4−9 [13] if a reasonable regulator is
chosen. For this to hold, one needs the theory to behave, for
momenta q2/k2 � 4 − 9, as a massive theory with a mass of
order k and that, at the same time, momenta q > k be strongly
suppressed in flow equations. In the present article, we will
employ two of the regulators employed in [14], which were
shown to fulfill these requirements:

Wk (q2) = αZkk2 y/[exp(y) − 1], (53a)

Ek (q2) = αZkk2 exp(−y). (53b)

We will test the dependence of the results by varying α

for each family of regulators given in (53a) and (53b). The
optimal value of α is determined by imposing the “principle
of minimal sensitivity” (PMS) [38,43]. Given the fact that
without approximations physical predictions should not de-
pend on the regulator (and, in particular, on α), we consider
as optimum the value of α corresponding to an extremum.9

By employing this procedure and for momenta below k,
successive corrections in the DE for critical exponents are
suppressed by a factor 1/9 – 1/4. As will be shown in the
present article the same procedure works as well for UARs.
As a final remark, we mention that the quality of most DE
results is further improved in all cases where the exponent η is
small because, as explained in Ref. [13], all subleading orders

8It is interesting to note that the convergence of the DE was studied
a long time ago in the perturbative regime with similar results to
those reviewed here [42].

9Very recently, it was shown that, at least in the Ising universality
class, the PMS can be justified by requiring the fixed point obtained
from the DE to be as conformal as possible [44].
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in the flow of two-point functions are suppressed by a factor
of η.

All the previous analysis about the convergence of the DE
is applicable for Z2 and O(N) Ginzburg-Ladau models with
N � 1. This has been confirmed by specific calculations of
critical exponents in the Ising universality class at various
orders up to order O(∂6) [13,37] for the Ising universality
class, and up to order O(∂4) for O(N) models [14,18].10

Previous analysis of the convergence of the DE focus
on critical exponents. However, essentially all the previous
discussion about the convergence of the DE applies to any
observable quantity dominated by momenta smaller than the
inverse of the correlation length. In the particular case of the
critical regime, this reduces to thermodynamical properties,
or other quantities such as critical exponents that can be
extracted from vertices or their derivatives evaluated at zero
momenta (whether they be universal or not). In the present
article we want to generalize the results of Refs. [13,14] for
critical exponents to other quantities. We will nevertheless fo-
cus in the following on the UARs for three reasons. First, these
quantities have a wide theoretical and experimental interest.
Second, they have been largely studied by using a variety of
methods and are known with relatively good precision. This
makes them excellent benchmarks for testing approximation
schemes. Third, in spite of being universal as explained in
the introduction, UARs do not depend only on the critical
fixed point but require the exploration of some aspects of the
low- and high-temperature phases. As a consequence, their
direct extraction from methods based on conformal symmetry
is very hard (or may be impossible). As will be discussed in
the next section, UARs can be extracted from vertices and
their derivatives at zero momenta. This is why they are in the
domain of validity of the DE.

Focusing on universal quantities, one can choose any rea-
sonable microscopic Hamiltonian in a given universality class
and so we will employ for simplicity a Ginzburg-Landau
model with Hamiltonian,

S[ϕ] =
∫

x

[
1

2
(∂μϕa)2 + r

2
ϕaϕa + u

4!
(ϕaϕa)2

]
. (54)

One then implements the DE. That is, one considers for
�k the most general terms compatible with the symmetries of
a given universality class with, at most, a given number of
derivatives. Linear symmetries of the Hamiltonian (54) that
are preserved by the regulator Sk[φ], are ensured along the
flow; that is, �k[φ] must satisfy space isometries and internal
O(N) symmetry.

10It is important to stress that the radius of convergence of order
q2/k2 ∼ 4–9 applies only for an equation such as Eq. (49) where
only 1PI contributions are present. The DE implemented in FRG
equations based on one-particle reducible correlation functions such
as the Wilson-Polchinski equation [15,16] has a radius of conver-
gence of order q2/k2 ∼ 1. This explains why the DE gives much
better results in the NPRG formulation than in Wilson-Polchinski
one [42,45].

At order O(∂4), this gives the ansatz [14]

�∂4

k [φ] =
∫

x

{
Uk (ρ) + 1

2
Zk (ρ)(∂μφa)2 + 1

4
Yk (ρ)(∂μρ)2

+ W1(ρ)

2
(∂μ∂νφ

a)2 + W2(ρ)

2
(φa∂μ∂νφ

a)2

+ W3(ρ)∂μρ∂νφ
a∂μ∂νφ

a

+ W4(ρ)

2
φb∂μφa∂νφ

a∂μ∂νφ
b

+ W5(ρ)

2
ϕa∂μρ∂νρ∂μ∂νϕ

a + W6(ρ)

4

[
(∂μϕa)2]2

+ W7(ρ)

4
(∂μφa∂νφ

a)2 + W8(ρ)

2
∂μφa∂νϕ

a∂μρ∂νρ

+ W9(ρ)

2
(∂μϕa)2(∂νρ)2 + W10(ρ)

4

[
(∂μρ)2)2

]
.

(55)

In the previous expression, for notational simplicity, we
omitted the k dependence in the W ’s. Notice that for N = 1,
some terms are not independent of each other. This is, for
instance, the case of the Zk (ρ) and Yk (ρ) terms: Including
them in this case would therefore be redundant. A direct
inspection shows that only three terms at order O(∂4) are
independent [37] when N = 1 and therefore need to be
included in the ansatz (55).

The flow of the various functions is implemented in Fourier
space. For instance, the flow of the effective potential Uk (ρ) is
obtained at order O(∂4) of the DE from Eq. (51) by inserting
the propagator Gk (q; φ) computed from �

(2)
k (q; φ), which is

itself obtained from the ansatz (55):

�
(2)
ab (p; φ) = δab[U ′

k (ρ) + Zk (ρ)p2 + W1(ρ)p4]

+ φaφb
[
U ′′

k (ρ)+ 1
2Yk (ρ)p2 + W2(ρ)p4

]+O(p6).
(56)

Similarly, the equation for Zk (ρ), Yk (ρ), W1(ρ), or W2(ρ) can
be obtained from the equation for the two-point function (in a
uniform external field). For that purpose, one expresses those
functions in terms of the vertices. For example,

Zk (ρ) = 1

N − 1

(
δab − φaφb

2ρ

)
∂p2�

(2)
ab (p; φ)|p=0. (57)

We employed the flow equations obtained previously for ar-
bitrary N at order O(∂4) in Ref. [14]. We want to point
out, however, that we considered, as in previous references
[13,14], a strict polynomial expansion in momenta at the order
of the DE being considered in the product of vertices (see [14]
for details). This differs from more standard implementations
of the DE [18,37,46].11 The details of the numerical solving
of the equations is presented in Appendix A.

In the present work we are interested in quantities that are
dominated by the neighbourhood of the critical point. In order
to reach such point we need to fine-tune one bare symmetric
coupling in the initial condition for the flow equations.

11Both versions of the DE give results for critical exponents that
are compatible within error bars at order O(∂2) [14].
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To identify the critical point one can exploit the fact that
it is scale invariant. The Ward identities for scale invariance
in presence of the infrared regulator Sk are equivalent to
the fixed-point condition ∂s�k = 0 when �k is expressed in
terms of dimensionless and renormalized quantities [19]. To
be precise, one defines renormalized and dimensionless fields
and coordinates by

x̃ = kx, (58)

φa(x) = k(d−2)/2Z−1/2
k φ̃a(x̃), (59)

ρ(x) = k(d−2)Z−1
k ρ̃(x̃), (60)

and functions F̃ (ρ̃(x̃)):

F (ρ) = kdF Zn/2
k F̃ (ρ̃), (61)

where F (ρ) is any function involved in the ansatz (55) for
�k , dF is the canonical dimension of F and n the number of
fields φa that multiply F in �k . As for Zk [not to be confused
with the function Zk (ρ)] it is given by Zk (ρ) = ZkZ̃k (ρ̃) once a
normalization condition is specified. We use the normalization
condition: Z̃k (ρ̃0) = 1 for a fixed value of ρ̃0. The scale-
dependent anomalous dimension is ηk = −∂s log Zk which, at
the fixed point, becomes the physical anomalous dimension
η [21].

Once the critical point has been reached, to study the UARs
one must typically detune the bare parameters of the model
in order to go to the high- or low-temperature phases, as is
discussed in subsequent sections.

C. Central values and error bar estimates

One of the main advantages of knowing the existence of a
“small parameter” (of about 1/9–1/4) controlling successive
orders of the DE is that one is able to estimate error bars for the
predictions made with this approximation scheme (at least for
models where a unitary Minkowskian extension exists). The
strategy to be employed in the present work to estimate error
bars was presented first in detail in [14]. For completeness we
recall the most relevant elements here.

Let us consider a physical quantity Q such as a critical
exponent or a UAR dominated by momenta smaller than or of
the order of the inverse of the correlation length. To estimate
an error bar for the calculation of this quantity we proceed as
follows:

(1) One calculates the quantity Q by using various families
of regulators. Each family is parametrized by the multiplica-
tive factor α introduced for each regulator family [38] [see
Eqs. (53)].

(2) For each regulator family and at a given order of the
DE, one varies the value of α and looks for an extrema of the
quantity Q (αPMS).

(3) When comparing among different families of regulat-
ing functions we choose as estimate at order O(∂s):

Q̄(s) = maxi
{
Q(s)

Reg;i

} + mini
{
Q(s)

Reg;i

}
2

. (62)

(4) Having determined the Q̄(s) at various orders, we con-
sider as the error estimate of the DE at order O(∂s), ̄Q(s) =

|Q̄(s) − Q̄(s−2)|/4. The 1/4 corresponds to the more conserva-
tive estimation of the small parameter.

This procedure was tested successfully for critical expo-
nents in Ref. [14]. The test is successful in two ways. First,
the predictions so formulated are accurate: whenever the most
precise prediction is not the one obtained from the DE, it is
within error bars of the DE. Second, it is self-consistent in the
sense that predictions made at order O(∂4) are always within
error bars of predictions made at the previous order O(∂2).

Moreover, it has been observed that, in many cases, those
predictions are somewhat pessimistic. In particular, when
the results seem to oscillate at successive orders around the
correct value, one can improve significantly the estimate of
central values and error estimates. Unfortunately, the UAR do
not seem to show any clear oscillatory behavior and, conse-
quently, we limit here to this relatively conservative estimate
of error bars.

The previous estimates concern the systematic error com-
ing from truncating the DE at a finite order. It is necessary
to take into account also other independent sources of error.
First, there is the dependence of the results among the various
families of regulators. This source of error is typically smaller
than the one previously mentioned but since it is not negligible
we must take it into consideration. The error associated with
the dispersion in regulators Qreg is taken to be the width
of this dispersion. A second source of error comes from the
fact that, as we show in Sec. IV, the results for the high-
temperature UAR are computed from a plateau. However, for
some UAR this plateau presents a non-negligible variation
which we take into account as another source of error Qnum

(this variation is typically the same for different regulators, so
there is no need to make any precision on this point). More-
over, even if these estimates are typically pessimistic they
can become too optimistic in the exceptional case where two
consecutive orders of the DE accidentally cross. This has been
analyzed in detail in Ref. [14] and we refer the reader to this
reference for a detailed discussion on this point. In the present
work we have one such quantity denoted in the literature as
r8. We discuss the specific difficulties in calculating its error
bars in Sec. IV.

To summarize, we consider the estimate of a quantity with
the DE at order O(∂ l ) to be

Q̄(l ) ± Q̄(l ),

with Q̄(l ) given by Eq.(62) and the error is computed as

Q̄(l ) = Qreg + Qnum + ̄Q(l ),

with Qnum the variation of the quantity along the plateau,

Qreg = maxi
{
Q(l )

Reg;i

} − mini
{
Q(l )

Reg;i

}
,

and

̄Q(s) = |Q̄(s) − Q̄(s−2)|/4.

D. Calculation of UARs within the NPRG

The goal of the work done in this article is to calcu-
late the UARs we have described in the previous section
by numerically solving the NPRG (49) for the effective ac-
tion �k . As mentioned previously this is done by taking the
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derivative expansion ansatz for �k described in Eq. (55),
which is determined by a set of functions Uk (ρ), Zk (ρ), Yk (ρ),
and WI (ρ)I=1,...,10. The RG flow for these functions is given
by the NPRG equations, and, as described in more detail in
Sec. IV, is solved numerically by discretizing the variable
ρ and working with a large but finite set of ODEs. In order
to calculate the universal quantities described in this section,
the RG flow needs to be solved for initial conditions of the
form of Eq. (1), that is, tuned so that the RG flow passes
sufficiently close to the trajectories joining the WF fixed point
to either the high- or low-temperature fixed points. Once the
RG flow of �k is obtained for these initial conditions one can
extract the leading scaling behavior in t for quantities such as
the susceptibilities χ2n from the “long RG-time” behavior of
�k . From here one can, in principle, calculate the UARs we
have described for O(N) models within the DE approximation
scheme. In fact, in order to do this it is possible to express the
UARs directly in terms of the functions characterizing the DE
ansatz Eq. (55). For instance, we have

g4 = −3
U ′′(0)

[U ′(0)]2−d/2Z (0)d/2
. (63)

The derivation of this expression for g4, as well as analogous
formulas for other UARs, is straightforward by substituting
the ansatz for the effective action in Eq. (18). Please note,
however, that the expression in Eq. (63) is independent of the
order of the DE (even if the actual values of the functions
does depend on the order of the approximation). Analogous
formulas for other UARs can be found in Appendix B.

E. Approximations for the equation of state

From formulas such as Eq. (63) we see that calculation
of UARs would appear to be relatively straightforward once
the “long RG-time” behavior of the Uk (ρ), Zk (ρ), Yk (ρ),
and WI (ρ)I=1,...,10 is obtained. However, it turns out that due
to technical difficulties in the numerical solution of the RG
flow equations this is not the path that we will take here
to compute many of the UARs we have described in this
section. As we have seen, many of the universal quantities
we are interested in involve a ratio of amplitudes calculated
in different phases, so that the “long RG-time” behavior of �

would need to be obtained both at t > 0 as well as at t < 0.
It is well known in the NPRG literature [17,21,22], however,
that the flow in the low-temperature region passes close to a
point where the propagator diverges and the equations become
singular, which complicates the numerical integration of the
flow. This singularity is related to the approach of a convex
nonanalytical effective potential in the low-temperature phase.
Furthermore, in this phase in order to extract from �k the
scaling behavior of the quantities involved it is necessary to
use dimensionful variables instead of the standard dimension-
less ones when integrating the flow, once the flow approaches
the low-temperature fixed point. This significantly adds to the
computational complexity and cost of the numerical integra-
tion.

In order to avoid these difficulties we have opted to take
an alternate route which we presently describe. As explained
in more detail in subsequent sections, we solve only the flow
in the high-temperature region. From this, we obtain the long

RG-time behavior of the functions Uk (ρ), Zk (ρ), Yk (ρ), and
WI (ρ)I=1,...,10 characterizing �k for trajectories that pass very
close to the RG orbit joining the WF fixed point with the
high-temperature fixed point. From here, through the method
discussed in previous paragraphs we may extract from the
long RG-time behavior of Uk (ρ) and Zk (ρ) the values of the
fully high-temperature UARs g4, r6, r8, and r10. These UARs
furnish an approximate representation of the function G(z)
defined in Eq. (20) and thus give an approximation to the uni-
versal equation of state of the system in the high-temperature
regime.

In order to calculate the other UARs, which involve quan-
tities in the low-temperature, critical, and crossover regions,
which we do not probe numerically, we employ a method that
is frequently used in the literature. This involves finding a
way to continue our approximate representation of the EOS of
the system through the critical temperature and into the low-
temperature region. From such an (approximate) expression
for the EOS in those regimes it is then possible to extract the
remaining UARs.

Let us describe this procedure in more detail. As has been
mentioned, this method has been frequently used and can
be found in several references [29,30]. We reproduce it here
to make the presentation self-contained. The key point is to
find an approximate representation of the EOS that holds
in the low-temperature region. Notice that Eq. (20) is valid
only in the high-temperature regime. However, using scaling
arguments similar to those we have explained earlier, it turns
out that the EOS can be written also in the form

Hi = MiB
−δ
c Mδ−1 f (x), (64)

for some universal function f (x) where

x = B1/βtM−1/β . (65)

Crucially, this expression for the equation of state holds both
above and below t = 0, and the remaining UARs that we are
considering may be obtained in terms of it. Intuitively, the
procedure we will follow consists in using our approximate
expression for G(z) to find an approximate expression for f
in the region where they overlap, and then to continue this ex-
pression for f into the low-temperature region. To accomplish
this while at the same time imposing that the analytic structure
of f is properly taken into account, the standard way to do this
is to use a two-parametric representation of the variables H , t
and M. One writes these in terms of the two variables θ and R
as follows:

H = h0Rβδh(θ ), (66)

t = R(1 − θ2), (67)

M = m0Rβm(θ ), (68)

where R is restricted to take positive values only and h0 and m0

are factors related to the normalization of h(θ ) and m(θ ). The
functions h(θ ) and m(θ ) must be odd in order to guarantee
that only odd powers of M appear in the high-temperature
EOS, i.e., that G(z) defined by Eq. (20) is an odd function
of z. The different regimes of interest for the study of the
thermodynamics of the system appear in this parametrization
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in the following way. Since h(θ ) is an odd function, the θ = 0
curve describes the high-temperature phase of the system at
zero external field. The t < 0 phase at zero external field
corresponds to the curve at θ = θ0, θ0 being the lowest pos-
itive root of h(θ ), which must be larger than 1 in order for
this to indeed occur at negative reduced temperature. Finally,
the critical isotherm corresponds to the curve θ = 1. Notice
that the dependence on R in the parametrization is chosen
so that the scaling relations involving the magnetization in
these last two regimes are automatically satisfied for arbitrary
m(θ ) and h(θ ). Of course, the functions m(θ ) and h(θ ) are not
arbitrary bur rather they must be chosen in such a way that the
equation of state is satisfied in the full (t, H ) plane. This is
accomplished by imposing that

f (x(θ )) =
(

m(θ )

m(1)

)−δ h(θ )

h(1)
, (69)

where x and θ are related by

x(θ ) = 1 − θ

θ2
0 − 1

(
m(θ0)

m(θ )

)1/β

. (70)

This requirement can also be formulated for t > 0 in terms of
G(z), which yields

G(z(θ )) = σ h(θ )(1 − θ2)−δβ, (71)

where z and θ are related by

z(θ ) = σ m(θ )(1 − θ2)−β, (72)

where σ is a free parameter related to the overall normaliza-
tion of the functions determining the parametrization. Notice
that this last equation yields a real z only in the θ < 1 region,
which corresponds to the high-temperature phase.

The usefulness of this representation of the equation of
state is that the functions m(θ ) and h(θ ) are analytic in the
physical range 0 � θ < θ0, due to the fact that the equation of
state is expected to be analytic everywhere except at the crit-
ical point (t, H ) = (0, 0) (which corresponds to R = 0 in this
parametrization) and at the coexistence curve (t < 0, H = 0),
which corresponds to θ = θ0. This suggests that a possible
approximation scheme to extract the EOS from our knowl-
edge of the high-temperature physics will be to take m(θ )
and h(θ ) analytic functions. Since we calculate only a finite
number of the coefficients ri of the polynomial expansion
of G(z) at z = 0, we have only knowledge of the function
G(z) at small z (that is, in the small H regime at t > 0).
In the (R, θ ) parametrization this corresponds to the small θ

region. In practice, when trying to determine m(θ ) and h(θ )
we can therefore impose only that they satisfy Eq. (71) and
Eq. (72) in this region, which amounts to imposing conditions
on a finite number of terms in the polynomial expansions of
these functions around θ = 0. The approximation we will use
then consists of taking the finite polynomial obtained from
solving these conditions to be a good description of these
functions—and therefore of the EOS—in the whole θ range.

We then employ the following strategy. One calculates
an approximate representation of G(z) in terms of the ri we
have calculated by truncating the polynomial expansion. One
then takes a polynomial ansatz for h(θ ) and m(θ ) depending
on some free parameters, of equal number as the number

of ri used to approximate G(z). Then the free parameters
of our ansatz for m(θ ) and h(θ ) are obtained by imposing
that Eq. (71) and Eq. (72) are satisfied. In fact, doing this
order by order in an expansion around θ = 0 yields a series
of algebraic equations that completely determine our free
parameters and may be easily solved. This procedure deter-
mines the parametrization. With this, one reconstructs f (x)
and from here the remaining UARs are calculated. As we
have mentioned before, this procedure is by now standard
and so there exist in the literature formulas which allow us to
calculate the UARs directly from the functions m(θ ) and h(θ )
defining our parametrization. In Appendix C we reproduce
these and provide a more detailed exposition of the procedure
just described.

Before we proceed to describe the results of our calcula-
tions, a few remarks are in order. First, although the use of
the parametrization we have described as well as its polyno-
mial approximation is frequent in the literature, the methods
employed to determine the coefficients involved vary. The
approach we have decided to follow here of choosing the
coefficients so as to reproduce the low-z behavior of G(z) is
essentially that of [47]. For other approaches we refer to [29]
and references therein.

Second, as can be appreciated in the preceding formulas,
the method employed requires as an inputs the values of
the critical exponents, which are not calculated in this work.
For consistency, we have chosen to use the values of these
as obtained from the NPRG calculations performed in [14].
Since we calculate the high-temperature UARs at different
orders in the DE and take the different results as inputs to the
parametrizat1ion method, we have been careful to input the
critical exponents calculated at the same order in the DE, e.g.,
when using the rs and g4 obtained at second order in the DE
to calculate the other UARs we use the critical exponents at
second order from [14] in this calculation.

Third, we will use only the parametrization approach pre-
viously described to calculate UARs for N = {2, 3, 4, 5}. For
N = 1 the parametrization is somewhat different and will be
omitted for simplicity. In any case, in regard to the work
presented here, the point of calculating the UARs that are not
exclusively high-temperature is mainly to establish whether
they can be obtained from the NPRG calculation in the high-
temperature regime through the approximate parametrization
procedure or whether a NPRG study of the low-temperature
phase is warranted. This last point will be discussed further in
the conclusions.

IV. RESULTS

In this section we use as an example the O(2) model and
present first the typical curves for g4 and the rn’s obtained with
a given regulator as a function of the RG time s along with the
procedure we use to obtain from this the data of interest and
an associated error to it. After this we present the curves of
these high-temperature UARs as a function of the regulator
parameter α which resemble the ones presented in Ref. [14]
for the critical exponents. As described in previous sections,
all the UARs we compute can be obtained from g4 and the
rn in conjunction with critical exponents. We then present the
results obtained for all considered UARs for the studied O(N)
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FIG. 1. Dependence of UAR g4 as a function of the RG time s
with regulator Ek for the O(2) at order O(∂4) of the DE. Different
colors correspond to different α values evenly spaced in the interval
[1,2].

models. Finally, we present the results for the UARs involving
low-temperature amplitudes.

A. Procedure and associated errors to UARs

We start by stressing that the general procedure for ob-
taining or approaching the fixed point is the same as the one
described in Ref. [14]. However, from this point forward, we
must follow the flow along or close to the heteroclinic line that
conects the critical fixed point to the high-temperature fixed
point. At some point along this flow, the numerical error starts
to grow due to the sharpness of the potential around the stable
minimum at zero magnetization.12 Nonetheless, this occurs
late in the flow and quantities stabilize just enough for their
computation. Since the rn are computed through derivatives
of the potential at this particular point [see Eqs. (B6)–(B8)],
the error associated with these quantities grows with n.

We start by presenting g4 as a function of the RG time
s with the regulator given in Eq. (53a) for the O(2) model,
which is representative of other regulators and other O(N)
models as well. As we flow away from the critical fixed point
towards the high-temperature fixed point, the curve for g4

behaves similarly for different orders of the DE, and we focus
on the curves corresponding to order O(∂4). This is shown
in Fig. 1, where different curves correspond to different α

values. In this figure we can see how g4 converges consistently
to a plateau near the expected values. Additionally, we show
in Fig. 2 the smooth dependence of the height of the plateau
with the regulator parameter α. It is worth emphasizing that
the origin of the RG time s is taken to be 0 not at the mi-
croscopic scale but rather already around the critical fixed
point. Otherwise one could need even larger RG times to reach
this plateau. Nevertheless, considering these perturbations as
the microscopic theories, the RG time s ∼ −8 corresponds
to approximately the inverse of the correlation length ξ . It
is already evident that around s ∼ −30 the numerical error
is starting to affect the computation of g4. The situation en-
hances as we consider the UARs rn with increasing n. We
show this phenomenon in Figs. 3–5 corresponding to r6, r8

12This is due to the fact that we are using dimensionless quantities
for the computations.

FIG. 2. Exhibiting the PMS behavior for the UAR g4 as a func-
tion of the RG time s and α parameter with regulator Ek for the O(2)
at order O(∂4) of the DE.

and r10, respectively. It should be noticed that there is another
plateau for s � −5 which corresponds to our choice of initial
conditions that corresponds to a system very close to the WF
fixed point. This makes the flow very slow in the initial stages
of the RG evolution. The extension of the plateau of interest,
for s � −8, as well as its quality manifestly deteriorates.
Although one could increase the stability of these plateaus by
implementing a higher control over the flows, this is of no
benefit since, as will become evident, the error associated to
the finite order of the DE is generally dominant.

When the plateau is well behaved it is easy to assign a value
since variation along many units of RG time is negligible in
comparison with other sources of error. However, to assign
a value to the quantity when the plateau has a slight tilt or
a wavy behavior on top of it, we choose the situation with
least slope well inside the plateau [this is because the plateau
may begin or end with a small maximum or minimum as

FIG. 3. The UAR r6 as a function of the RG time s corresponding
to the PMS value of α with regulator Ek for the O(2) model at order
O(∂4) of the DE (blue solid line). An estimate of this quantity with
the DE at order O(∂4) (black solid line) and error bars (black dashed
line) are also introduced for reference. A zoom on the region of
interest is also introduced for visualization purposes.
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FIG. 4. The UAR r8 as a function of the RG time s corresponding
to the PMS value of α with regulator Ek for the O(2) model at order
O(∂4) of the DE (blue solid line). An estimate of this quantity with
the DE at order O(∂4) (black solid line) and error bars (black dashed
line) are also introduced for reference. A zoom on the region of
interest is also introduced for visualization purposes.

can be seen in Fig. 5]. This contributes as an extra source of
error which we consider to be the variation of the quantity
along the plateau. This error is not dominant but in certain
cases it is non-negligible. In particular, it must be taken into
consideration for the computation of r10.

The procedure from this point onward is completely equiv-
alent to what is done for the critical exponents in [14] as
far as concerns assigning definite values to quantities. For
completeness we show in Figs. 6–9 the quantities of interest
when varying the regulator scale parameter α.

The behavior of all these quantities is very similar to those
exhibited by the critical exponents. In particular, the values
of α at which the different quantities present a maximum or
a minimum according to the PMS criterion, or a behavior

FIG. 5. The UAR r10 as a function of the RG time s correspond-
ing to the PMS value of α with regulator Ek for the O(2) model at
order O(∂4) of the DE (blue solid line). An estimate of this quantity
with the DE at order O(∂4) (black solid line) and error bars (black
dashed line) are also introduced for reference.

FIG. 6. g4 vs α for O(2) with the regulator Wk .

FIG. 7. r6 vs α for O(2) with the regulator Wk .

FIG. 8. r8 vs α for O(2) with the regulator Wk .

FIG. 9. r10 vs α for O(2) with the regulator Wk .
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FIG. 10. g4 vs α/αPMS for O(2) with the regulator Wk .

pursuing the PMS spirit,13 are very close to the values of
αPMS at which the critical exponents η, ν, and ω present
theirs. Indeed, the values of αPMS for η, ν, and ω for the O(2)
universality class at order O(∂4) with the regulator Wk are
αη = 1.52(1), αν = 1.59(1), and αω = 1.59(1), respectively.
These values are to be compared with the values of α at which
these high-temperature UARs present their extrema. We have
included for reference in Figs. 6–9 the values of αη and αν .
After a quick examination of these figures it becomes evident
that the optimal value of α (according to the PMS criterion)
for all the high-temperature UARs studied in this work lies
around 1.5 ± 0.2.

Moreover, we show that these quantities also behave simi-
larly to critical exponents as we change the order of the DE as
expected. We exemplify this using the UAR g4 and showing
its dependence on the α parameter in Fig. 10. It is evident
that as we consider higher orders of the DE results seems to
converge yielding reasonable results.

Finally, from the PMS values at every considered order and
for each regulator we compute our estimated quantities as ex-
plained in Sec. III C. Tables X,XI,XII,XIII and XIV presented
in Appendix D show the UAR obtained for the regulators
considered, at different orders of the DE.

B. High-temperature UARs for N = 1, 2, 3, 4, and 5

We now present the results for the many universal am-
plitude ratios that follow from the procedure described
previously. We start by recalling this procedure and the details
of the calculations. We have considered some of the regulators
employed previously in [14] with the same truncation of the
DE. The specifics of the numeric integration of the flow can
be found in Appendix A).

At this point, we would like to make an important remark.
The general method proposed for assigning error bars with
the DE to the different quantities lays on the fact that the
difference of quantities at successive orders of the DE do not
become accidentally small. This situation already occurs for
the ω exponent and was overcame by imposing a monoton-
ically decreasing behavior with N as we take N → ∞. This
same behavior is encountered for the r8 UAR when comparing
orders O(∂0) and O(∂2). However, there are two reasons why

13We refer the reader to Ref. [14] for a detailed discussion of these
quantities.

we can not implement the same program. On the one hand,
we did not considered sufficiently high values of N so as for
this to be a reasonable criterion. On the other hand, and more
importantly, we did take a glance at the behavior at higher
N and the situation is that this anomalous behavior continues
to be present for large values of N . This implies that by the
time the difference between orders O(∂0) and O(∂2) becomes
sufficiently large in comparison with the difference of orders
O(∂2) and O(∂4), the large N suppression of errors already
kicked in, and we cannot fix the accidentally small error bars
at small values of N for the r8 UAR. This means only that there
exist quantities for which the proposed method for assigning
error bars with the DE is not valid at certain orders of the DE
where accidental crossing at successive orders exists.

The results are presented and compared to the best results
of the literature. We refer the reader to [29] for an extensive
reference on the documented results. We consider the univer-
sality classes of models O(N) with N ∈ {1, 2, 3, 4, 5}, which
we briefly describe below.

We start by discussing the results for the Z2 or O(1) uni-
versality class which corresponds to the Ising model, pure
substances in their liquid-gas transition or uniaxial magnets
to name a few systems. For this particular universality class
there is a plethora of results but, as we have already stated, we
will present only the most precise ones.

As can be seen from Table I, the results obtained for the
different UARs with the DE are compatible with most of
the results reported in the literature. Moreover, the attained
precision is an order of magnitude worse for the UAR g4, but
is similar or better for the remaining UARs. It is interesting
to observe that our result for r6 is compatible with other
field-theoretical results but that all Monte Carlo results for
this quantity are incompatible with these methods (that claim
smaller error bars).

These results show that the method is very versatile and
accurate and can be implemented to compute many quantities
of interest.

The O(2) model corresponds to the XY model, easy plane
magnets, or helium-4 in its fluid-superfluid λ transition. The
results obtained for the O(2) universality class, presented in
Table II show that the precision obtained with this method for
the g4 UAR is of the same order of magnitude but a bit less
precise than other results found in the literature. However, in
contrast with the Z2 universality class, the precision obtained
for the O(2) universality class for the remaining UAR is al-
ways higher than with any other method.

We now present the results for the remaining studied uni-
versality classes which are the O(3), O(4), and O(5) models.
The O(3) is commonly related to the universality class of
isotropic magnets and the O(4) model is associated to the chi-
ral transition of quantum chromodynamics with two flavors.

The results shown in Tables III, IV, and V for the O(3),
O(4), and O(5) universality classes, respectively, complete
our presentation of high-temperature UARs. The precision
obtained for high-temperature UARs using the DE at order
O(∂4) is similar or better than the one obtained with many
other methods. It is interesting to note that the precision
achieved within the DE when N grows tends to improve. This
is expected because for all quantities that can be extracted
from the potential U and the Z function, the DE becomes
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TABLE I. High-temperature UARs for N = 1. The error bar for r8 marked with an asterisk is underestimated; see main text.

HT ε exp d = 3 exp MC LPA O(∂2) O(∂4)

g4 23.56(2) [48] 23.6(2) [49] 23.64(7) [50] 23.6(2) [51] 29.2 23.1(16) 23.60(15)
23.4(2) [52,53] 21(4) [54]

r6 2.056(5) [48] 2.058(11) [52] 2.053(8) [50] 2.72(23) [55] 2.0 2.05(1) 2.064(6)
1.99(6) [56] 2.12(12) [50] 2.060 [57] 3.37(11) [51] 2.064(36) [54]

2.157(18) [58] 3.26(26) [59]
2.25(9) [60]

r8 2.3(1) [48] 2.48(28) [52] 2.47(25) [50] 2.64 2.40(6*) 2.60(4)
2.7(4) [56] 2.42(30) [50] 2.47(5) [54]

r10 −13(4) [61] −20(15) [52] −25(18) [50] −9.5 −14.8(14) −14.1(3)
−4(2) [56] −12.0(1.1) [50] −18(4) [54]

exact when N → ∞ [36]. A systematic study of the large-N
behavior of UARs goes beyond the scope of the present work
and is left for a future analysis.

Before considering UARs that involve low-temperature
amplitudes, let us discuss the quality of the high-temperature
UARs obtained. First, it is worth to mention that [putting
aside the case of r8 at order O(∂2) previously discussed] our
estimates for high-temperature UARs are systematically self-
consistent in the sense that estimates at order O(∂4) are within
error bars of order O(∂2). Second, in almost all cases the
results are accurate in the sense that we are within error bars
of most precise previous estimates. In some cases this is not
strictly possible because for some UARs previous estimates
in the literature are mutually incompatible. However, in all
cases we are compatible with at least one of the most precise
results in the literature. Moreover, our results are very precise.
In many cases our error bars are of the same order of best
previous estimates in the literature achieving, in many cases,
the best precision at order O(∂4). In particular, our estimates
for r6, r8, and r10 tend to be the most precise in the literature.
Finally (again, putting aside the case of r8) the precision of our
results are systematically improved when going from order
O(∂2) to order O(∂4).

C. Other universal amplitude ratios

So far we have described our results on the direct cal-
culation of the high-temperature UARs {g4, ri} through the
numerical solution of the NPRG equations. We now turn to
the remaining universal quantities discussed in Sec. II. As we
have explained in that section and in Appendix C, these quan-
tities are calculated through the parametrization procedure.
Our final results for these remaining UARs are presented in

Tables VI, VII, VIII, and IX. Let us now briefly review how
these final results are obtained.

As explained in more detail in Appendix C, we have im-
plemented the parametrization method in five different ways,
which we have labeled (n = {0, 1A, 1B, 2A, 2B}). These differ
on the function which we have chosen to parametrize [m(θ )
or h(θ )] and on the order of the parametrization. The resulting
UARs obtained for the different parametrization schemes for
N = 2 and N = 3 are presented in Tables XV, XVI, XVII,
and XVIII in Appendix D. These tables also show the different
results obtained from the parametrization procedure when tak-
ing the input data (critical exponents, g4, ri) from calculations
at different order in the DE. The errors quoted in these tables
correspond to those propagated through the parametriza-
tion method from the errors in the exponents, g4 and
the ri.

In order to extract our final results from this data, in princi-
ple we would like to use parametrizations n = 2A and n = 2B,
given that these involve the most ri coefficients (up to r10)
and thus carry the most information of the high-temperature
phase. However, looking at the data in the aforementioned
tables it is clear that the results of scheme 2A propagate a
much higher error than those of scheme 2B. This is likely due
to the fact that scheme 2A has a higher dependence than 2B on
r8 and r10, which are less precisely estimated in our method
than r6 and the critical exponents. This is in agreement with
a similar observation done in [62]. For this reason we have
chosen to present the result of scheme 2B as our final result. In
order to provide a final error estimate, we take the RMS sum
of the error propagated from the inputs to the parametriza-
tion scheme with the error associated to the parametrization
procedure, which we estimate as the difference between the
results of scheme 2B and scheme 1B. The final results and

TABLE II. High-temperature UARs for N = 2. The error bar for r8 marked with an asterisk is underestimated; see main text.

HT d = 3 exp ε exp LPA O(∂2) O(∂4)

g+
4 21.14(6) [62] 21.16(5) [50] 21.5(4) [49,63]

21.05(6) [64] 21.20(6) [65] 25.7 20.8(12) 21.18(10)
r6 1.950(15) [62] 1.967 [57] 1.969(12) [49,52] 1.91 1.96(1) 1.972(5)

1.951(14) [64]
r8 1.44(10) [62] 1.641 [57] 2.1(9) [49,52] 1.79 1.64(4*) 1.80(6)

1.36(9) [64]
r10 −13(7) [62] −9.47 −14.2(15) −13.5(4)
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TABLE III. High-temperature UARs for N = 3. The error bar for r8 marked with an asterisk is underestimated; see main text.

HT d = 3 exp ε exp LPA O(∂2 ) O(∂4)

g+
4 19.13(10) [47] 19.06(5) [50] 19.55(12) [49,63] 22.6 18.9(9) 19.10(6)

19.31(14), 19.27(11) [66] 19.06 [67] 22.35 [21,24]
19.34(16) [63]

r6 1.86(4) [47] 1.880 [57] 1.867(9) [49,52] 1.8 1.88(2) 1.886(3)
2.1(6) [68] 1.884(32) [49] 1.74 [23]

r8 0.6(2) [47] 0.975 [57] 1.0(6) [49,52] 1.063 1.02(1*) 1.14(4)
0.84 [23]

r10 −6(3) [47] −8.05 −12.5(14) −12.1(3)

error estimates are presented in Tables VI–IX for the different
orders in the DE.

Finally, we would like to point out that while the error at
O(∂4) in the derivative expansion is dominated by the error
coming from the parametrization procedure, at O(∂2) this er-
ror is similar with that propagated from the error in the critical
exponents and high-temperature UARs. This would appear to
imply that a specialized study of the low-temperature phase
done at O(∂2) would reduce error bars but would not have
an effect as large as the one for the calculation of UARs at
order O(∂4) in the DE. This may explain why, at in contrast
with what happens for high-temperature UARs, error bars
of UARs involving low-temperature amplitudes estimated at
order O(∂4) are not substantially better than at order O(∂2).
Indeed, the main source of error is not here the DE but the
parametrization method, and this explains the low apparent
convergence of the DE for those quantities. Despite of this
fact, estimates coming from the DE remain very precise even
for UARs that require the use of the parametrization pro-
cedure, yielding in some cases the most precise results in
the literature. Moreover, as for high-temperature UARs, they
remain accurate and self-consistent [in the sense that O(∂2)
and O(∂4) are compatible within error bars].

Interestingly, while our results are in general compatible
within error bars to most results in the literature, this does not
appear to be the case for the UARs involving low-temperature
quantities for N = 5. Indeed, many of the results for these
quantities from reference [70] are slightly incompatible with
ours. This may be due to the fact that, even though the
authors in [70] also use a parametrization procedure simi-
lar to the one employed in the present work, their central
values for r8 and r10 are radically different from ours, and
are compatible with ours only due to comparatively large
error bars. Since these are inputs for the parametrization
procedure, this could explain the difference found in the
results.

TABLE IV. High-temperature UARs for N = 4. The error bar for
r8 marked with an asterisk is underestimated; see main text.

[69] d = 3 exp. ε exp. LPA O(∂2) O(∂4)

g+
4 17.30(6) [50] 17.5(3) [49] 20.0 17.2(7) 17.31(4)

r6 1.81(3) [49,52] 1.780(8) [49] 1.73 1.80(2) 1.809(3)
r8 0.456 [57] 0.2(4) [49] 0.485 0.51(1*) 0.60(3)
r10−5(6) 9(17) [49] −5.7 −10.0(15) −9.6(4)

V. CONCLUSIONS

In this work we have used the DE of the NPRG to order
O(∂4) to calculate the universal amplitude ratios for three-
dimensional Ising and O(N) universality classes. Recently
developed techniques, based on the existence of a small pa-
rameter in the DE, allow for the estimation of error bars
[13,14]. The resulting precision is competitive with best esti-
mates for UARs in the literature [29], in some cases obtaining
the most precise estimate to date. The results, moreover, turn
out to be accurate in the sense that in almost all cases they
are compatible with the most precise results in the literature,
whenever these are more precise than ours.

The calculation of UARs is interesting, first, because of
their empirical interest. This has led to their study by various
theoretical methods and, in some cases, also to their exper-
imental determination [29]. At the same time, the study of
UARs is challenging because it requires knowledge of the
theory beyond the linear regime around the renormalization
group fixed point. These quantities are universal but require
the study of RG trajectories that go towards the high or low-
temperature phases. The ability to calculate these types of
properties shows to be a strength of the NPRG that proves
to be not only an accurate method but also an all-terrain one.

In the present work we have avoided studying the tra-
jectories that lead to the low-temperature phase using the
“parameterization method,” which had already been estab-
lished in the literature [29]. This allows for the calculation
of low-temperature amplitudes from the knowledge of am-
plitudes in the high-temperature phase (together with critical
exponents). For UARs that involve low-temperature ampli-
tudes, the parametrization method introduces uncertainties
that, roughly speaking, are of the same order than DE at order
O(∂2), so at that order it is probably unnecessary to study the

TABLE V. High-temperature UARs for N = 5. The error bar for
r8 marked with an asterisk is underestimated; see main text.

[70] LPA O(∂2) O(∂4)

g+
4 15.74(2) 17.9 15.8(5) 15.77(3)

15.6(1)
r6 1.72(2) 1.65 1.73(2) 1.739(2)

1.70(1)
r8 −1(3) 0.04 0.09(2*) 0.16(2)

−0.3(5)
r10 3(8) −3.0 −7.6(16) −7.0(6)
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TABLE VI. Other UARs for N = 2.

IHT-PR HT MC d = 3 exp ε exp Experiments LPA O(∂2) O(∂4)

U0 1.062(4) [62] 1.12(5) [71,72] 1.056(4) [73] 1.029(13) [74] 1.053(2) [75] 1.48 1.07(6) 1.0596(74)
1.055(3) [64] 1.045 [76] 1.067(3) [77]

1.058(4) [78]
1.088(7) [79]

Rα 4.3(2) [62] 4.20(5) [72] 4.39(26) [80] 4.154(22) [75] 3.8 4.1(2) 4.0(2)
4.01(5) [81]

Rχ 1.35(7) [62] 1.356(4) [71] 1.407 1.38 1.4(1) 1.36(7)
Rc 0.127(6) [62] 0.128(2) [82] 0.123(3) [83] 0.106 0.192 0.13(2) 0.128(7)
R4 7.5(2) [62] 8.0 7.5(4) 7.5(2)
R+

ξ 0.355(3) [62] 0.361(4) [84] 0.3562(10) [82] 0.3606(20) [85,86] 0.36 [87] 0.392 0.35(1) 0.356(3)
0.130 [76]

Pm 1.19(1) 1.19(2) 1.190(16)
Rp 2.03 1.990(6) 1.987(1)

(numerically difficult) low-temperature phase. However, it is
interesting to note that this procedure turns out to be our main
source of error at order O(∂4) (the parametrization method
ends up being less precise than DE at that order). To avoid
this difficulty it is possible to use the DE for the study of the
low-temperature phase directly without using the parametriza-
tion method. However, this is much more demanding from
the numerical point of view. Given the results obtained in the
present work, this study becomes necessary and we plan to
carry it out in the near future. This particularly important for
the calculation of the UAR denoted by U0 for N = 2 where
a particularly precise experimental determination is, for the
moment, more precise than all theoretical estimates [96,97].14

The present study also opens other perspectives. In par-
ticular, we have restricted ourselves in this work to the
three-dimensional case, but it is natural to extend the analysis
to the two-dimensional case. Likewise, in the particular case
of the Ising universality class, the DE has been extended to
order O(∂6) for the calculation of critical exponents [13] and

14A similar statement can be made for Rα since this quantity is built
out of U0 and the critical exponent α.

it is natural to apply this analysis also for the calculation of
UARs. Concerning the Ising universality class, it is worth
mentioning again that there exists in the literature a variety
of different implementations of the parametrization method,
differing in what type of functions are used and how the
parameters are determined (see, for instance, [29] for a dis-
cussion), which warrants a more detailed examination of this
technique. As a consequence, we have left for future work
an analysis of UARs for this universality class concerning
low-temperature amplitudes.

There are also perspectives concerning other values of N .
We did not perform a study of the the large-N limit in the
present work, as the one performed in Ref. [14] for critical
exponents but a systematic analysis of the large-N behavior
of the UARs within DE should be performed in the future. As
recalled in Sec. IV, in the large-N limit the DE becomes exact
for quantities that can be extracted from the potential U and
the Z function. This includes all UARs studied in the present
article. An analysis of the large N behavior (including 1/N
corrections [70]) would be interesting. Moreover, we did not
analyze the case of N → 0 where other kind of UARs are of
interest and could be calculated with the present techniques
[29].

TABLE VII. Other UARs for N = 3.

IHT-PR [47] d = 3 exp ε exp HT Experiments LPA O(∂2) O(∂4)

U0 1.56(4) 1.51(4) [73] 1.521(22) [74] 1.50(5) [88] 1.90 1.52(6) 1.50(2)
1.544 [76] 1.27(9) [89] 1.823 [21,24]

1.4(4) [90]
Rα 4.3(3) 4.4(4) [47,73] 4.56(9) [74] 3.2 3.8(3) 3.8(2)

4.46 [47,76] 3.41 [21,24]
Rχ 1.31(7) 1.33 [91] 1.17 1.20(9) 1.20(5)

1.11 [21,24]
RC 0.185(10) 0.189(9) [83] 0.17 [92] 0.298 0.20(2) 0.202(7)

0.194 [76]
R4 7.8(3) 7.97 7.4(3) 7.4(2)
R+

ξ 0.424(3) 0.4347(20) [85] 0.42 [87] 0.431(5) [84] 0.48 0.43(1) 0.427(2)
0.4319(17) [86] 0.433(5) [84]

Pm 1.18(2) 1.13 1.15(2) 1.15(1)
Rp 2.020(6) 2.06 2.013(7) 2.012(2)
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TABLE VIII. Other UARs for N = 4.

[69] [93] MC [94,95] LPA O(∂2) O(∂4)

U0 1.91(10) 1.8(2) 2.02 1.84(5) 1.82(4)
Rχ 1.12(11) 1.10(5) 1.126(9) 1.04 1.08(7) 1.087(32)
Rc 0.27(2) 0.26(1) 0.38 0.27(2) 0.273(7)
R4 7.6(4) 8.6(9) 8.00 7.4(3) 7.4(1)
Rα 2.4 3.4(3) 3.4(2)
R+

ξ 0.53 0.49(1) 0.488(2)
Pm 1.13(2) 1.11(2) 1.11 1.12(2) 1.123(9)
Rp 2.042(7) 2.08 2.038(7) 2.037(2)

Finally, from the point of view of the methodology em-
ployed, this work shows the capacity of the DE to obtain
precision results for quantities that are not exclusively domi-
nated by the fixed point of the RG. This is in a sense just the tip
of the iceberg because the same methodology can be used to
calculate other large-distance quantities that do not even have
to be universal. For example, in Refs. [98,99], the NPRG and
approximations close to the DE were successfully employed
for the calculation of critical temperatures. Extending the use
of the DE (or similar approximations) at high order for the
calculation of such properties seems a challenging but not
unapproachable goal.
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APPENDIX A: NUMERICAL PROCEDURE

In this Appendix we give the details of the numerical
procedure in order to compute the different UARs. We start
by describing the steps for obtaining the flow equations for
the effective action �k . We proceed to present the treatment
of these equations and specify the numerical parameters to
obtain the fixed-point solution. Finally we give the details for
the RG time integration procedure which allows us to flow
away from the fixed point and compute the different UARs.

TABLE IX. Other UARs for N = 5.

[70] LPA O(∂2) O(∂4)

U0 2.2(2) 1.99 2.04(7) 1.86(9)
Rχ 1.2(1) 0.98 1.01(5) 0.96(4)
Rc 0.28(2) 0.44 0.34(2) 0.341(8)
R4 8.3(5) 8.2 7.5(2) 7.1(2)
Rα 4.2(6) 1.93 2.9(3) 2.5(3)
R+

ξ 0.527(6) 0.58 0.54(1) 0.519(1)
Pm 1.15(3) 1.09 1.10(1) 1.09(1)
Rp 2.069(9) 2.11 2.062(7) 2.039(2)

TABLE X. Raw data for N = 1 high-temperature UARs in d = 3
obtained with the considered regulators at various orders of the DE.
Quantities marked with an asterisk are computed with an extension
of the PMS criterion.

Regulator g4 r6 r8 r10

LPA W 29.15 2.01 2.65 −9.5
E 29.23 2.00 2.63 −9.5

O(∂2) W 23.09 2.05 2.40 −14.8
E 23.05 2.05 2.40 −14.8

O(∂4) W 23.590 2.063 2.586 −14.11
E 23.604 2.065 2.604 −14.05

1. Derivation of the flow equations

When computing thermodynamic quantities using a given
order of the DE of the NPRG, we need to obtain the equations
describing the evolution of the functions in the ansatz as we
integrate the fluctuations at different scales. To do so, we pro-
ceed as follows. We differentiate n times the NPRG equation
Eq. (49). The resulting expression will depend on the �

(n+1)
k

and �
(n+2)
k vertex, and, therefore, we insert the ansatz at a

given order of the DE and compute the l-point vertex �
(l )
k with

l up to n + 2. We evaluate in a uniform field configuration
and take its Fourier transform. We then insert these functions
into the differentiated Eq. (49) which results in many terms
which are proportional to different momenta and color indices
structures.

We then must identify the coefficient of these structures
between left- and right-hand sides to obtain the evolution of
the different functions of the ansatz. However, before doing
so, if we are implementing a given order O(∂b) of the DE,
we truncate the expression obtained so far (from the vertex
functions) in the right-hand side at order b in the internal
and external momenta before expanding the propagators. We
emphasize this distinction because up to recent years it was
common to keep all terms after plugging in the ansatz into
the vertex functions. The difference between these truncations
corresponds to higher order corrections in the DE.

2. Finding the fixed-point solution

Once the equations are obtained, we seek for its fixed-point
solution. We do this by finding the zeros of the beta functions

TABLE XI. Raw data for N = 2 high-temperature UARs in d =
3 obtained with the considered regulators at various orders of the DE.
Quantities marked with an asterisk are computed with an extension
of the PMS criterion.

Regulator g4 r6 r8 r10

LPA W 25.64 1.91 1.79 −9.5
E 25.70 1.91 1.78 −9.5

O(∂2) W 20.82 1.96 1.64 −14.1
E 20.79 1.96 1.64 −14.2

O(∂4) W 21.174 1.971 1.795 −13.55
E 21.177 1.972 1.810 −13.52
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TABLE XII. Raw data for N = 3 high-temperature UARs in d =
3 obtained with the considered regulators at various orders of the DE.
Quantities marked with an asterisk are computed with an extension
of the PMS criterion.

Regulator g4 r6 r8 r10

LPA W 22.59 1.81 1.07 −8.1
E 22.63 1.81 1.06 −8.0

O(∂2) W 18.90 1.88 1.02 −12.5
E 18.88 1.88 1.02 −12.5

O(∂4) W 19.103 1.886* 1.136 −12.15
E 19.092 1.886* 1.144 −12.14

starting from a reasonable close solution. This method was
possible due to previous works from where we already have
reasonable fixed-point solutions to start with. We refer to
Ref. [14] for a description on how to obtain these approximate
solutions. Once we solve for a certain set of parameters, say,
the regulator scale α or the dimension of the order parameter
N , we lean on the fact that the equations behaves smoothly on
these parameters. This implies that we can use the solution we
found for a set of parameters in order to find a solution with a
different, but close, set of parameters. To find the fixed-point
solution we implemented a Newton-Raphson algorithm which
serves just well enough for our purposes.

In all the calculations, we used a discretization of ρ into
a grid with Nρ = 40 points. With a ρ step which kept the
minima of the potential around a fourth part of the ρ box
size. As a consequence, different sizes of the ρ box were
used for different values of N . Additionally, we choose as
the renormalization condition Z̃ (ρ̃i )|i=Nρ/4 = 1, being Z̃ (ρ̃)
the dimensionless version of the ansatz function Zk (ρ). For
the momentum integrals we use the method provided in the
quadpack library corresponding to an adaptative 21-point
Gauss-Kronrod quadrature rule (qags). The derivatives with
respect to ρ were approximated using seven-point centered
discretization which made more stable the computation of
quantities such as r10 with respect to a five-point rule. The
derivatives at the boundary of the ρ box were also computed
with seven points but not centered for obvious reasons.

3. Linear stability analysis of the fixed point

In order to compute critical exponents and the eigendirec-
tions around the fixed point we performed a linear stability

TABLE XIII. Raw data for N = 4 high-temperature UARs in
d = 3 obtained with the considered regulators at various orders of
the DE. Quantities marked with an asterisk are computed with an
extension of the PMS criterion.

Regulator g4 r6 r8 r10

LPA W 20.02 1.73 0.49 −5.7
E 20.05 1.72 0.48 −5.6

O(∂2) W 17.23* 1.80* 0.50* −10.0
E 17.22* 1.80* 0.51* −10.1

O(∂4) W 17.319 1.808* 0.593* −9.61
E 17.298 1.809* 0.597* −9.65

TABLE XIV. Raw data for N = 5 high-temperature UARs in
d = 3 obtained with the considered regulators at various orders of
the DE. Quantities marked with an asterisk are computed with an
extension of the PMS criterion.

Regulator g4 r6 r8 r10

LPA W 17.88 1.65 0.05 −3.0
E 17.90 1.65 0.03 −3.0

O(∂2) W 15.77 1.73* 0.085* −7.5
E 15.77 1.74* 0.089* −7.7

O(∂4) W 15.781 1.738* 0.155* −6.90
E 15.754 1.739* 0.159* −7.00

analysis of the fixed-point solution. To do this, we start from
the very precise fixed-point solution after performing the
Newton-Raphson method and compute the stability matrix M
by evaluating the beta functions at perturbed points from this
solution. From the stability matrix M we perform a standard
linear stability analysis in order to obtain the critical expo-
nents (related to the eigenvalues) and the eigendirections. The
later is important for the next step as will be clear shortly.

4. Flowing to the high-temperature regime

From the fixed-point solution and the eigendirections we
perturbate the system into the high-temperature regime by
taking a perturbation along the unstable eigendirection which
corresponds to the leading eigenvalue. We make sure to per-
turbate into the high- and not low-temperature regime, and we
add to this perturbation another one in the first correction or
least stable eigendirection. This is done in order to approach
the fixed point along the same eigendirection that a typical
microscopic system would under the NPRG. One does retain,
in this way, as much physics as possible. This is useful in
general because if one perturbates only along the relevant
eigendirection the correction to scaling would be suppress
and, for example, the critical exponent ω could not be com-
puted from the flow. We made sure to verify the convergence
on the strength of the perturbation. This perturbation position
us along a path which coincides with the path that a general
system would follow if one is to integrate the flow equations
from a microscopic theory. For the time integration of the
flow equations we used a fourth-order Runge-Kutta algorithm
using a fixed RG time step ds = −1 × 10−3 and with free
boundary condition for the ρ box.

APPENDIX B: EXPRESSIONS FOR
HIGH-TEMPERATURE UARS

The equation of state at high temperature is written in terms
of the potential U (ρ) appearing in (55) evaluated at constant
magnetization

Hi = ∂MiU = Mi∂ρU (B1)

so that

H = M∂ρU . (B2)
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TABLE XV. UARs for N = 2 at O(∂2) for the different parametrizations.

n = 0 n = 1A n = 1B n = 2A n = 2B

U0 1.084(74) 1.068(58) 1.074(64) 1.074(63) 1.072(62)
Rα 4.819(66) 3.90(20) 4.23(11) 4.25(47) 4.14(21)
Rχ 1.637(61) 1.15(12) 1.430(65) 1.94(95) 1.39(11)
RC 0.1037(95) 0.147(19) 0.121(11) 0.99(39) 0.125(14)
R4 8.36(14) 6.80(41) 7.67(19) 9.0(2.3) 7.54(33)
Rξ 0.346(12) 0.364(12) 0.355(11) 0.350(19) 0.356(12)
PM 1.251(10) 1.137(31) 1.205(13) 1.30(16) 1.195(23)
PC 0.3766(29) 0.3766(29) 0.3766(29) 0.3766(29) 0.3766(29)
RP 1.9899(57) 1.9899(57) 1.9899(57) 1.9899(57) 1.9899(57)

TABLE XVI. UARs for N = 2 at O(∂4) for the different parametrizations.

n = 0 n = 1A n = 1B n = 2A n = 2B

U0 1.0708(85) 1.0562(67) 1.0618(74) 1.0590(71) 1.0596(71)
Rα 4.789(16) 3.803(75) 4.177(32) 3.98(13) 4.028(63)
Rχ 1.654(10) 1.112(48) 1.433(14) 1.52(20) 1.369(23)
RC 0.1026(11) 0.1522(61) 0.1214(16) 0.120(13) 0.1279(26)
R4 8.397(32) 6.65(17) 7.658(48) 7.89(57) 7.453(81)
Rξ 0.3439(12) 0.3629(21) 0.3528(12) 0.3554(40) 0.3557(15)
PM 1.2541(16) 1.126(13) 1.2053(27) 1.225(43) 1.1904(51)
PC 0.3787(10) 0.3787(10) 0.3787(10) 0.3787(10) 0.3787(10)
RP 1.9872(18) 1.9872(18) 1.9872(18) 1.9872(18) 1.9872(18)

TABLE XVII. UARs for N = 3 at O(∂2) for the different parametrizations.

n = 0 n = 1A n = 1B n = 2A n = 2B

U0 1.622(82) 1.489(49) 1.539(63) 1.528(63) 1.523(56)
Rα 4.52(13) 3.56(27) 3.92(17) 3.84(49) 3.80(26)
Rχ 1.373(55) 1.035(99) 1.232(57) 1.43(50) 1.198(710)
RC 0.177(15) 0.227(26) 0.196(16) 0.178(52) 0.201(19)
R4 8.07(15) 6.80(37) 7.50(18) 8.1(1.6) 7.37(28)
Rξ 0.423(12) 0.434(13) 0.427(12) 0.424(17) 0.428(12)
PM 1.196(11) 1.107(27) 1.160(13) 1.20(11) 1.151(19)
PC 0.3615(34) 0.3615(34) 0.3615(34) 0.3615(34) 0.3615(34)
RP 2.0133(65) 2.0133(65) 2.0133(65) 2.0133(65) 2.0133(65)

TABLE XVIII. UARs for N = 3 at O(∂4) for the different parametrizations.

n = 0 n = 1A n = 1B n = 2A n = 2B

U0 1.606(10) 1.4724(94) 1.5235(85) 1.499(15) 1.5039(93)
Rα 4.518(17) 3.520(62) 3.901(29) 3.71(11) 3.755(54)
Rχ 1.3926(88) 1.029(27) 1.243(10) 1.31(11) 1.201(15)
RC 0.1751(19) 0.2289(54) 0.1949(21) 0.190(12) 0.2015(29)
R4 8.125(27) 6.77(11) 7.533(39) 7.74(35) 7.376(61)
Rξ 0.4207(14) 0.4329(16) 0.4252(13) 0.4258(210) 0.4269(14)
PM 1.1999(16) 1.1051(75) 1.1625(22) 1.180(25) 1.1516(37)
PC 0.36246(83) 0.36246(83) 0.36246(83) 0.36246(83) 0.36246(83)
RP 2.0123(16) 2.0123(16) 2.0123(16) 2.0123(16) 2.0123(16)
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Let us now take

U =
∑
n=0

U (n) ρ
n

n!
. (B3)

In these terms it is straightforward to write

H = (U (1) )3/2
√

2

3!1/2(U (2) )1/2

(
z + z3

3!

+
∑
n=3

(2n − 1)!

(n − 1)!3!n−1

(U (1) )n−2U (n)

(U (2) )n−1

z2n−1

(2n − 1)!

)
(B4)

where

z =
√

U (2)3!

U (1)2
M. (B5)

Notice that Eq. (B4) is precisely of the form of (20) and
indeed the term in parentheses in (B4) coincides with the
function G(z) defined in (20). From this we immediately find
that

r6 = 5

3

U (3)U (1)

(U (2) )2
, (B6)

r8 = 35

9

U (4)(U (1) )2

(U (2) )3
, (B7)

r10 = 35

3

U (5)(U (1) )3

(U (2) )4
. (B8)

Notice that in contrast with what happens with g+
4 , the ri

do not depend on Z but rather can be calculated exclusively
from U .

APPENDIX C: THE PARAMETRIZATION PROCEDURE

The strategy we will employ starts by approximating the
functions m(θ ) and h(θ ) by polynomials. Since by redefinition
of θ one of these two functions can always be taken to be a
fixed known function, this defines two possible approximation
schemes:

Scheme A:

m(θ ) = θ

(
1 +

n∑
i

ciθ
2i

)
, (C1)

h(θ ) = θ
(
1 − θ2/θ2

0

)2
; (C2)

Scheme B:

m(θ ) = θ, (C3)

h(θ ) = θ
(
1 − θ2/θ2

0

)2

(
1 +

n∑
i

ciθ
2i

)
. (C4)

Notice that we have already imposed that h(θ ) has a zero
at θ0, and indeed a double zero as must be the case for N > 1
systems in d = 3 (see, for instance, [29] for discussion on
this last point). There are then n + 2 free parameters to be
determined in both schemes: the ci, θ0 and σ from (71). As
mentioned in the main text, there exist in the literature various
strategies to accomplish this. Following [47] we will impose

TABLE XIX. rm coefficients required at order n of the
parametrization procedure (see Eq. (C4)).

n = 0 r6

n = 1 r6, r8

n = 2 r6, r8, r10

that our parametrization reproduces the coefficients in the
low-z polynomial expansion of G(z). It is straightforward to
see that this is automatically satisfied in the parametrization
chosen at order O(z). Thus to have n + 2 equations to be used
to fix n + 2 quantities, we will require that our parametrization
reproduces the coefficients of G(z) up to order O(z2n+5). This
restricts the number of ri that are used to fix the coefficients
of our ansatz at a given order n as shown in Table XIX.

In practice, we impose these conditions by expanding
Eq. (71) in powers of θ to order O(θ2n+5). This yields an
algebraic system of equations which is easily solved (numeri-
cally) for the n + 2 coefficients defining our parametrization.
Doing this for n = 0, 1, 2 for both schemes A and B yields
five different schemes, which we label nA and nB (notice that
schemes 0A and 0B are equivalent).

Once the n + 2 coefficients are determined the approxi-
mate representation for the EOS is obtained and the remaining
UARs easily follow. In fact, there exist in the literature formu-
las to obtain the remaining UARs directly from he functions
defining the parametrization (see for example [47]). We repro-
duce the relevant ones here for completeness.

Let us define first two auxiliary functions Y (θ ) and g(θ ).
The first is given by

Y (θ ) = (1 − θ2)m′(θ ) + 2βθm(θ ), (C5)

whereas g is obtained as the solution of the differential equa-
tion

(1 − θ2)g′(θ ) + 2(2 − α)θg(θ ) = Y (θ )h(θ ) (C6)

fixed by imposing regularity at θ = 1. Furthermore we will
require the value θM defined by

βδF [z(θM )]F ′′[z(θM )] − γ F ′[z(θM )]2 = 0. (C7)

In terms of these the UARs are obtained through the fol-
lowing formulas:

U0 = (
θ2

0 − 1
)2−α g(0)

g(θ0)
, (C8)

Rχ = (
θ2

0 − 1
)−γ

m(θ0)δ−2m(1)−δh(1), (C9)

RC = −α(1 − α)(2 − α
(
θ2

0 − 1
)2β

m(θ0)−2g(0), (C10)

R4 = σ 2m(θ0)2(θ2
0 − 1

)−2β
, (C11)

where f and G are obtained through the use of (69) and (71)
and zM and xM are obtained from θM through the use of (70)
and (72).
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APPENDIX D: RAW DATA

In Tables X–XIV we present the raw data for high temper-
ature UARs coming from various orders of the DE for N =
1, 2, 3, 4, 5. In Tables XV–XVIII we present the raw data of

UARs involving the low temperature phase at various orders
of the parametrization procedure for N = 2, 3 (for the two
types of parametrization considered). Tables XV and XVII
employ the results at order O(∂2) and Tables XVI and XVIII
employ the results at order O(∂4).
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