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Overcoming timestep limitations in boosted-frame particle-in-cell
simulations of plasma-based acceleration
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Explicit electromagnetic particle-in-cell (PIC) codes are typically limited by the Courant-Friedrichs-Lewy
(CFL) condition, which implies that the timestep multiplied by the speed of light must be smaller than the
smallest cell size. In the case of boosted-frame PIC simulations of plasma-based acceleration, this limitation can
be a major hindrance, as the cells are often very elongated along the longitudinal direction and the timestep is
thus limited by the small, transverse cell size. This entails many small-timestep PIC iterations and can limit the
potential speed-up of the boosted-frame technique. Here, by using a CFL-free analytical spectral solver, and by
mitigating additional numerical instabilities that arise at large timestep, we show that it is possible to overcome
traditional limitations on the timestep and thereby realize the full potential of the boosted-frame technique over
a much wider range of parameters.

DOI: 10.1103/PhysRevE.104.055311

I. INTRODUCTION

Particle-in-cell (PIC) simulations [1,2] are key to the de-
velopment of plasma-based accelerators and of their potential
future applications [3]. However, these simulations can typi-
cally be very computationally expensive. One way to reduce
their computational cost is to use the boosted-frame technique
[4], whereby the simulation is performed in a Lorentz frame
moving relativistically in the same direction as the beam or
laser driver. The boosted-frame technique is nowadays rou-
tinely used in simulations of plasma-based accelerators, and
can speed up simulations by several orders of magnitude. To a
large extent, this was made possible by the development of a
number of algorithms that mitigate the numerical Cherenkov
instability (NCI) [5–20]—a numerical instability that would
otherwise rapidly grow in the boosted frame and irremediably
corrupt the simulated physics.

The remarkable speedup afforded by the boosted-frame
technique is due largely to the possibility of increasing the
timestep in the boosted frame, and thereby reducing the
number of PIC iterations to be performed compared to a
corresponding laboratory-frame simulation. For example, in
a typical laboratory-frame simulation of laser-wakefield ac-
celeration, both the longitudinal cell size �zlab and timestep
�tlab are constrained to resolve the small laser oscillations at
wavelength λlab: �zlab � λlab for a laser propagating along
z, with c�tlab � �zlab � λlab (while the transverse cell size
is usually much larger: �x,�y � �zlab). By contrast, in a
Lorentz boosted frame drifting along z at relativistic veloc-
ity with a Lorentz factor γb � 1, the laser oscillations are
dilated by a factor of approximately 2γb (λ ≈ 2γbλlab), which
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greatly relaxes the constraints on the longitudinal cell size and
timestep: �z � 2γbλlab, with c�t � �z � 2γbλlab (where
the quantities �z and �t denote the longitudinal cell size and
timestep in the boosted frame).

However, for large γb, as the constraints imposed by the
laser are relaxed, the timestep often becomes constrained in-
stead by the transverse cell size: c�t � �x,�y. (Note that
the transverse cell size is left unchanged in the boosted-frame
simulation as compared to the corresponding laboratory-
frame simulation, since transverse physical length scales
are unchanged by the Lorentz transform). In the case of
finite-difference time-domain (FDTD) PIC algorithms, this
constraint on the timestep is due to the Courant-Friedrichs-
Lewy (CFL) condition [21,22]. Similarly, the pseudo-spectral
time-domain (PSTD) PIC algorithm [23] also has a CFL con-
dition. As a consequence of the CFL condition, the timestep
of the boosted-frame simulation is relatively small and limits
the potential computational speedup, even though the physics
at stake does not necessarily require such a high temporal
resolution.

However, unlike FDTD and PSTD PIC algorithms, pseudo-
spectral analytical time-domain (PSATD) PIC algorithms
[24,25], which integrate analytically Maxwell’s equations
over one timestep in Fourier space, do not have a similar CFL
condition. It follows that boosted-frame PIC simulations that
use the PSATD Maxwell solver could use a larger timestep,
as it is thus not explicitly constrained by the transverse res-
olution. However, it turns out that PSATD boosted-frame
simulations are empirically unstable for c�t > �x,�y. More
specifically, the Galilean PSATD algorithm [16–18], which
does efficiently mitigate the NCI for c�t < �x,�y, does not
seem to suppress the NCI anymore for c�t > �x,�y.

This paper examines the nature of this resurgent NCI
and shows that this instability can be strongly mitigated
with a new algorithm, referred to as the averaged Galilean
PSATD, whereby a key feature of the PSATD algorithm is
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exploited to analytically average the electromagnetic fields in
time before gathering them onto the macroparticles. Hence,
with this new algorithm, simulations can run with a large
timestep (c�t � �z � �x,�y) and exhibit the correspond-
ing computational speedup, while preserving the integrity of
the simulated physics. While this development was motivated
here with the example of laser-wakefield acceleration, it is
generally applicable to any simulation where the physics im-
poses a high transverse spatial resolution but does not impose
such strong constraints on the timestep, so that it would be
advantageous to use a large timestep compared to the cell
size. For instance, this also includes the simulations of low-
emittance pencil-like beams [26], in which the space charge
requires a high transverse resolution, but has a relatively slow
time evolution.

The remainder of the paper is structured as follows. We first
examine in more detail the NCI that occurs for large timesteps
in the case of the standard Galilean PSATD algorithm. Based
on this analysis, we introduce the averaged Galilean PSATD
algorithm and describe the corresponding modified PIC loop.
We then demonstrate the stability of this new algorithm with
large timesteps, first for a uniform plasma, and then for 2D
simulations of laser-wakefield acceleration (LWFA) and 3D
simulations of plasma wakefield acceleration (PWFA).

II. LIMITATIONS OF THE STANDARD GALILEAN PSATD
ALGORITHM FOR LARGE TIMESTEPS

As mentioned in the Introduction, boosted-frame simu-
lations with the Galilean PSATD algorithm are typically
unstable when using a large timestep c�t > �x,�y. Here,
we illustrate this by examining the theoretical NCI growth
rate of the Galilean PSATD algorithm for two-dimensional
simulations of a uniform plasma drifting at a relativistic ve-
locity v0 = v0uz (where uz is the unit vector along the z
axis). As a reminder, the Galilean PSATD algorithm solves
the Maxwell equations on a moving grid, which drifts at a
velocity vgal = vgaluz. This algorithm was shown to suppress
the NCI when vgal = v0 [16].

In this section, we in fact consider two cases: that of
a matching velocity vgal = v0 and that of a slightly de-
tuned velocity vgal = 0.99 v0. Conceptually, these two cases
represent—at a simplified level—different areas of the sim-
ulation box, in the case of a realistic LWFA simulation.
More specifically, the matched case (vgal = v0) represents the
background, quiescent plasma, far from the driver and the
wakefield, since the Galilean velocity is typically chosen to
match its velocity (i.e., vgal = −

√
1 − 1/γ 2

b c). However, the
case of the detuned velocity represents the perturbed plasma
around the laser driver and in the wakefield, where the local
velocity is different than that of the background plasma, and
thus different than the Galilean velocity.

In both of these cases, we choose �z � �x. This is typ-
ical for boosted-frame simulations with a large γb, since the
longitudinally Lorentz-dilated driver and wakefield relax the
requirement on the longitudinal resolution. We then further
consider two cases: that of a small timestep c�t = �x and
that of a large timestep c�t = �z. Note that the latter case
would not be allowed by the CFL condition of an FDTD
algorithm.

Figure 1 displays the theoretical NCI growth rate for the
four possible combinations (i.e., small and large timestep,
matched and detuned Galilean velocity). The growth rates
are obtained by solving the theoretical dispersion relation,
namely, Eq. (19) in Ref. [16]. To guide the interpretation
of this figure, we also plot the position of well-known NCI
resonant modes [8], which are caused by temporal and spatial
aliasing. For the Galilean PSATD algorithm, the equation of
these aliased resonant modes is given by

kx,res =
√(

kz
v0

c
+ mz

2π

�z

(v0 − vgal )

c
− 2πn

c�t

)2

− k2
z , (1)

for any mz, n ∈ Z, where mz is the spatial alias index and n is
the temporal alias index [18]. As one can observe, if vgal ≈ v0,
the term proportional to mz almost cancels and the position of
these lines mainly depends on the time aliasing n.

As can be seen in Figs. 1(a) and 1(b), in the matched-
velocity case (vgal = v0), the Galilean PSATD algorithm
suppresses the NCI, both for c�t = �x (upper left panel) and
c�t � �x (upper right panel). By contrast, in the detuned
case (vgal �= v0, lower panels in Fig. 1), the NCI has a more
noticeable growth rate. This growth rate is relatively small
for c�t = �x, but is much larger for c�t � �x. In practice,
this implies that the Galilean algorithm is relatively robust to
velocity perturbations (e.g., in the wakefield) in the case of a
small timestep (c�t � �x), but it is much less robust to those
perturbations in the case of a large timestep (c�t � �x). This
explains the empirical observation, mentioned in the Introduc-
tion, that boosted-frame simulations of LWFA are typically
unstable with large timestep.

Furthermore, in the case vgal �= v0 and c�t � �x
[Figs. 1(c) and 1(d)], we see that the large NCI growth rate
is concentrated near time-aliased resonances. Thus, the NCI
arises here primarily from the resonant interaction of par-
ticles with electromagnetic modes that are not resolved in
time. More specifically, the electromagnetic modes are in
principle oscillating in time (as predicted by the analytical
formulas used in the derivation of the PSATD algorithm), and
in most cases their net effect on particles averages to zero.
Yet because these fields are sampled with a (large) discrete
timestep—which can be comparable to the period of their
oscillations—particles may in certain cases see an almost
constant value (because of aliasing) instead of an oscillating
one, and thus experience a lasting, resonant effect.

III. AVERAGED GALILEAN PSATD ALGORITHM

The above analysis suggests a natural remedy: when push-
ing the particles, instead of using the value of the fields
sampled at a specific time t = n�t for some integer n, the
particles should instead be pushed with the fields averaged
in time between t = (n − 1/2)�t and t = (n + 1/2)�t . Av-
eraging the fields over one timestep will barely affect the
physics, provided that it is well-resolved in time with the
chosen timestep. However, this average will damp the under-
resolved modes that are spuriously resonant in Fig. 1. Since
this is a temporal average, not a spatial one, it will not affect
the above-mentioned fine spatial details that typically impose
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(a) (b)

(c) (d)

FIG. 1. NCI growth rate of the Galilean PSATD scheme. Normalized NCI growth rate Im(ω)/ωp,r in spectral (kx, kz) space, calculated
from the analytical stability analysis for different Galilean velocities vgal = v0 (a), (b) and vgal = 0.99 v0 (c), (d), and for different timesteps
c�t = �x (left) and c�t = 6�x (right). The solid and dotted lines correspond to well-known aliased NCI resonant modes, with alias number
(mz, n), as given by Eq. (1). In this simulation, a uniform plasma drifts at a velocity v0 = c(1 − 1/γ 2

b )1/2 with γb = 130, and the transverse
and longitudinal cell sizes are �x = 6.4×10−2 k−1

p,r and �z = 6�x, respectively (where k2
p,r = n0e2/(meε0c2γ0 ), and where n0 is the plasma

density).

a high transverse resolution �x, �y (for example, the space-
charge field of a low-emittance beam), as long as they vary
slowly in time (in comparison to the timestep used in the
simulation).

We note that with most Maxwell solvers (for example,
the FDTD and PSTD algorithms), the time evolution of the
electromagnetic fields within one timestep is in general not
known. However, this evolution is indeed known in the case of
the PSATD algorithm. More specifically, as part of the deriva-
tion of the PSATD algorithm [16,24,25], the time evolution of
the E and B fields in Fourier space is calculated analytically.
Here, we propose to average this analytical expression over
one timestep in Fourier space [see Eqs. (A9) and (A10) in
Appendix A], and then to transform these averaged fields
〈E〉 and 〈B〉 to real space, where they are gathered onto the
macroparticles and then discarded. (However, the unaveraged
E and B fields are still kept in memory, and are updated by
the standard Galilean PSATD equations [16,17] at each PIC

iteration). The corresponding modified PIC loop is illustrated
in Fig. 2 and described in more detail in Appendix B.

In the rest of this article, we refer to this new scheme as the
averaged Galilean PSATD algorithm, since it combines the
Galilean PSATD scheme [16–18] and the temporal average
of the fields over one timestep. By construction, the averaged
Galilean PSATD algorithm inherits the main advantages of
the Galilean PSATD scheme: it has a low amount of spuri-
ous numerical dispersion (for high-order spatial derivatives
[27,28]) and does not have a CFL limit. In addition, as shown
in the next sections, the averaged Galilean PSATD algorithm
efficiently mitigates the NCI for large timesteps.

Stability analysis for a uniform plasma drifting
at relativistic velocity

To analyze the stability of the new averaged Galilean
PSATD algorithm, we consider again the case of a
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Averaging interval

Time

Spectral grid (k)

Spatial grid (x)

Macroparticles

(n − 1)Δt nΔt

ρ̂n−1 Ên−1, B̂n−1 Ĵ n−1/2

pn−1/2

ρ̂n Ên
, B̂n 〈Ê〉n, 〈B̂〉n

〈E〉n, 〈B〉n

xn

〈E〉(xn), 〈B〉(xn)
pn+1/2

Particle momenta push

Field gathering

Inverse FFT

Galilean PSATD

Field push: Eqs. (A.9) and (A.10)

FIG. 2. Illustration of the field push and particle momenta push, in the averaged Galilean PSATD algorithm. The quantities represented in
solid frames are the ones that are known just before the field and particle push. Note that this includes the deposited charge and current ρ̂ and
Ĵ . The quantities in dashed and dotted frames are the ones that are being computed during the field and particle push. As part of the field push,
the regular fields Ê and B̂ are updated, and the averaged fields 〈Ê〉 and 〈B̂〉 are calculated and transformed to the spatial grid. As part of the
particle push, the averaged fields 〈E〉 and 〈B〉 are gathered onto the macroparticles, to update the macroparticles’ momenta. The rest of the PIC
cycle (e.g., charge and current deposition, particle position push) is not shown here but is identical to the standard Galilean PSATD [16,17].
See the appendices for more details on the PIC loop and exact definitions of the notation.

two-dimensional uniform plasma drifting with a relativistic
velocity. We derived the theoretical dispersion equation for
this system, by using a similar method as for the standard
Galilean PSATD algorithm [16]—while taking into account
the additional average in time. The full derivation of this
theoretical dispersion equation is given in the Appendix C.
By solving this dispersion equation numerically, we can ex-
tract the NCI growth rate Im(ω)/ωp,r as a function of k. In
addition, we also performed actual PIC simulations for the
same system. We used the PIC code WarpX [29,30], in which
we implemented the averaged Galilean PSATD algorithm,
and we then extracted the NCI growth rate of the NCI in
postprocessing.

The growth rates extracted from both the WarpX simu-
lations and the theoretical dispersion equation are shown in
Fig. 3—both for standard Galilean PSATD (left panels) and
for the averaged Galilean PSATD (right panels). For this case,
we used the same parameters as for the lower-right panel of
Fig. 1, i.e., γb = 130, �x = 6.4×10−2 k−1

p,r , a large timestep
c�t = �z = 6�x, and a detuned velocity vgal = 0.99 v0.
(Recall from the previous sections that the case of a detuned
velocity is the one for which using a large timestep presents a
major issue.)

As can be seen in Fig. 3, the theoretical predictions (upper
panels) and simulation results (lower panels) are in good
agreement, which confirms that the theoretical dispersion
equation correctly captures the nature of the instability. (Note
that growth rate measured from simulations is typically noisy,
which limits the comparison). More importantly, both the the-
oretical predictions and simulation results show that averaged
Galilean PSATD (right panels) strongly reduces the growth of
the instability compared to the standard Galilean PSATD (left
panels). This confirms that averaging the fields in time inhibits
spurious resonances with under-resolved electromagnetic

modes, and thereby enables stable simulations with large
timesteps.

IV. APPLICATION TO SIMULATIONS OF PLASMA
WAKEFIELD IN A LORENTZ-BOOSTED FRAME

A. 2D LWFA

This section illustrates that the stability properties ob-
served in the case of a uniform plasma also apply to
realistic simulations of plasma-based acceleration. To this
end, we first perform two-dimensional (2D) simulations
of a laser-wakefield accelerator. In these simulations, an
x-polarized Gaussian laser pulse with amplitude a0 = 1,
duration τ = 20 fs and waist w0 = 15 μm propagates in a
matched parabolic plasma channel with a background density
of 1.0×1018 cm−3. The simulation runs in a Lorentz-boosted
frame (γb = 30) with a nodal PSATD solver with finite order
16 [18,27,28]. The longitudinal resolution (in the boosted
frame) is set to �z = 2γbλlab/32 = 1.52 μm, while the trans-
verse resolution is �x = 0.15 μm, so that �z = 10�x. We
run the simulation with the standard and averaged Galilean
PSATD, and with a small timestep (c�t = �x) as well as
large timesteps (c�t = 5�x and c�t = 10�x). Figure 4 dis-
plays snapshots of the longitudinal electric field Ez and of the
longitudinal current density Jz in the boosted frame, for these
different cases. In these colormaps, the rapid oscillations of Ez

for z > 0 mm correspond to the longitudinal component of the
laser field, which undergoes significant nonlinear evolution
and red-shifting, while the slow oscillations of Ez and Jz for
z < 0 mm correspond to the plasma wakefield.

As expected, the standard Galilean PSATD is stable for
a small timestep [Fig. 4(a)], but unstable for large timesteps
[Figs. 4(c) and 4(e)]. More specifically, in panels Figs. 4(c)
and 4(e), spurious oscillations rapidly grow in the wakefield

055311-4



OVERCOMING TIMESTEP LIMITATIONS IN … PHYSICAL REVIEW E 104, 055311 (2021)

(a) (b)

(c) (d)

FIG. 3. NCI growth rate: Galilean PSATD vs. averaged Galilean PSATD schemes. Normalized NCI growth rate Im(ω)/ωp,r in spectral
(kx, kz) space, calculated from the analytical stability analysis (a), (b) and from WarpX simulation results (c), (d), obtained using the Galilean
PSATD (a), (c) and averaged Galilean PSATD (b), (d) schemes, at infinite spectral order, with large timestep c�t = �z = 6�x and slightly
detuned Galilean velocity vgal = 0.99 v0.

and severely disrupt its structure. We also note that the re-
sults of the averaged Galilean PSATD with a small timestep
[Fig. 4(b)] are almost indistinguishable from those of the stan-
dard Galilean PSATD [Fig. 4(a)]—thereby confirming that
averaging the fields in time preserves the essential physics.
More importantly, for large timestep [Figs. 4(d) and 4(f)], the
averaged Galilean PSATD achieves stability while preserving
the overall structure of the wakefield. Indeed for c�t = 5�x
[Fig. 4(d)] the Ez field is still almost indistinguishable from
that of Fig. 4(a). For c�t = 10�x [Fig. 4(f)], small differ-
ences become noticeable, especially in the red-shifted laser
oscillations—although they hardly affect the structure of the
accelerating wakefield. This may indicate that this value of
�t starts to reach the limit for which the simulation is not
well-resolved in time anymore.

We also note that, both for c�t = 5�x [Fig. 4(d)] and
c�t = 10�x [Fig. 4(f)], small transverse oscillations become
noticeable in Jz for z < −1.0 mm. These oscillations may
be due to the remaining nonzero growth rate of the aver-
aged Galilean algorithm [see the growth rates represented

in Figs. 3(b) and 3(d)]. However, their magnitude is small
enough that they do not lead to a modulation of the electric
field, hence they do not affect the dynamics. Again, this repre-
sents a clear improvement compared to the standard Galilean
algorithm [Figs. 4(c) and 4(e)].

B. 3D LWFA

To show that the advantageous stability properties of the
averaged Galilean PSATD generalize to 3D, we ran a 3D
LWFA simulation using the same physical and numerical pa-
rameters as in Sec. IV A. We note that, in this case, we had
to use domain decomposition to be able to run the simulation.
This setup was run with the standard Galilean PSATD and the
averaged Galilean PSATD, both with a large timestep c�t =
10�z. Figure 5 displays corresponding snapshots. As can
be seen, the standard Galilean PSATD algorithm is unstable
for this large timestep, while the averaged Galilean PSATD
algorithm remains stable. This is again consistent with the
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FIG. 4. Instability mitigation in a 2D laser-wakefield simulation with large timestep. The upper half of each subplot shows the Ez field seen
by the macroparticles (i.e., the regular Ez field for the standard Galilean PSATD, and the averaged 〈Ez〉 field for the averaged Galilean PSATD).
The lower half of each subplot shows the longitudinal current density Jz of the plasma. All the fields are shown in the boosted frame. The
different subplots correspond to the standard Galilean PSATD (a), (c), (e) and averaged Galilean PSATD (b), (d), (f), with c�t = 0.1�z = �x
(a), (b), c�t = 0.5�z = 5�x (c), (d), and c�t = �z = 10�x (e), (f).

2D results and confirms the benefits of the proposed averaged
algorithm.

C. 3D PWFA

We now go beyond the stability analysis, and show that
the algorithm can speed up a full-scale plasma-wakefield
simulation while preserving the physical results of interest.
Here we focus on a 3D simulation of beam-driven wakefield
acceleration. In this simulation, a 1 nC Gaussian electron
beam propagates in a plasma with a background density of
1.0×1017 cm−3, and experiences a typical evolution whereby
the head of the beam erodes while the tail of the beam per-
forms betatron oscillations in the generated wakefield. The
electron beam initially has a mean Lorentz factor γ = 2000,

with a relative RMS spread �γ/γ = 0.01, and a transverse
and longitudinal RMS size of 5 and 20 μm, respectively.
The simulation is run in a Lorentz-boosted frame (γb = 5.6),
with 5123 cells of size �x = �y = 0.78 μm, �z = 5 μm =
6.4 �x (in the boosted frame), and a nodal PSATD solver with
finite order 16 [18,27,28]. To verify again that the averaged
Galilean PSATD algorithm preserves the physics of interest,
we run the simulation both with the standard Galilean PSATD
algorithm and a small timestep c�t = �x (fiducial case) and
with the averaged Galilean PSATD algorithm and a large
timestep c�t = �z. In both cases, we ran the WarpX code
on the Summit supercomputer, using 24 GPUs with domain
decomposition along z.

The top panels of Fig. 6 display colormaps of the wakefield
in the laboratory frame, which were reconstructed on-the-fly
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FIG. 5. Instability mitigation in a 3D laser-wakefield simulation with large timestep. The upper half of each subplot shows the Ez field
seen by the macroparticles, i.e., the regular Ez field for the standard Galilean PSATD (a), and the averaged 〈Ez〉 field for the averaged Galilean
PSATD (b). The lower half of each subplot shows the longitudinal current density Jz of the plasma. All the fields are shown in the boosted
frame with c�t = �z = 10�x.

(a) (b)

(c)

(d)

FIG. 6. Algorithm comparison for a 3D plasma-wakefield simulation. (a), (b) Snapshot of the Ez field (〈Ez〉 in the case of the averaged
Galilean PSATD) in the laboratory frame, for the small-timestep (c�t = �x) standard Galilean PSATD simulation (a) and large-timestep
(c�t = �z) averaged Galilean PSATD simulation (b) with fixed �z = 6.4�x. The green dots are representative random samples of the
macroparticles in the beam driver. (c), (d) Evolution of the emittance and relative energy spread of the beam, in the laboratory frame.
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during the boosted-frame simulation. Again, the simulation
with the large timestep and the averaged Galilean PSATD
is stable [Fig. 6(b)] and the simulated wakefield is almost
indistinguishable from that produced from the fiducial small-
timestep simulation [Fig. 6(a)]. In addition, Figs. 6(c) and 6(d)
show the evolution of the emittance and relative energy spread
of the driver beam in the laboratory frame, as it undergoes
head erosion and betatron oscillation. This is obtained from
laboratory-frame particle data that is reconstructed on-the-fly
during the boosted-frame simulation. As can be seen, the
evolution of these beam quantities show excellent agreement
between the fiducial small-timestep simulation and the large-
timestep with the averaged Galilean PSATD.

Thus, in the above example, the averaged Galilean PSATD
allowed stable simulations to be run with a large timestep
while preserving the integrity of the physics at stake. We note
that, as a consequence of the large timestep, the simulation
using the averaged Galilean PSATD exhibited a 5× overall
speed-up compared to the small-timestep standard Galilean
PSATD simulation, on the Summit supercomputer.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a modified PIC algorithm that
enables stable boosted-frame simulations of plasma-based
acceleration with a large timestep c�t � �x, where �x rep-
resents the smallest cell size. This was achieved by using a
CFL-free Galilean PSATD solver and by averaging the E and
B fields in time, to inhibit spurious resonances with under-
resolved, aliased electromagnetic modes. We demonstrated
this novel scheme in realistic 2D and 3D plasma-wakefield
simulations.

We note that the proposed algorithm could certainly be
further refined and improved upon in the future. For instance,
although the proposed algorithm strongly reduces the NCI
growth rate for large timesteps, it does not completely elim-
inate it. As a consequence, the NCI at large timesteps could
still be an issue for certain sets of parameters.

In conclusion, this work demonstrates that it is possible to
run boosted-frame simulations with a much larger timestep
than the traditional CFL limit, while still accurately capturing
the physics. This new development enables potential speedups
of an order of magnitude or more, opening up a new area
of investigation within the field of first-principles, Particle-
In-Cell modeling of plasma-wakefield particle accelerators,
whereby the simulation timestep is chosen much more freely
than before.

Although the present work is focused on simulations of
plasma accelerators and on a particular method (the aver-
aged Galilean PSATD), it could have a wider impact. For
instance, even though the algorithm proposed here builds
specifically upon the PSATD framework, the central idea
(namely, averaging the fields in time) is fairly general and
could thus also guide the future development of similar so-
lutions for FDTD-based methods. In addition, beyond the
plasma accelerator community, this work may be of interest
to the modeling of advanced light sources concepts, coherent
synchrotron radiation in particle accelerators, astrophysical
shocks or beam-plasma instabilities of astrophysical relativis-
tic jets, which can also utilize the boosted-frame PIC method

for accurate modeling from first principles. We also envision
that the method that is used in this paper can be employed to
overcome similar timestep limitations in PIC simulations that
do not employ the boosted-frame technique, with impact to a
much wider range of applications.
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APPENDIX A: DERIVATION OF THE AVERAGED FIELDS

Throughout the paper, we use the notation 〈F̂〉n to refer
to the averaged field within the time interval [(n − 1

2 )�t,
(n + 1

2 )�t], defined as

〈F̂〉n = 1

�t

∫ (n+1/2)�t

(n−1/2)�t
F̂ (k, τ )dτ, (A1)

where F̂ = F̂ (k, t ) = ∫
F(x, t )e−ik·xd3x refers to the Fourier

transform of the F(x, t ) field.
In the Galilean coordinates drifting at vgal, the p-order

discretized Maxwell equations transformed to Fourier space
read [18]

(
∂

∂t
− i[k] · vgal

)2

B̂+c2[k]2B̂ = 1

ε0
i[k] × Ĵ , (A2)(

∂

∂t
− i[k] · vgal

)2

Ê + c2[k]2Ê

= −c2

ε0
ρ̂i[k] − 1

ε0

(
∂

∂t
− i[k] · vgal

)
Ĵ , (A3)

where [k] =
√

[k]2 = √
[kx]2 + [ky]2 + [kz]2 and where [ku]

with u = {x, y, z} is the Fourier transform of the p-order dis-
cretized stencil ∇̂u [i.e., such that a p-order Taylor expansion
yields ∇̂uF = ∂uF + O(�up)] [27,28].

As explained in Ref. [16], these equations can be inte-
grated analytically under the assumption that the current Ĵ
is constant over one timestep, and that the fields Ê, B̂, Ĵ ,
and ρ̂ satisfy the conservation equations. More specifically,
assuming that the E and B fields are known at t = (n − 1)�t ,
and under the assumption that Ĵ (k, t ) is constant and equal

to Ĵ n−1/2
(k) over the time interval [(n − 1)�t, n�t], we

can obtain the expressions of Ê (k, t ), B̂(k, t ) as a function
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of Ên−1
, B̂n−1

, Ĵ n−1/2
, ρ̂n−1, ρ̂n:

Ê (k, t ) =
{
Ên−1 − α1

c2[k]2(1 − ν2)
− β1

c2[k]2

}
cos {c[k][t − (n − 1)�t]}eiνc[k][t−(n−1)�t]

+ α1

c2[k]2(1 − ν2)
+ β1

c2[k]2
eiνc[k][t−(n−1)�t]

+ 1

c[k]

[
c2i[k] × B̂n−1 − 1

ε0
Ĵ n−1/2 + iν

α1

c[k](1 − ν2)

]
sin {c[k][t − (n − 1)�t]}eiνc[k][t−(n−1)�t], (A4)

B̂(k, t ) =
{
B̂n−1 − α2

c2[k]2(1 − ν2)

}
cos {c[k][t − (n − 1)�t]}eiνc[k][t−(n−1)�t] + α2

c2[k]2(1 − ν2)

+ 1

c[k]

{
−i[k] × Ên−1 + iν

α2

c[k](1 − ν2)

}
sin {c[k][t − (n − 1)�t]}eiνc[k][t−(n−1)�t], (A5)

where ν = [k] · vgal/c[k] and

α1 = iνc[k]

ε0
Ĵ n−1/2 − c2

ε0

ρ̂n − ρ̂n−1eiνc[k]�t

1 − eiνc[k]�t
i[k], (A6)

β1 = c2

ε0

ρ̂n − ρ̂n−1

1 − eiνc[k]�t
i[k], (A7)

α2 = 1

ε0
i[k] × Ĵ n−1/2

. (A8)

Strictly speaking, these expressions of Ê (k, t ), B̂(k, t ) in Eqs. (A4) and (A5) are only valid for t in the interval [(n −
1)�t, n�t] [because of the assumption Ĵ (k, t ) = Ĵ n−1/2

(k)]. However, we assume that they are also approximately valid
on the interval [(n − 1/2)�t, (n + 1/2)�t] over which the fields are averaged (see Fig. 2). This is valid if Ĵ varies slowly from
one timestep to the next—i.e., if the plasma response is well-resolved in time.

Under these assumptions, we average Eqs. (A4) and (A5) in time as defined in Eq. (A1), and obtain

〈Ê〉n = 1Ê
n−1 − ic2

[k]
[k]

× B̂n−1 +
(

iνc[k]

ε0
A1 + 2

c[k]ε0

)
Ĵ n−1/2 + Cρ (A2 − A1)ρ̂n [k]

[k]
+ Cρ (θ2A1 − A2)ρ̂n−1 [k]

[k]
, (A9)

〈B̂〉n = 1B̂
n−1 + i

c
2

[k]
[k]

× Ên−1 + i[k]

ε0
A1

[k]
[k]

× Ĵ n−1/2
. (A10)

Here again, ν = [k] · vgal/c[k], θ = ei[k]·vgal�t/2, and the
other coefficients are given by

Cρ = ic2[k]

ε0(1 − θ2)
, (A11a)

A1 = 1 − 1 + iν2

c2[k]2(ν2 − 1)
, (A11b)

A2 = 3 − 1

c2[k]2
, (A11c)

1 = θ
(S1 + iνC1) − θ2(S3 + iνC3)

c[k]�t (ν2 − 1)
, (A11d)

2 = θ
(C1 − iνS1) − θ2(C3 − iνS3)

c[k]�t (ν2 − 1)
, (A11e)

3 = iθ (1 − θ2)

c[k]�tν
, (A11f)

with Cm = cos(m c[k] �t/2) and Sm = sin(m c[k] �t/2) for
m = 1, 2, 3.

APPENDIX B: PIC CYCLE OVERVIEW

Figure 2 gives an overview of a key part of the PIC loop
for the averaged Galilean PSATD algorithm. Here we describe
the exact PIC loop in more detail. Assuming that we originally
know the particle positions and momenta xn at pn−1/2 and the
fields En−1 and Bn−1, the loop consists of the following steps:

(1) Deposit the charge and current densities of the parti-
cles onto the spatial grid. In particular, we deposit the charge
density ρn at time t = n�t from the particle positions xn

and the current density Jn−1/2 at time t = (n − 1
2 )�t from

the particle positions xn−1 and xn and the particle velocities
vn−1/2;

(2) Transform all relevant physical quantities from physi-
cal space to Fourier space;

(3) Compute the new electromagnetic fields in Fourier
space Ên

and B̂n
, from the charge and current densities ρ̂n−1

(available from the previous PIC iteration), ρ̂n and Ĵ n−1/2
;

(4) Compute the averaged electromagnetic fields, 〈Ê〉n and
〈B̂〉n;

(5) Transform all relevant physical quantities from Fourier
space back to physical space;
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(6) Gather the averaged electromagnetic fields, in physical
space, from the spatial grid onto the particles;

(7) Push the particles by updating their positions and
momenta based on the current values of the averaged elec-
tromagnetic fields, 〈E〉n and 〈B〉n, whose precise definition is
given in the next section. In particular, the momenta are up-
dated from pn−1/2 to pn+1/2 and the positions are then updated
from xn to xn+1.

APPENDIX C: DERIVATION OF THE DISPERSION
RELATION FOR THE AVERAGED GALILEAN

PSATD ALGORITHM

Here we derive the 2D dispersion relation to study the NCI
induced by a relativistic plasma flowing through a periodic
grid along the z axis with velocity v0 = v0uz, where v0 =
c(1 − 1/γ 2

b )1/2. This is done by combining the discretized
Maxwell equations in the Galilean frame and the discretized
Vlasov equation, and assuming small perturbations for the
electromagnetic fields E, B and the distribution function δ f .
Because the Vlasov equation involves the averaged fields 〈E〉,
〈B〉, we include their expression as a function of the regular
fields E, B in the system of equations. Hence, when expressed
in spectral space, the different equations of the system are as
follows:

(1) the discretized Maxwell equations at n-th timestep in
time-symmetrical form [16]:

θ∗cB̂n − θcB̂n−1 = −tck
ik × (θ∗Ên + θ Ên−1

)

k

+ 2χ ′
4

T̂

ε0ck

k × Ĵ n−1/2
d

k
, (C1)

θ∗Ên − θ Ên−1 = tck
ik × (θ∗cB̂n + θcB̂n−1

)

k

− 2χ4
T̂

ε0ck

[
Ĵ n−1/2

d −
(
k · Ĵ n−1/2

d

)
k

k2

]

− T̂ ik
ε0k2

(θ∗ρ̂n − θρ̂n−1); (C2)

(2) the perturbed Vlasov equation [16]. Note that, here,
we replaced the regular fields Ê, B̂ by the averaged fields
〈Ê〉, 〈B̂〉 to take into account the changes associated with the
averaged Galilean PSATD:

δ f̂ n+1/2(km, p)eikm(v−vgal )�t/2

− f̂ n−1/2(km, p)e−ikm(v−vgal )�t/2

+ q�t Ŝ(km)[〈Ên
(k)〉 + v × 〈B̂n

(k)〉] · ∂ f0

∂ p
= 0 ;

(C3)

(3) the expression of the averaged field for t ∈ [(n −
1/2)�t, (n + 1/2)�t]:

〈B̂n
(k, t )〉 = 1B̂

n−1 + i

c
2

k
k

× Ên−1

+ ik

ε0
A1

k
k

× Ĵ n−1/2
, (C4)

〈Ên
(k, t )〉 = 1Ê

n−1 − ic2
k
k

× B̂n−1

+
(

iνck

ε0
A1 + 2

ckε0

)
Ĵ n−1/2

+ Cρ (A2 − A1)ρ̂n k
k

+ Cρ (θ2A1 − A2)ρ̂n−1 k
k
.

(C5)

Here, T̂ = ∏
i [1 − sin(ki�i/2)] represents a one-pass bi-

nomial smoother, and Ŝ(km) is the particle shape factor, with
km = k + Km (Km = 2π

∑
i uimi/�i) for i = {x, y, z}.

As follows from the discrete continuity equation, the cor-

rected current Ĵ n−1/2
satisfies

Ĵ n−1/2 = Ĵ n−1/2
d −

(
k · Ĵ n−1/2

d

)
k

k2

+ (k · vgal )k
k2

ρ̂n − ρ̂n−1θ2

1 − θ2
. (C6)

As in Ref. [16], we use the following Ansatz for the elec-
tromagnetic modes:

Ên
(k) = Ê (k)e−i(ω−k·vgal )n�t , (C7a)

〈Ên
(k)〉 = 〈Ê (k)〉e−i(ω−k·vgal )n�t , (C7b)

δ f̂ n−1/2(km, p) = δ f̂ (km, p)e−i(ω−k·vgal )(n−1/2)�t , (C7c)

Ĵ n−1/2
d (k) = Ĵ d (k)e−i(ω−k·vgal )(n−1/2)�t , (C7d)

ρ̂n(k) = ρ̂(k)e−i(ω−k·vgal )n�t , (C7e)

and after some amount of algebra, we derive the following
equations for Ĵ d (k) and ρ̂(k) from the Vlasov equation (see
a similar derivation in Ref. [16]):

〈F̂ (k)〉 = 〈Ê (k)〉 + v0 × 〈B̂(k)〉
− [v0 · 〈Ê (k)〉]v0/c2, (C8)

Ĵ d = i
ckε0

T̂

[
ξ1〈F̂〉 + (ξ2 · 〈F̂〉)

v0

c

]
, (C9)

ρ̂ = ikε0

T̂
(ξ3 · 〈F̂〉), (C10)

In addition, by substituting Eqs. (C6) and (C7) into
Eqs. (C1), (C2), and (C4), the problem is reduced to the
following set of equations to be solved:

sωcB̂ = tckcω

k × Ê
k

+ χ ′
4

T̂

ε0ck

ik × Ĵ d

k
, (C11)

sωÊ = −cωtck
kcB̂

k
− isω

T̂ k
ε0k2

ρ̂

− iχ4
T̂

ε0ck

[
Ĵ d − (k · Ĵ d )k

k2

]
, (C12)

θ2c〈B̂〉 = 1cB̂eiω�t + i2
k × Ê

k
eiω�t

+ ickA1T̂ θ

ε0

k × Ĵd

k
e

iω�t
2 , (C13)
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θ2〈Ê〉 = 1Êeiω�t − ic2
k
k

× B̂eiω�t

+ iAν T̂

ckε0
θe

iω�t
2

[
Ĵ d − (k · Ĵ d )k

k2

]

+ ikρ̂T̂

ε0k2

c2k2A2(θ2 − eiω�t )

(1 − θ2)

+ c2k2A2θ
2(c2k2A1 − νAν )(eiω�t − 1)

(1 − θ2)
. (C14)

Here, Aν = νc2k2A1 − i2, and the ξ1, ξ2,3 coefficients
represent the plasma response (for more details see
Appendix A in Ref. [16]):

ξ1 = T̂ ω2
p

γ0ck

∑
m

Ŝ2(km)

s′
ω

, (C15)

ξ2 = T̂ ω2
p

γ0k

∑
m

cω′ Ŝ2(km)

s2
ω′

km, (C16)

ξ3 = T̂ ω2
p

γ0k

∑
m

Ŝ2(km)

s2
ω′

km, (C17)

where

cω′ = cos

[
ω − k · v0 − Km(v0 − vgal )

2�t−1

]
, (C18)

sω′ = 2

�t
sin

[
ω − k · v0 − Km(v0 − vgal )

2�t−1

]
. (C19)

By projecting Eqs. (C12) and (C14) along y and Eqs. (C9),
(C11), and (C13) along x and z, the final system of equations
can be written in the matrix form

MavU = 0, (C20)

where Mav is the block matrix

Mav =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−θ2 0 0
M 0 −θ2 0 N

0 0 −θ2

0 0 0 1 0 0
0 0 0 P 0 1 0
0 0 0 0 0 1

0 0 0
R 0 0 0 Q

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C21)

and U is the vector

U =
(

cB̂y, Êz, Êx, c〈B̂y〉, 〈Êz〉, 〈Êx〉, Ĵz

ckε0
,
Ĵx

ckε0
,

ρ̂

kε0

)T

.

(C22)

The resulting dispersion relation is given by the determi-
nant equation

det Mav = 0. (C23)
Here, the individual matrices defining Mav read

M = eω

⎡
⎣ 1 −i2kxn i2kzn

−i2kxn 1 0
i2kzn 0 1

⎤
⎦, (C24a)

N = θ
√

eω T̂

⎡
⎣ −iA1kxn iA1kzn 0

ik2
xnAν −ikxnkznAν ikznrων

−ikxnkznAν ik2
znAν ikxnrων

⎤
⎦,

(C24b)

P = 1

T̂

⎡
⎣iβ2

0ξ2x −i
(
1 − β2

0

)
(β0ξ2z + ξ1) −iβ0ξ2x

iβ0ξ1 0 −iξ1

iβ0ξ3x −i
(
1 − β2

0

)
ξ3z −iξ3x

⎤
⎦,

(C24c)

R =
⎡
⎣ sω cωkxntck −cωkzntck

cωkxntck sω 0
−cωkzntck 0 sω

⎤
⎦, (C24d)

Q = T̂

⎡
⎣ ikxnχ

′
4 −ikznχ

′
4 0

ik2
xnχ4 −ikxnkznχ4 ikznsω

−ikxnkznχ4 ik2
znχ4 ikxnsω

⎤
⎦, (C24e)

with kxn = kx/k, kzn = kz/k, β0 = v0/c, cω = cos(ω�t/2),
sω = sin(ω�t/2), and

rων = θ∗
√

eω

A2(θ2 − eiω�t ) + θ2(A1 − νAν )(eiω�t − 1)

(1 − θ2)
.

(C25)

Even though the matrix Mav has multiple zeros entries, it is
difficult to find an analytical solution of Eq. (C23) for any pair
(kx, kz ). To solve it numerically, we used the secant method
as a root-finding algorithm, which allowed us to calculate the
NCI growth rates across a wide range of frequencies.

We remark that in the case of the standard Galilean PSATD
scheme, Mav reduces to

Mav =
[

R Q
P I

]
, (C26)

which is equivalent to Eq. (19) of Ref. [16].
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