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Semicomputational calculation of Bragg shift in stratified materials
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The fiber Bragg grating (FBG) may be viewed as a one dimensional photonic band-gap crystal by virtue
of the periodic spatial perturbation imposed on the fiber core dielectric material. Similar to media supporting
Bloch waves, the engraved weak index modulation, presenting a periodic “potential” to an incoming guided
mode photon of the fiber, yields useful spectral properties that have been the basis for sensing applications and
emerging quantum squeezing and solitons. The response of an FBG sensor to arbitrary external stimuli represents
a multiphysics problem without a known analytical solution despite the growing use of FBGs in classical and
quantum sensing and metrology. Here, we study this problem by first presenting a solid mechanics model for the
thermal and elastic states of a stratified material. The model considers an embedded optical material domain that
represents the Bragg grating, here in the form of an FBG. Using the output of this model, we then compute the
optical modes and their temperature- and stress-induced behavior. The developed model is applicable to media
of arbitrary shape and composition, including soft matter and materials with nonlinear elasticity and geometric
nonlinearity. Finally, we employ the computed surface stress and temperature distributions along the grating
to analytically calculate the Bragg shift, which is found to be in reasonable agreement with our experimental
measurements.
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I. INTRODUCTION

The realization that the Bragg diffraction of radiation,
first observed in crystalline materials, may be mimicked in
a material in which the index of refraction n can be made
periodic, has enabled many forms of sensing applications. For
photons of wavelength λ, propagating in an otherwise uniform
medium, a modulation of n at a suitable spatial frequency �,
analogous to the specific arrangement of atoms in a crystal,
can induce an interference pattern with useful spectral prop-
erties. If the optical medium is the core (n = nC) of an optical
fiber, then the system is referred to as a fiber Bragg grating
(FBG). By design, the response of a general Bragg grating
to a broadband input radiation is a complete reflection in a
spectral band (stopband), the width of which is controlled
by �, the number of periods m = 0, 1, 2, . . . , N , and index
variation with coordinate z along the grating between low
and high values nL � nC (z) � nH . The stopband is peaked at
the Bragg wavelength λB, the shift of which, in response to
external stimuli, furnishes the sensor transduction mechanism.
This same Bragg grating transduction mechanism is extended
to sensing based on an FBG.

The FBGs, while actively receiving new theoretical
prospects [1,2] and opportunities for applications [3–7], have

*ben.frey@stthomas.edu
†psnyder@illinois.edu
‡ziockk@ornl.gov
§passianan@ornl.gov

already demonstrated their potential as sensitive optical de-
vices capable of measuring environmental parameters such
as stress [8,9], strain [10], temperature [11], humidity [12],
pressure [13], etc. [14]. Therefore, FBG-based sensors have
been used in numerous practical applications, such as struc-
tural health monitoring [15,16], laminate crack propagation
analysis [17], biomedical applications [18], and intrusion
detection [19].

Due to the sensitivity of the FBG parameters to external
stimuli, each of these applications presents a unique set of
thermo-optomechanical material considerations when design-
ing for an appropriate sensor implementation. These unique
material considerations necessitate multiparameter simula-
tions based on multiply coupled partial differential equations
(PDEs), as noted in Fig. 1. Furthermore, due to a lack of
symmetries, and the presence of symmetry-breaking stress
and deformation, these simulations often require a full account
of the spatial dimensions. In addition, for emerging studies
involving single photons or photon correlations, one may have
to invoke quantum optics for proper FBG response. More
specifically, to stimulate further interest, the potential rele-
vance of FBGs in quantum optics and quantum sensing may
be exemplified via recent work on quantum applications such
as photon trapping within an FBG [20], or quantum soliton
propagation in an FBG [21], and more recently frequency
generation using FBG filters [22].

Despite the above applications, a simulator capable of col-
lectively accounting for the effects of arbitrary stress, strain,
temperature, and photonic configurations on the response
of a general optical Bragg grating sensor is currently not
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v · ∇T − ∇ · (kΩ∇T − Φr) /ρΩCΩ + Tt = i Qi ΩC , · · · , Ω∞
∇ · σ + ρΩf = ρΩutt, ΩC , · · · , Ω∞

σ = C : ε, 2ε = ∇u + (∇u)T ΩC , · · · , Ω∞
∇ × ∇ × E = k0 ΩE ΩC , ΩCL, ΩJ

n × (E+ − E−) = 0 ∂ΩC,CL, ∂ΩCL,J

n × H = 0 ∂ΩJ,H

−n · (kΩ∇T ) = 0, σ · ey = f ∂ΩH,∞
u− = u+, T− = T+ ∂ΩC,CL, · · · , ∂ΩH,∞

u = 0 ∂Ω∞

FIG. 1. A segment of the proposed computational domain, sub-
domains �, and boundaries ∂� for modeling an arbitrarily embedded
FBG in a stratified medium. The subscripts on � and ∂� are defined
as C (core), CL (cladding), J (jacket), H (host), and ∞ (infinite
domain). When solving the optical problem, subdomain �J becomes
a perfectly matched layer (�PML). The general forms of the PDEs to
be solved and the assumed boundary conditions are annotated, where
the dependent variables T , u, and E, are temperature, displacement
field, and electric field, respectively, while H, �r, and v are magnetic
field, radiative heat flux, and the velocity vector of the subdomain
translational motion, respectively. The terms Qi, i = 1, 2, . . . specify
various sources including thermoelastic effect.

available. Whereas, decoupled mechanical, thermal, and pho-
tonic subproblems may each be treated to various degrees
of satisfaction, solving the coupled problem poses signifi-
cant scale-related challenges hampering the full exploitation
of FBG sensing abilities [23]. For λ = 1.55 μm, to achieve
sufficient sensitivity (e.g., required resolution for registering a
shift in λB), typically � ∝ 0.5 μm is used. For a 1-mm-long
sensor, a grating will have about 2000 periods (with each
period corresponding to a transition from a tH thick layer
of nH to a tL thick layer with nL), making modeling within
the wave propagation (or full-wave) regime challenging. This
is valid in both transient and harmonic regimes. Numerical
techniques such as the finite element method (FEM) and the
finite difference time domain (FDTD) method are fully capa-
ble of accurately simulating field properties over a few grating
periods for moderate processing costs [24]. However, treat-
ing thousands of periods under ambient degrees of freedom
remains a challenge. Analysis based on mode expansion and
coupled-mode theories offer only limited capabilities for pre-
dicting the properties of the relevant modes for FBG use cases
in which the grating domain is severely warped. Limited semi-
computational methods have been reported for determining
curvature-induced and spirally coupled modes of cylindrical
domains with uniform (no core modulation) n, typically in an
attempt to predict curvature-induced mode field distributions
and confinement [25]. However, these approaches consider

only either the waveguide geometric effects or the mechanical
effects, but not both. Other approaches for computing light
propagation in complex optical systems include modeling
within geometric optics using advanced (i.e., accounting for
phase modulations and interference) ray tracing algorithms,
which generally offers an advantage for large length-scale
simulations [26], even for cases involving interference, which
requires ray phase information. However, as will be discussed,
Bragg shifts may be calculated only for specific waveguide
geometries.

In an attempt to develop a simulation environment for
FBGs, Pereira et al. [27] reported a PYTHON program
(FBG_SiMul V1.0) for calculating the spectral shift of an
FBG that can accommodate multiple serial gratings. This
simulator is based on optical coupled mode theory, allowing
for the study of transmittance and reflectance through a modal
transfer matrix method implementation. Here, we extend this
simulator to allow cases in which temperature T can vary.
However, the underlying equations currently only consider the
temperature of the grating medium and as such one has to
supply a T -dependent stress computation to account for realis-
tic birefringence and mode shift contribution. Nevertheless, as
shown below, the extended simulator version (FBG-SimPlus
V1.0) [28] reported here, emulates Bragg shift dependence on
T reasonably well without an additional T -dependent stress
computation, for small T changes. The new program is made
available at a public code repository for use in cases where the
contribution of small thermal variations to strain, stress, and
optical properties is important when simulating the response
of an FBG.

Our presentation is organized as follows. Section II
presents the proposed model geometry and analytical formu-
lation of the equations to be solved. Here, the various optical,
thermal, and mechanical effects are considered in the calcu-
lation of the Bragg shift. First, we computationally obtain the
temperature and stress distribution in an arbitrary region of
an embedding medium along the surfaces of an embedded
grating. The results are then used in a modified analytical
formulation of FBG spectral shift. In doing so, we extend
the simulation platform of Pereira et al. Two scenarios will
generate output, referred to as “computational results” and
“emulated results.” In the former, T is obtained by solving the
diffusion equation within the FE model, whereas in the latter,
T is assumed fixed in the FE model, that is, no heat equation
solved, but thermal effects are emulated within the FBG sim-
ulator. In Sec. III, we present our experimental measurements
using an FBG under the conditions of stress and temperature.
The computational results are compared with experimental
data using a single-mode step-index FBG sensor. Section IV
provides our concluding remarks. Due to the multiphysics
nature of the problem, and for the sake of completeness, we
maintain a slightly detailed presentation.

II. BRAGG SHIFT CALCULATION

A. Model geometry

We are concerned with thermophysical processes that
change the optical, mechanical, and geometric properties of
the FBG system; in particular, in the core-cladding region
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of the fiber. To set up our model, we propose the computa-
tional domain shown in Fig. 1, and review the general forms
of the relevant PDEs, as annotated. The solution outputs of
this model are to provide stress, strain, and initial tempera-
ture distributions. More specifically, consider an optical fiber
embedded in an arbitrary host or matrix medium, as shown
in Fig. 1. In what follows, for tensor quantities, we will
use the permutations of the spatial coordinates labeled as
i, j ∈ {1, 2, 3}, or ∈ {x, y, z}. To model the proper material
stratification, the computational domain � is written as the
following union of subdomains:

� � �C ∪ �CL ∪ �J ∪ �H ∪ �∞,

making up (1) three concentric cylindrical regions of radii RC,

RCL, and RJ dedicated to the core (�C), the cladding (�CL),
and the jacket (�J ), respectively; (2) a domain of an arbitrary
shape dedicated to the host (�H ); and (3) an outer domain
(�∞) with proper scaling properties to allow simulation of
an infinite domain. Here, the union of the subdomains above
is assumed to imply perfect bonding of the two materials at
each side of any given interface ∂�, an assumption that may
be subject to further discussion for highly dissimilar materials
[29], as noted below. The undeformed cylindrical axis coin-
cides with the z axis, as indicated in Fig. 1. In the present
simulation, we assume RC = 5 μm for a typical single-mode
fiber (SMF) core, RCL = 62.5 μm, and RJ = 75 μm, while all
other parameters will be defined in the following sections.

Having geometrically defined the computational domain
�, we now aim to model the processes that may shift the
wavelength at which the FBG reflects. These effects change
the spectral shape of the reflection, the peak of which is here
referred to as the Bragg shift λB. To determine the physical
changes of the FBG, we need to calculate the stress dis-
tribution for arbitrary external stimuli, as described by the
subdomain PDEs and proper conditions applied to ith bound-
ary ∂�i, defined as the intersection in Fig. 1:

∂�i � �i ∩ �i+1.

No specific morphological constraints are assumed for the
interfaces ∂�i which are taken to be smooth. Roughness may,
however, be modeled [30], e.g., by topographically approxi-
mating a boundary as a surface of a given fractal dimension
and spatial frequency.

B. Computational solid mechanics

To obtain the stress, strain, and the deformation states of
the modeled material system of Fig. 1, we aim to describe the
system within the framework of continuum mechanics. The
resulting PDEs are then solved numerically using FEM. We
begin by considering the general deformation state of the em-
bedded FBG material system. Denoting the displacement field
by u(x, y, z) = (u, v,w), the (linear) strain tensor is written as
2ε(x, y, z) = ∇u + (∇u)T , which is valid for small displace-
ments but is modified for large displacements (as geometric
nonlinearity grows). The distribution of stress σ on the fiber
core surface can be obtained from the deformation induced by
an arbitrary applied force f = f (r) somewhere in the host,
representing external stimuli of an FBG sensor. Within the
linear elasticity regime, in a general basis ek (k = 1, 2, 3),

TABLE I. Model subdomain material properties under the as-
sumption of no external forces, i.e., f = 0 and at initial (room)
temperatures T = Ti.

Subdomain Material ρ [kg/m3] E [GPa] ν

�C Ge-doped SiO2 2250 75 0.20
�CL SiO2 2203 70 0.16
�J Acrylate 1190 3.2 0.35
�H Si 2329 170 0.28
�∞ Matched Matched Matched Matched

with e j · ei = δi
j , the force per deformed area or stress of the

system given by the (Cauchy) stress tensor σi jeie j and (elastic)
strain tensor εkl ekel are connected via the fourth-order stiff-
ness tensor Ci jkl eie jekel of the material of a given domain, and
one writes σ = C : ε, where the double contraction operator
(:) denotes summing over two indices, here k and l , thus

(C : ε)i j =
∑

k

∑
l

Ci jklεkl .

The components of C depend on the specific materials mod-
eled for each subdomain in Fig. 1.

In the present model, the subdomains �C,...,∞ are occupied
according to Table I, where the outer layers, subdomains �∞,
emulating infinite domain boundary conditions, are composed
of materials matching the corresponding materials making
up the adjacent subdomains. The constitutive tensor C =
C(E�, ν�) = C�, with E�, and ν� being Young’s modulus
and the Poisson ratio of each subdomain, respectively, take
a simpler (isotropic) form for material choices considered
here. The stress σ is here obtained by first solving for the
unknown functions u using the (Navier) equation of motion:
∇ · σ + ρ� f = ρ�utt over each subdomain � with mass den-
sity ρ�, as shown in Fig. 1. The densities ρ�, and other
properties considered here, are summarized in Table I.

We choose the upper boundaries for application of a
surface force f = σ · n, which can be implemented to be sta-
tionary or transient, but otherwise arbitrary. Here, a stationary
force f = σ · (−ey), applied to the outer boundary of the host
∂�H,∞, suffices (see Fig. 1). Therefore, in our sensing use
case, stationary fields are sought, consequently, utt = 0. In
solving for u, we apply the boundary condition u = 0 to the
outer surfaces of the infinite element domains �∞ to help
with the solution stability by suppressing rigid body motion.
All other interfaces ∂� satisfy continuity in displacement u,

as annotated in Fig. 1. Depending on how dissimilar the two
materials are, the traction can also be continuous [29].

How the external stimuli, here emulated as an applied
force, derives displacement and stress within the subdo-
mains, can be described using the weak formulation (Galerkin
method) of the PDEs, which is implemented in the FEM rather
than the continuous operator (i.e., strong) form above and
annotated in Fig. 1. In the subdomains, we have f = 0, while
on the y > 0 segment of ∂�H,∞, we use f �= 0. In the weak
formulation, the Navier equation is multiplied with a weight
(or test) function and integrated over �, which after invok-
ing Green’s identity (or divergence theorem, also equivalent
to integration by parts), connects the subdomains with the
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FIG. 2. (a) Meshing of the subdomains for the computational
analysis of the mechanical and thermal states of the stratified
medium. The mesh shown hides specific outer subdomains for dis-
play of inner subdomains and boundary meshing patterns. For the
subdomains with a free triangular mesh, a maximum element size of
70 μm and a minimum mesh element size of 12.6 μm were employed
for subdomains �J , �H , and �∞. A denser mesh was employed
for providing more resolute FEM analysis for �C and �CL; here a
free triangular mesh of 38.5 μm maximum element size and 2.8 μm
minimum element size were used. All boundaries were meshed with
a swept distributed pattern of spacing 1 μm. (b) Magnified core and
cladding mesh.

boundaries as∫
�

σ : (∇ṽ) d� =
∫

∂�H,∞
f · ṽ dS,

where ṽ is the test function of the displacement vector. To
properly resolve the features, a L = 200-μm-long segment of
the subdomains was meshed as shown in Fig. 2. The results
are shown in Fig. 3. To assess the mechanical response of
the subdomains, solutions were also obtained for the con-
figurations listed in Table II. Since FBG-SimPlus simulates

FIG. 3. Computed stress distribution in a z = L = 200 μm seg-
ment of an embedded FBG sensor for materials listed in Table I.
An arbitrary deformation is here simulated by the application of
a boundary force of fy = −10 GN m−2 on the y > 0 segment of
∂�H,∞. To mechanically simulate the host bulk, external (infinite)
subdomains �∞ with suitable scaling properties are considered. The
outmost boundaries are constrained to suppress irrelevant (rigid)
degrees of freedom with all other boundaries conditioned to deform
freely.

TABLE II. Computational domain configurations. Data is ex-
tracted from the 3D domains to 1D along path S.

Setup Subdomains Path S on

1 �∞, �H , �J , �CL , �C Core
2 �∞, �H , �CL , �C Core
3 �∞, �H , �J , �CL Cladding
4 �∞, �H , Host

one-dimensional (1D) solutions, using our three-dimensional
(3D) stress and strain results, corresponding to each of the
listed configurations, necessitates the definition of a path S
along which data can be extracted one dimensionally. The
results are displayed in Fig. 4. The path S on the fiber is
exemplified in Fig. 5, where the solutions are extracted (in-
terpolated between the pertinent mesh points). This 1D output
data will be used as input data into the FBG simulator.

At a point on the surface, stress at a surface point may be
decomposed into normal components (perpendicular to the
surface corresponding to compression or tension), and into
components parallel to the surface (shear stress). Here, σii

FIG. 4. Computed stress and strain as functions of material prop-
erties and temperature extracted from the 3D solutions along path S
defined on subdomains listed in Table II. The principal stress com-
ponent (a), (c) and strain component (b) exhibit significant variations
as a function of core and cladding materials (a), (b) and as a function
of temperature (c).
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FIG. 5. Computed total displacement visualized for the fiber core
only. The displacement has been scaled by a factor of 20 to visualize
the core curvature. The embedded fiber has a length of 200 μm. FBG
simulator input data is extracted along a path S on the core, shown
here arbitrarily.

give the normal stress, while the off-diagonal components
(σi j, i �= j) describe the shear forces. As can be seen in
Fig. 4, positive (negative) normal stress corresponds to ten-
sion (compression). The displayed principal stresses σi, or the
eigenvalues of the stress tensor (i.e., σ = σieiei), indicate that,
in transferring stress from the host to the core of the fiber,
significant differences can arise as a result of different material
type and thickness of the cladding (and jacket or other FBG
layers). From the above relations, the strain can be computed
which in turn can be used to solve for the stress field. From the
real part of the computed displacement field u components,
we obtain a total deformation (u2

r + v2
r + w2

r )1/2, as visualized
in Fig. 5.

C. Strain contributions

For an accurate model, the various contributions to the
strain need to be identified and accounted for. These con-
tributions can lead to residual stresses from the embedding
process (e.g., if the fiber is glued to a surface or plotted in
a matrix), stresses due to thermal changes, and stresses due
to external forces applied to the combined structure. Other
processes contributing to inelastic strain such as plasticity,
viscoplasticity, and creep (cold flow) deformation may have
to be considered, e.g., for harsh environment applications.
Similarly, contribution to strain from electrostrictive effect,
hygroscopic swelling, and radiation damage can become sig-
nificant in specific applications.

In an otherwise undisturbed FBG encased in an outer layer,
for example via immersion into a polymer or liquid mix fol-
lowed by drying or curing, significant initial (inelastic) strain
εi can develop, thus contributing further to total strain. From
the detection point of view, only sensing signals generated
by transformation of the medium with reference to this initial
strain state is of interest. Inclusion of an initial stress contri-
bution changes the generalized Hooke’s law to σ − σi = C :
(ε − εi ). By assuming a reasonable form of εi, for example,
by a series of before and after embedding measurements, we
may model the effects of drying or curing a matrix medium.

With the above description and formulation of the mechan-
ical model, we now seek to determine the shift in the guided
mode field distribution and further in the wavelength δλB.

D. Optical modeling consideration

1. Subdomain dielectric properties

Optically, the fiber comprises a core of index nC , a cladding
of index nCL, and a multilayer protective layer or jacket

TABLE III. Model subdomain optical properties.

Subdomain Material n|λ=1550 nm ξ (×10−6) (K−1)

�C Ge-doped SiO2 1.4457 10.5
�CL SiO2 1.4378 8.6
�J Acrylate 1.5
�H Si 3.48
�∞ Matched Matched Matched

(typically including an inner rubbery layer surrounded by
a more rigid layer such as polyimide or acrylate) of index
nJ . These make up the first three computational subdomains,
over which the fields are sought. For clarity, we first briefly
describe the optical properties of the involved materials in
terms of the dielectric tensor ε, generally defined via

D(r, t ) = ε0

∫∫
ε(r − r′, t − t ′)E(r′, t ′)d3r′dt ′,

where D (E ) is the electric displacement (field). This general
definition is used here to draw attention to the possibility of
nonlocal effects. For example, in plasmonics and nanopho-
tonics, nonlocal dielectric functions are sometimes necessary
to account for spatial dispersion. In the presented model, for
the specific class of materials, considered relevant to FBG
sensing, the spatial dispersion is approximately negligible,
i.e., a local dielectric function is assumed. Furthermore, in
the spectral ranges of interest, the temporal dispersion is
also negligible. Thus, in Fourier space ε(k, ω) ≈ ε, for the
momentum k and frequency ω ranges considered. Further,
the dielectric function, being a second-rank tensor, is written
as Di = εi jE j, i, j = 1, 2, 3, which will be quantified in the
section below when discussing stress-induced mode shift. The
specific optical properties used for each subdomain � in our
simulations are given in Table III.

In a closing remark, we also note that often the specific
index modulation profile may not be known. If the refrac-
tive index modulation spatial dependence n(x, y, z) = √

ε is
known or can be measured, further possibilities may be ex-
plored. For 1D field propagation (in the z direction), ∇zE −
με(z)Ett = 0, which may be a reasonable approximation for
an SMF, the analytical expression ε(z) = n̄2 + Z (z), where n̄
is the average index, and Z is a periodic function in z, may
be used in the computational domain, or be Fourier expanded
and used in coupled-mode calculations.

2. Computational ray tracing

As noted above, the large ratio N�/λ creates a modeling
challenge for effective computation of field propagation in
arbitrarily warped grating lines. To assess suitable approaches
to the optical modeling in �C, �CL, and �J subdomains, it is
worth considering ray tracing using geometric optics, which
offers an advantage for large length-scale simulations, even in
the case of a Bragg grating. Though in general, ray tracing
and geometric optics ignore the phase evolution of the field,
in a more advanced calculation, the time t and position x
variation of the optical field E associated with each ray can
indeed be calculated. Therefore, the phase of a ray can be
accounted for (along with the ray intensity, polarization, and
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FIG. 6. Computed Bragg spectral properties using ray tracing.
Optical properties used are listed in Table III.

path length) and employed to determine various interference
patterns such as those arising in an interferometer or from
interference between the reflected waves at the interfaces of
the FBG.

The validity of ray tracing hinges upon the waveguide di-
ameter (2RC) satisfying RC � λ, which is clearly not satisfied
in a SMF, where RC ∼ λ. Additionally, incorporation of the
spatial modulation of the dielectric function in an FBG with
arbitrarily deformed cross-sectional geometry is not trivial. In
fact, it is quite feasible to develop a 3D ray tracing model
that yields the spectral response of a Bragg grating built upon
an optical medium (of proper waveguide size compared to
λ) by lumping N (∼103) Fresnel reflections at the boundaries
of simple modulation profiles (Cartesian high-low transitions
similar to those developed for optical filter design) into a
single boundary. For fields of vacuum wavelength λ to re-
flect and interfere constructively, the optical thickness of the
layers nHtH and nLtL are constrained to λ/4 to yield useful
photonic bandwidth, �λ, for practical sensing [31]. However,
accounting for nonuniform axial and radial displacement that,
for example, warp the grating grooves is not amenable to
modeling with ray tracing. For slow curvature or straight
waveguides, the approach is particularly useful for FBG de-
sign purposes. Such designs often consider the FWHM of
the signal, and/or how �n = nH − nL may vary with the
number of grooves as a merit. Figure 6 shows the result of
simulating the Bragg spectral properties using ray tracing in
a multimode fiber medium (with RC � λ) containing a Bragg
grating region made up of N = 2000 Fresnel transitions. As

FIG. 7. Curvature-induced redistribution of the z component of
the first mode field Ez in a SMF. Here, a radius of curvature of
ρ = 200 mm essentially yields the same core confinement as an
undeformed fiber. Optical properties used are listed in Table III,
and T = Ti = 293 K. The radius of curvature of ρ = 5.84 mm was
selected for its correspondence to the max deformation visualized in
Fig. 5.

can be seen, the FWHM increases with �n and decreases
with N . Here, computational ray tracing [32] was employed
to gain insight and validate the predicted shift from the FBG
simulator.

3. Curvature-induced mode shift

When the optical subdomains (�C, �CL, and �J ) deform,
two effects are to be considered: first, a purely geometric
effect in which the optical properties of the deformed material
is assumed unchanged; and second, a mechanical modification
of the optical properties of the deformed waveguide. These ef-
fects occur regardless of whether the waveguide hosts a Bragg
domain or not. With reference to Fig. 7, scattering losses
associated with purely geometric effects on the guided mode
may be studied. Prior to the computational determination of
the deformed fiber eigenmodes, it is illuminating to point
out that the radial and azimuthal wave-vector components in
the bent fiber can be approximated in terms of the curvature
parameters [25]. Writing the bent eigenmode u in the form

u(x, y, g, t ) = pm(x, y)ei(ωt−βmg),

where pm is the mth mode profile, and g and βm depend on the
deformation of the fiber. For an undeformed fiber, g = z, and
the propagation constant βm = k0neff,m, expressed usually in
terms of an effective index neff,m, while for a deformed fiber
with a simple curvature defined by the radius ρ, g = ρ0ϕ with
ρ0 denoting the average mode radius (not at the center of the
core), as indicated in Fig. 7. Thus, the eigenvalues βm change
to βmρ0 leading to new values for neff .
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To determine the bending-induced optical mode distur-
bance, we compute the electric field of a SMF by solving
the field eigenvalue equation ∇ × ∇ × E = k2

0ε�E, where
k0 = 2π/λ, noting that an effective mode index (defined as
the ratio of the wave number and the free space wave number),

neff = k/k0 < n� = nC = nGeSiO2 = 1.4457,

is assumed to allow a propagating mode confined to �C . To
compute the eigenmodes, we here consider an axisymmetric
2D computational domain corresponding to a cross section of
the model in Fig. 7 or in Fig. 3, i.e., with a unit normal z.
Here, a perfect magnetic conductor boundary condition, i.e.,
n × H = 0, is imposed on ∂�CL,J to emulate the extent of
the optically conductive regions (see Fig. 1). The eigenvalue
equation is solved for �C and �CL using a maximum mesh
element size of 14 μm and a minimum element size of 52 nm.
For λ = 1550 nm, primarily single modes are allowed at an
effective index of neff = 1.4444. For T = Ti, the results are
shown in Fig. 7 for a single mode. Higher modes that can
be excited for larger waveguide diameters (e.g., in multimode
fiber) exhibit similar shifts with reduced core confinement
(coupling of the light into the cladding). The solutions provide
insight into the degree of mode shifts, albeit direct inclusion of
a deformable Bragg structure is not feasible in the 2D model
and is nontrivial in 3D. Furthermore, this formulation does not
include photoelastic contribution to the mode properties, that
is, it does not account for the stress-induced modification of
the core refractive index.

E. Photoelastic contribution

Any induced stress σkl (strain εkl ) alters the indices of re-
fraction �ni j of the subdomain materials due to changes in the
material density and polarizability. The resulting photoelas-
ticity (or piezo-optic effect), is expressed via the stress-optic
qi jkl (also known as the piezo-optic πi jkl ) tensor. Indices of
refraction may also be related to strain through the strain-optic
(also known as the elasto-optic pi jkl ) tensor. For the optically
most relevant material domains (�C , �CL) with unstrained
index n� at fixed T = Ti, an induced stress changes the index
as

�ni j = ni j − n�Ii j = qi jklσkl , (1)

where I is the identity tensor. We write the index variation for
the fiber under stress as

�n(σ) =
⎛
⎝�n1

�n2

�n3

⎞
⎠ =

⎛
⎝q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞
⎠

⎛
⎝σ1

σ2

σ3

⎞
⎠, (2)

where the coefficients qi j with i, j = 1, 2, 3 or = x, y, z [note
q44 = (q11 − q12)/2; see Eq. (A1)], characterize the connec-
tion between the principal refractive indices and stress. Via
the stress and strain relationship, �ni j may also be expressed
in terms of strain. In the case of an isotropic material, the
elasto-optic tensor may be expressed as in Eq. (A1). All
elasto-optic coefficients pi j presented are dimensionless. In
terms of strains �n(ε)|i = pi jε j . Assuming an initially unde-
formed medium, where the core and cladding materials are
optically isotropic, only two components are unique. Then
numerically, we can use the photoelasticity effect investigated

FIG. 8. Meshing of the subdomains for the computational anal-
ysis of the optical states of the stratified medium. The mesh shown
corresponds to �C and �CL , indicated respectively by the inner and
outer blue circles (a). The core and cladding are shown (a), with
a mapped maximum mesh element size of 14 μm and minimum
element size of 52 nm. A close-up of the free tetrahedral mesh that
composes a small segment of the core center (b) is also visualized
with a maximum mesh element size of 7 μm and a minimum element
size of 14 nm.

by Erba and Dovesi [33] and Detraux and Gonze [34] with
values reported in terms of (Pockels’) tensor components pi j ,
which can be expressed in terms of the parallel and perpendic-
ular changes of the index of refraction with stress Q‖ and Q⊥,
respectively. Taking the core to be α quartz, then p11 = 0.13
and p12 = 0.28 as reported by Davis and Hayden [35] and
Bach and Neuroth [36], we obtain

Q‖ = −n3
�

2
q11

= −
(

n3
�

2E�

)
(p11 − 2ν� p12) = −0.65 B,

Q⊥ = −n3
�

2
q12

=
(

n3
�

2E�

)
[−ν� p11 + (1 − ν�)p12] = −4.2 B,

where the units are given in Brewster (1 B = 10−12 Pa−1).
Note that the reported values are for measurements and
calculations at specific wavelengths assumed, and slight spec-
tral variations are reported for these values. We also note
that q11 = q22 = q33 while q12 = q21 = q13 = q31 = q23 =
q32. With computed σ, we can thus map the spatial variations
of �n. To this end, to solve the Navier and stress-strain equa-
tions to obtain the shift �n, and the eigenvalue equation for
the electric field to obtain the guided mode, we consider a long
fiber, and to reduce the computational burden, we assume that
strain components perpendicular to the crosssectional plane
(e1, e2) are negligible, in which case ε13 = ε23 = ε33 ≈ 0 (i.e.,
plane strain). Here, care must be applied for the meshing
when considering a symmetrically embedded fiber under the
condition of no force but elevated T . To avoid accumulation of
numerical error which can show up as changes in �ni, a highly
symmetric meshing must be invoked, as shown in Fig. 8.

For the applied boundary force fy = −10 [GN m−2] (as
in Fig. 9), the results are shown in columns (c) and (d) of
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FIG. 9. The variation of fiber core principal stress as a function of
cladding material and thickness (a) and temperature (b). An arbitrary
deformation is here simulated by the application of a boundary force
of fy = −10 (GN m−2) (top), and elevated temperature with no
applied force (bottom).

Fig. 10, where significant variations in the components of
�n are observed across �C and �CL. The induced stress and
the consequent index variations shown in Fig. 10 cause a
variation in the guided mode property. We then solve for the
field eigenmode to determine the guided mode properties. The
results are shown in Fig. 11, where a significant mode field
redistribution is observed. Such modal changes in the grating
region consistent with the refractive index variation contribute
to the sensor output change.

An effective elasto-optic coefficient may be developed for
a homogeneous and isotropic strain [37]:

pe = (n2/2)[p12 − ν(p11 + p12)]. (3)

Thus, for a strain-induced Bragg shift, where ε̄s indicates the
true strain averaged along the finite path S as depicted in
Fig. 5,

�λ
Ti
B (ε) = λB(1 − pe)ε̄s. (4)

F. Temperature contribution

1. Thermoelastic effect

To incorporate the contributions to λB from thermoelas-
tic [38] effects, i.e., temperature-driven stresses, and from
thermo-optic effects, i.e., temperature induced changes in nC

and nCL, we first note the inelastic contribution of tempera-
ture εT to the total strain εt = ε + εT . For T �= T0, generally
the layers in Fig. 1 respond by changing their volumes, and
since FBG sensors can often be physically constrained due

FIG. 10. Refractive index components resulting from induced
stress due to thermoelastic [columns (a) and (b)], and elastic
[columns (c) and (d)] contributions.

to embedding or attachment, significant stresses can develop
even for moderate �T . The thermal strain εT , generating
stress-free deformations, accounts for the volume changes.
To account for the temperature changes, we note that given
the diameter of typical SMFs (∼10 μm), the cross-sectional
thermal transport can occur at times t < 1 μs so that in some
applications, one may safely assume a uniform cross-sectional
temperature. Nevertheless, in fast thermal cycling, transient
effects can be significant, as may be shown by solving the
heat diffusion equation. For nonuniform heating, neglecting
heat flux by radiation, �r (non-negligible at high T ), in Fig. 1,
we obtain T (r, t ) by solving the heat diffusion equation:

ρ�C�u · ∇T − ∇ · k�∇T + ρ�C�Tt =
∑

i

Qi, (5)

FIG. 11. Computed field changes of the single mode of an SMF.
The unperturbed mode (a) exhibits significant elastic mode field
changes (b) in response to f .
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FIG. 12. Temperature distribution in an embedded fiber segment
of length 1000 μm. The core, cladding, jacket, and the embedding
host subdomains are made of pure SiO2 assumed close to Ge-doped
SiO2, pure SiO2, acrylate, and Si, respectively. The plot displays the
temperature on the z axis at the center of the fiber core.

where ρ�, C�, and k� are, respectively, the density, heat
capacity, and thermal conductivity of subdomain d , while Qi

is the ith source term (e.g., due to conduction from the host
or absorption of radiation by the host, etc.). In general, k� is
a symmetric positive-definite second-order tensor, especially
for multilayer and composite material domains. For small
convective heat transport as in the present case, and assuming
a thermal insulating boundary condition −n · ∇T = 0 along
the boundary ∂�H,∞, the result is shown in Fig. 12. As can
be seen, heat evolution along a 1-mm-long system occurs
at approximately millisecond timescales. It is worth noting
that the thermoelastic effect in the various subdomains gen-
erates a source term −αT : dσ/dt, where α is the thermal
expansion coefficient, and d/dt is the time derivative operator
in the material frame [39]. Transient or rapid changes in
stress (e.g., high-frequency vibrations) may generate signifi-
cant heat. Here, in the computation of optical mode changes,
the temperature changes in subdomains translate to mechani-
cal loads and thus subdomain expansion. For smaller domains,
thermal expansion that leads to stress generation is therefore
here taken into account by a single temperature assignment
to the domains, referenced to an initial temperature (Ti =
293 K).

With �T computed for a given domain, the contribution to
strain can be written as

εT
i j = αi j (T )�T + O[(�T )2], (6)

FIG. 13. Birefringent optical mode changes (b) as a result of an
asymmetrical geometry (a) and a uniform �T = 20 K.

where αi j are the thermal expansion coefficient com-
ponents. Numerically, α ∼ (10−7–10−5) K−1, e.g., αSiO2 =
5.5 × 10−7 K−1, as summarized in Table IV. Thus, in the
linear regime

σi j = Ci jkl (εkl − αkl�T ).

By taking into account Eq. (6), when computing the displace-
ments u, we obtain the results in Fig. 13 for the thermoelastic
optical mode splitting, assuming �T = 20 K. To obtain the
pronounced mode splitting observed, we assumed an asym-
metric placement of the core-cladding-jacket domains with
respect to the host thus creating a nonuniform displacement
leading to large stress formation. This result provides a direct
method to design extremely sensitive thermal BFG sensors by
optimizing differential thermal expansions.

Having computed σ with and without contribution from
thermal expansion, we compare the stress provided by analyt-
ically augmenting the Bragg shift equation. Accounting for
temperatures T �= Ti, and assuming a uniform heating over
moderate temperature ranges for isotropic materials, we have
εT

i j ≈ α�T . Thus, the Bragg shift is now written as

�λB(ε, T ) = �λ
Ti
B (ε) + α f �T s, (7)

where α f is the thermal expansion coefficient of the fiber. The
thermal expansion of the fiber is often in reference to that of
the cladding due to its large volume and mass relative to the
core, especially in a SMF implementation. When αC > αCL,
the thermal expansion of the core is restricted and appears
as compressed relative to its unbound state. The difference
in thermal expansion of the core and cladding is an optically
relevant issue in which an analytical model has been proposed
[40].

TABLE IV. Model subdomain thermal properties.

Sub-domain Material C [J/(kg K)] k [W/(m K)] α (×10−6)(K−1)

�C Ge-doped SiO2 2
�CL SiO2 703 1.4 0.55
�J Acrylate 1470 0.18 70
�H Si 700 130 2.6
�∞ Matched Matched Matched Matched
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2. Thermo-optic effect

Temperature changes also induce variations in the refrac-
tive indices (n) of the materials (thermo-optic effect), which
can be described via a second-rank symmetric tensor (since
T is scalar). At frequency ω, the dielectric function of a
subdomain, here assumed isotropic, is εi j (ω, T ) = ε(T ) and
thus dε/dT = 2ξn, where ξ = dn/dT is the thermo-optic
coefficient of the medium. When T �= Ti, thermo-optic effects
may have to be considered since

n(T ) = n(Ti ) + ξ�T . (8)

For example, for the core material ξGe-doped SiO2
∼ 1.05 ×

10−5 K−1 and thus a relatively large thermo-optical effect is
expected for moderate T in comparison to thermal expansion.
For an isolated fiber (no embedding medium), the modified
Bragg shift is written as

�λB(ε, T ) = �λ
Ti
B (ε) + (α f + ξ )�T s, (9)

where α f and ξ are the (linear) thermal expansion coefficient
and the thermo-optic coefficient, respectively, of the fiber core
material. In Eq. (4) and Eq. (9), the index S denotes the path
along which εs and �T are averaged as shown in Fig. 5, for
example.

Another consideration arises when a fiber is embedded
within a host material. In this case Eq. (9) must be amended
to account for the thermal expansion coefficient of the host
relative to the fiber [41]:

�λB(ε, T )

= �λ
Ti
B (ε) + [α f + ξ + (1 − pe)(αh − α f )]�T s, (10)

where αh is the thermal expansion coefficient of the host. In
the case of an embedded fiber for a sufficiently large host,
the thermal expansion of the fiber core, cladding, and jacket
are relatively small in comparison to that of the host. In our
modified FBG simulator, FBG-SimPlus V1.0, we have im-
plemented Eq. (10) to allow simulation of embedded grating
scenarios. More general cases in which the material properties
exhibit significant T dependence such that, e.g., E = E (T ), or
α = α(T ), etc., are not considered here.

III. EXPERIMENTAL MEASUREMENTS OF λB

To demonstrate the viability of the presented semiana-
lytical method and FBG-SimPlus for calculating the Bragg
shift under arbitrary external stimuli, we carried out measure-
ments on an FBG implemented in a single-mode step-index
fiber (Technica FBG sensor [42]) with optical conductivity
at wavelengths in 1460–1620 nm (±0.5 tolerance). These
sensors are typically fabricated via exposing the core of the
fiber to a UV radiation (e.g., from an excimer laser) inter-
ference pattern, which owing to the Ge doping of the SiO2

core making it photosensitive, permanently modulate the core
index of refraction. The fibers are acrylate coated, and incor-
porate nonapodized (uniform), 2-mm-long FBGs of overall
diameter 125 μm with a central wavelength of λb0 = 1549.6
nm at T0 = 0 ◦C. The sensors exhibit good temperature and
strain linearity with stable output for temperatures up to T =
300 ◦C. In a basic setup, a beam from an infrared laser (e.g., a
tunable semiconductor laser), with a wavelength typically in

FIG. 14. Validation of FBG-SimPlus temperature functionality
with experimental measurement of the relative Bragg shift. The
straight FBG, subjected to a variation in temperature, responds with
a Bragg shift.

the telecom C band (telecommunication’s conventional band:
1530–1565 nm), is coupled into the fiber via a fiber coupler
and the reflected light is routed to a photodetector via an
optical circulator (a three-port optical channel). The source
can be broadband with a filter (e.g., a tunable Fabry-Perot or
via a dispersive medium) for spectral scanning. For standard
measurements, these operations can be achieved using an op-
tical interrogator, an integrated optical system for wavelength
analysis of FBG output. Here, we carried out a series of
measurements on our FBGs at ambient and elevated temper-
atures using an (four-channel) interrogator (FAZT-14G [43]).
The FBG output is analyzed by exploring the full reflected
spectrum or by detecting and monitoring the peak spectral po-
sition (source laser linewidth = 20 MHz). Within the 39.2 nm
spectral window 1529–1568.2 nm of the interrogator, the
wavelength increments �λ have to be sufficiently small to
recover the narrow-width peak. The reflection bandwidth of
the employed fibers is 0.1–0.8 nm with better than 70% re-
flectivity. Here, the wavelength resolution is set at �λ = 1
pm with an absolute accuracy of <1 pm, and precision of
<0.1 pm, which is maintained by referencing a gas cell and a
Mach-Zehnder interferometer.

The experiments were carried out in a chamber featur-
ing environmental control. At elevated steady-state chamber
temperatures, for a fiber mounted to be straight, we acquired
spectral data to be analyzed and compared with the compu-
tational results for the stress, strain, and initial temperature
information, which were extracted along path S (Fig. 5) of
the fiber and presented to FBG-SimPlus as input data. The
results are shown in Fig. 14, where two simulation scenarios
using the computational input data are displayed. The first
scenario involves temperature control via the computational
model of Fig. 3, implemented using FEM, to simulate ther-
mal expansion of the core, cladding, jacket, and the host of
the FBG sensor implementation. In this case, computational
stress, strain, and temperature information are imported into
FBG-SimPlus, that is, the simulator is run with no temper-
ature emulation feature enabled and the Bragg shift is then
calculated. In the second scenario, the mechanical response of
the system (Fig. 3) is obtained via the computational model

055307-10



SEMICOMPUTATIONAL CALCULATION OF BRAGG SHIFT … PHYSICAL REVIEW E 104, 055307 (2021)

using FEM. In this case, within the FBG-SimPlus simulator,
the user can simulate a temperature perturbation. From here
temperature is emulated within FBG-SimPlus to account for
the photoelastic effect due to thermal strain, effect of thermal
expansion, and the thermo-optic effect for various temperature
contribution scenarios. As can be seen from Fig. 14, FBG-
SimPlus provides good agreement with experimental results.
Here, ξ , while not treated as a free parameter, can be varied
iteratively over a reasonable range for better consistency. The
lack of a consistent set of material properties for doped fiber
core implies that ξ may be varied within a range of plausi-
ble values reported [44]. Similarly, the mechanical properties
(E , ν) of our fiber into which the FBG is written are subject to
some variation.

IV. CONCLUSIONS

In conclusion, the presented computational approach in
conjunction with the modified version of the semianalyti-
cal calculation was shown to produce good agreement with
our experimental results. Thus, the effects of stress, strain,
and temperature on the photonic eigenmodes of a waveguide
embedded arbitrarily in a stratified material can be inves-
tigated following the presented method. In doing so, we
also implemented a temperature dependence in FBG-SimPlus.
The simulated response of an FBG sensor is accounted for
without any specific assumption or constraints on the mate-
rial or geometric properties of the domains. The presented
model accounted for both photoelastically induced birefrin-
gence, and for thermal expansion induced mode splitting. The
new version of the FBG simulation code allows the analy-
sis of temperature contribution via both the photoelastic and
thermo-optical changes, as an additional simulation feature.
Our study with the cantilever subjected to deformation and
temperature variations allowed analysis in the context of the
improved functionality for published FBG simulation code.
The developed computational model proved highly flexible
with respect to parameter variations that correspond to geo-
metric, material, and stimuli changes, opening the path for
envisioning new applications. For example, in security-related
applications, FBG designs that prevent the duplication of the
sensor response are desired. In the development of such FBG
sensors—with a hard-to-duplicate response—further intricate
FBG designs may be considered, following the presented
work here and using more elaborate dielectric tensors εi j .
From our results, we conclude that with sufficient compu-
tational power, the wave propagation modeled via FDTD
coupled with finite elements calculation of the model defor-
mation and thermal considerations will enable a complete
modeling platform. Though, here both the mechanical and
optical processes were considered within linear regimes and
for uniform Bragg periodicities, nonlinear mechanical effects
such as geometric nonlinearity due to large deformations,
and nonlinear optical effects such as the Kerr nonlinearity or

contributions from nonlinear index response at higher pulse
energies, as well as, chirped, apodized, or other nonuniform
Bragg forms may be treated similarly.
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these results of federally sponsored research in accordance
with the DOE Public Access Plan [45].
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APPENDIX A: TENSOR QUANTITIES

We define the elasto-optic or stress-optic tensor M as

M =

⎡
⎢⎢⎢⎢⎢⎣

m11 m12 m12 0 0 0
m12 m11 m12 0 0 0
m12 m12 m11 0 0 0
0 0 0 m44 0 0
0 0 0 0 m44 0
0 0 0 0 0 m44

⎤
⎥⎥⎥⎥⎥⎦

, (A1)

where mi j may either represent pi j of the fourth-rank elasto-
optic tensor or qi j of the stress-optic tensor depending on
whether solving for a supplied strain or stress, respectively.

APPENDIX B: COMPUTATIONAL CONSIDERATIONS

Using a desktop computer with 16 GB of 2133 MHz mem-
ory and a Core i5-6600 quad-core processor with a clock
speed of 3.30 GHz, a single FE simulation time tsim is typically
in the range ∼tsim ∼ (3–900) s, when solving one or multiple
PDEs, shown in Fig. 1. In the simulation, the mesh resolution
δM, adjusted by varying the smallest and largest element
sizes, and the specific PDEs and their boundary conditions
solved affect tsim. The results displayed in Fig. 14 represent
a multistep processing of data. In one instance, for a cylin-
drical multilayered model, the stress and strain information is
calculated at a given but fixed temperature via a tsim = 3 s sim-
ulation (solution convergence). The results are then processed
via FBG-SimPlus using one of two scenarios that are outlined
in Sec. III. Each scenario roughly requires tsim = 30 s.
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