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Variant of gas kinetic flux solver for flows beyond Navier-Stokes level
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In this paper, a variant of gas kinetic flux solver (GKFS) is presented for simulation of flows beyond the
Navier-Stokes (NS) level. The method retains the framework of GKFS and reconstructs the numerical fluxes by
the moments of distribution function at the cell interface, which is given from the local solution of the Boltzmann
equation. In the conventional GKFS, the first-order Chapman-Enskog (CE) expansion is utilized to approximate
the initial distribution function. By using the differential chain rule, it was found that the CE expansion form
could be linked to the stress tensor and the heat flux. For flows in the NS level, the stress tensor and heat flux
can be simply calculated from the linearized constitutive relationship and Fourier’s law, respectively. However,
for flows beyond the NS level, due to the strong nonequilibrium effect, the linearized constitutive relationship
and Fourier’s law are insufficient to predict the stress tensor and the heat flux. To overcome this difficulty, this
paper introduces correction terms to the stress tensor and heat flux in the initial distribution function. These
correction terms will take effect in the strong nonequilibrium region for flows beyond the NS level. To avoid
finding complex expressions or solving complicated partial differential equations for the correction terms, a
simple and iterative procedure is proposed to update the correction terms based on the framework of GKFS. The
proposed method is validated by three benchmark cases which cover the flow from the continuum regime to the
transition regime. Numerical results show that the present solver can provide accurate solution in the continuum
regime. It is indeed the correction terms that take effect in the strong nonequilibrium region for flows beyond the
NS level, which enables the present solver to capture the nonequilibrium phenomenon with reasonable accuracy
for rarefied flows at moderate Knudsen number.
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I. INTRODUCTION

In recent years, various kinds of gas kinetic solvers have
been developed as an alternative approach to study the fluid
flow problem both in academic exploration and in industrial
applications. These methods can be generally classified into
three categories: the first one is the kinetic flux vector splitting
scheme [1–4], and the improved version developed by Chou
and Baganoff [4] contains two stages: free transport and colli-
sion. Because the collisionless part and the collision part of the
Boltzmann equation are solved separately for flux evaluation,
this scheme is only capable for flow problems where physical
viscosity is much larger than numerical viscosity. The sec-
ond type of scheme is the gas kinetic scheme [5–9] (GKS),
which includes the Bhatnagar-Gross-Krook (BGK) collision
term in the evaluation of numerical flux at the cell interface.
In GKS, the use of local integral solution to the Boltzmann
equation naturally combines the streaming and collision pro-
cesses together. The third type of scheme is the gas kinetic
flux solver [10–14] (GKFS). Different from the GKS, the
local solution of Boltzmann equation along the characteristic
line is adopted for evaluation of numerical flux at the cell
interface.

*mpeshuc@nus.edu.sg

The nice feature of all the above three schemes is the
physical reconstruction of numerical fluxes. In GKFS, the
viscous and inviscid fluxes at the cell interface are evalu-
ated simultaneously by the moments of distribution function,
which is given from the local solution of Boltzmann equa-
tion and evolved from the initial distribution function at the
neighboring points of cell interface. At the same time, this
distribution function couples the transport and collision pro-
cesses of gas molecules. Thus, the time step is not restricted
to the particle collision time and merely determined by the
Courant-Friedrichs-Lewy (CFL) condition. In GKFS, the ini-
tial distribution function is approximated with the help of the
first-order Chapman-Enskog (CE) expansion. To the Navier-
Stokes (NS) level, the initial distribution function can be
expressed as f NS = f eq − τD f eq, where f eq is the equilib-
rium part of distribution function, τ is the relaxation time,
and D represents the substantial derivative. In Ref. [9], the
nonequilibrium part of −τD f eq is approximated by the finite
difference scheme, which introduces some numerical error
into the computation. As shown in this paper, by using dif-
ferential chain rule, the nonequilibrium part for Newtonian
fluid can be explicitly expressed as the function of velocity
and temperature gradients. Furthermore, the velocity gradient
can be replaced by the stress tensor σi j = −2μ(∂U<i/∂x j>)
using the linearized constitutive relationship and the temper-
ature gradient is replaced by the heat flux qi = −λ(∂T /∂xi )
using Fourier’s law, where μ and λ represent the viscosity and

2470-0045/2021/104(5)/055305(24) 055305-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7400-8705
https://orcid.org/0000-0003-0825-0883
https://orcid.org/0000-0002-2417-0771
https://orcid.org/0000-0001-7961-4854
https://orcid.org/0000-0002-3931-052X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.055305&domain=pdf&date_stamp=2021-11-16
https://doi.org/10.1103/PhysRevE.104.055305


YUAN, SHU, LIU, YANG, AND LIU PHYSICAL REVIEW E 104, 055305 (2021)

thermal conductivity, respectively. This finding gives us a
hint that the CE expansion can accurately recover the macro-
scopic NS equations since the nonequilibrium part of the gas
distribution function indeed satisfies the linearized constitu-
tive relationship for stress tensor and Fourier’s law for heat
flux. At the same time, this may also imply that GKFS may
be inadequate for flows beyond the NS level as the strong
nonequilibrium effect cannot be simply considered by the
linearized constitutive relationship and Fourier’s law.

To extend the conventional gas kinetic scheme for flows
beyond NS level, the unified gas kinetic scheme [15,16] and
discrete unified gas kinetic scheme [17,18] are proposed,
subsequently. These two methods are both reliable for flows
beyond NS level, because their initial distribution functions
are not approximated by the CE expansion, but calculated
through the evolution functions. However, this evolution pro-
cess requires additional discretization in the phase velocity
space, which leads to the additional computational cost. To
avoid the evolution of gas distribution function, its explicit
formulation that can simulate flows beyond NS level should
be addressed. Considering the fact that the stress tensor and
heat flux actually reflect the degree of nonequilibrium effect,
some efforts [19–22] have been made to introduce high-order
constitutive relations for simulation of flows beyond the NS
level. The extended gas kinetic scheme [23] (EGKS) is such
an attempt by adopting the high-order constitutive relations
in the gas distribution function as an extension of GKS. High-
order constitutive relations, such as Burnett [24,25], simplified
conventional Burnett [26,27], regularized Chapman-Enskog
expansion [28], and nonlinear coupled constitutive relations
(NCCR) [29,30] are all tested in the framework of EGKS. The
EGKS method shows usefulness of high-order constitutive
relations in the gas distribution function for nonequilibrium
flows beyond the NS level. On the other hand, it should be
indicated that the high-order constitutive relations may have
very complicated expressions or need to solve additional par-
tial differential equations. This brings difficulty in numerical
implementation.

To effectively consider the strong nonequilibrium effect for
flows beyond the NS level, in this paper we introduce the
correction terms to stress tensor and heat flux in the initial
gas distribution function. The correction terms are treated as
a compensation to the inadequate NS constitutive relations
and take effect in the strong nonequilibrium regime for flows
beyond the NS level. From the perspective of Burnett-type
equations [25,26], these correction terms are equivalent to
the second-order or third-order derivatives of macroscopic
variables. In the NCCR formulations [30,31], these correc-
tion terms are equal to the additional algebraic nonlinear
terms. For the moment methods [20,32], these correction
terms take effect as the high-order moments to some extent.
Naturally, one may pursue the explicit expressions for the
correction terms as done by EGKS for the high-order con-
stitutive relations. However, as discussed above, the explicit
expressions will be very complicated and implementation may
encounter numerical instability. To resolve this difficulty, a
natural question is whether the correction terms could be
treated in a simple and general way. The recent work of
a novel solver [33,34] provides an answer to this question.

Unlike the conventional moment methods [20,32], where the
moments including the stress tensor and heat flux are given
by solving a set of complicated partial differential equations,
the novel solver starts from the kinetic theory and deter-
mines the moments by moment relationship of the distribution
function.

Inspired by the novel solver, we propose a variant of GKFS
in this work for simulating flows from the continuum regime
to the rarefied regime at moderate Knudsen number. In the
present solver, the initial distribution function of GKFS is
modified by introducing the correction terms to the stress
tensor and heat flux. In other words, the stress tensor and
heat flux for flows beyond the NS level are expressed as σi j =
−2μ(∂U<i/∂x j>)+�i j and qi = −λ(∂T /∂xi )+�i, where �i j

and �i are the correction terms. As discussed above, it is very
difficult to get explicit expressions for �i j and �i. However,
in the framework of GKFS, they can be easily obtained by an
iterative process. The basic idea is that the correction terms are
actually the differences between actual stress tensor–heat flux
and stress tensor–heat flux given from linearized constitutive
relationship and Fourier’s law (they can be termed as NS stress
tensor–heat flux). From the kinetic theory, the actual stress
tensor and heat flux can be calculated by moment integrals of
distribution function. The essence of GKFS is to reconstruct
the distribution function at each cell interface and then use it
to compute the macroscopic flow variables and fluxes through
moment relationships of distribution function. This idea can
also be extended to compute the actual stress tensor–heat
flux at the cell interface once the distribution function is re-
constructed. In the meantime, the NS stress tensor and heat
flux can be easily obtained from the velocity and temperature
gradients. Therefore, it is straightforward to get the correc-
tion terms at each cell interface by comparing the difference
between the actual stress tensor–heat flux and the NS stress
tensor–heat flux. For a control cell, once the correction terms
at all cell interfaces are available, they can be used to get
the correction terms at the cell center through interpolation.
The above procedure forms an iterative process to update
the correction terms. Through this way, finding complicated
expressions or solving additional partial differential equations
for the correction terms is avoided. This part is the major
contribution of the present paper, and its details will be given
in Sec. IV. The proposed solver is validated by three test
examples. Numerical results show that the present solver can
work well for flows not only in the continuum region but also
in the transition region. It is indeed the correction terms that
take effect in the strong nonequilibrium region for the flows
beyond the NS level.

The rest of the paper is organized as follows. In Sec. II,
some brief description on relationships between macroscopic
flow variables and gas distribution function of Boltzmann
equation is presented. Section III discusses reconstruction of
distribution function at cell interface and approximation of ini-
tial distribution function. The details of gas kinetic flux solver
for flows beyond the NS level are described in Sec. IV. Three
typical numerical examples, including planar Couette flow,
lid-driven cavity flow, and heat transfer in a bottom-heated
square cavity, are presented in Sec. V. Finally, Sec. VI draws
some conclusions.
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II. RELATIONSHIPS OF MACROSCOPIC CONSERVATIVE
VARIABLES AND FLUXES WITH DISTRIBUTION

FUNCTION OF BOLTZMANN EQUATION

At the mesoscopic level, the fluid flow can be modeled
by the Boltzmann equation. The 2D gas-kinetic governing
equation with BGK collision model [35] for monatomic gas
can be written as

∂ f

∂t
+ ξ · ∇ f = f eq − f

τ
, (1)

where f and f eq are the gas distribution function and its
equilibrium state, respectively. ξ = (u, v,w) represents the
particle velocity space. In 2D case, w can be treated as the
particle’s internal degree of freedom, and for simplicity, it is
noted as η. τ denotes the relaxation time and is related to the
dynamic viscosity and pressure. The equilibrium state is given
by the Maxwellian distribution function, as shown below:

f eq = ρ

(
λ

π

)3/2

e−λ[(u−U )2+(v−V )2+η2]. (2)

Here, ρ is the macroscopic density and λ = 1/2RT , where
R is the gas constant and T is the macroscopic temperature.
U and V are macroscopic velocity components in the x and y
directions, respectively.

Note that the evolution of distribution function f above de-
pends only on the particle velocity u = (u, v) and is irrelevant
to the internal degree of freedom η. To remove the phase-
energy variable η and develop more compact formulations,
the double-distribution functions h and b are introduced [36]
as below:

h(x, u, t ) =
∫

f (x, u, η, t )dη, (3)

b(x, u, t ) =
∫

η2 f (x, u, η, t )dη. (4)

Subsequently, the double-distribution functions heq(x, u, t )
and beq(x, u, t ) at equilibrium state can be written as

heq(x, u, t ) =
∫

f eq(x, u, η, t )dη = ρλ

π
e−λ[(u−U )2+(v−V )2],

(5)

beq(x, u, t ) =
∫

η2 f eq(x, u, η, t )dη = ρ

2π
e−λ[(u−U )2+(v−V )2].

(6)

As a result, the evolution function of f shown in Eq. (1)
can be transformed into the following evolution functions of
h and b as

∂h

∂t
+ u · ∇h = heq − h

τ
, (7)

∂b

∂t
+ u · ∇b = beq − b

τ
. (8)

Multiplying Eq. (7) by the moment vector ϕ,

ϕ = [1, u, v, 0.5(u2 + v2)]T (9)

and then integrating the resultant equation and Eq. (8) in the
particle velocity space, the following macroscopic governing

equations can be derived:

∂W
∂t

+∇ · F = 0, (10)

where W is the vector of macroscopic conservative vari-
ables W = (ρ, ρU, ρV, ρE )T , which can be computed by the
double-distribution functions h and b as

ρ = 〈h(x, u, t )〉, (11)

ρU = 〈uh(x, u, t )〉, (12)

ρV = 〈vh(x, u, t )〉, (13)

ρE = 1
2 〈u2h(x, u, t ) + b(x, u, t )〉. (14)

The total energy E is calculated by

E = 1

2
(U 2 + V 2) + RT

γ − 1
, (15)

in which γ is the specific-heat ratio and equal to 5/3 for
monatomic gas. In Eqs. (11)–(14), the operator 〈. . .〉 is defined
as

〈. . .〉 =
∫ +∞

−∞

∫ +∞

−∞
(. . .)du. (16)

In addition, the flux vector F is F = (Fx,Fy) for the 2D
case. The relationship between Fx = (F x

ρ , F x
ρU , F x

ρV , F x
ρE )T

and double-distribution functions can be written as

F x
ρ = 〈uh(x, u, t )〉, (17)

F x
ρU = 〈u2h(x, u, t )〉, (18)

F x
ρV = 〈uvh(x, u, t )〉, (19)

F x
ρE = 1

2 〈u[(u2 + v2)h(x, u, t ) + b(x, u, t )]〉. (20)

Similarly, Fy = (F y
ρ , F y

ρU , F y
ρV , F y

ρE )T can be computed by

F y
ρ = 〈vh(x, u, t )〉, (21)

F y
ρU = 〈uvh(x, u, t )〉, (22)

F y
ρV = 〈v2h(x, u, t )〉, (23)

F y
ρE = 1

2 〈v[(u2 + v2)h(x, u, t ) + b(x, u, t )]〉. (24)

By applying the finite volume method to discretize
Eq. (10), the discrete governing equations at the macroscopic
scale can be expressed as

dWi

dt
+ 1

�i

N∑
n=1

FnSn = 0 (25)

where Wi is the vector of conservative variables at the cell
center i. �i represents the volume and N represents the num-
ber of control surfaces. Sn and Fn stand for the area and flux
vector at the cell interface n. Equation (25) can be applied for
flows in both the continuum regime and the rarefied regime.
The GKFS uses the distribution functions at the cell interface
to evaluate the flux vector F by using Eqs. (17)–(24). The
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computation of distribution function at the cell interface will
be addressed in the next section.

III. DISTRIBUTION FUNCTION AT CELL INTERFACE
AND APPROXIMATION OF INITIAL DISTRIBUTION

FUNCTION

It is noteworthy that the BGK equation is the cornerstone
for the gas kinetic theory. In this section, we will discuss how
to determine the distribution function at the cell interface from
the gas kinetic BGK model [35]. Furthermore, we will discuss
approximation of initial gas distribution function associated
with the solution of distribution function at the cell interface.

A. Determination of distribution function at cell interface
by Boltzmann equation

At first, the distribution function h and its equilibrium state
heq at the midpoint of a cell interface x f and at time step t + δt
are noted as h(x f , u, t + δt ) and heq(x f , u, t + δt ), respec-
tively. The distribution function h at the surrounding points
of x f at time step t is written as h(x f − uδt, u, t ). Hence, the
left-hand side of Eq. (7) can be approximated as

∂h

∂t
+ u · ∇h = h(x f , u, t + δt ) − h(x f − uδt, u, t )

δt
. (26)

At the same time, the right-hand side of Eq. (7) can be
written as

heq − h

τ
= heq(x f , u, t + δt ) − h(x f , u, t + δt )

τ
. (27)

By substituting Eq. (26) and Eq. (27) into Eq. (7), the
distribution function h(x f , u, t + δt ) at the cell interface can
be computed by

h(x f , u, t + δt ) = τ

τ + δt
h(x f − uδt, u, t )

+ δt

τ + δt
heq(x f , u, t + δt ). (28)

This equation reveals that the distribution function h at the
cell interface is a combination of the distribution function at
the surrounding points of the interface x f and the equilibrium
distribution function at the cell interface. Similarly, the dis-
tribution function b(x f , u, t + δt ) at the cell interface can be
calculated by the following form:

b(x f , u, t + δt ) = τ

τ + δt
b(x f − uδt, u, t )

+ δt

τ + δt
beq(x f , u, t + δt ). (29)

As shown in Eqs. (28) and (29), to get the double-
distribution functions h(x f , u, t + δt ) and b(x f , u, t + δt ) at
the cell interface, one has to know the equilibrium distri-
bution functions heq(x f , u, t + δt ) and beq(x f , u, t + δt ) at
the cell interface, and the initial distribution functions at the
surrounding points of the cell interface, h(x f − uδt, u, t ) and
b(x f − uδt, u, t ). Equations (5) and (6) reveal that once the
macroscopic flow variables ρ, U , V , and T are determined,
heq and beq can be uniquely decided. Thus, the key step is
to approximate h(x f − uδt, u, t ) and b(x f − uδt, u, t ), which

are initial distribution functions at the surrounding points of
the cell interface.

B. Approximation of initial distribution function
for flows in the NS level

In the conventional GKFS [37], which is targeted to sim-
ulate flows in the Navier-Stokes level, the initial distribution
functions h(x f − uδt, u, t ) and b(x f − uδt, u, t ) are approxi-
mated by the first-order CE expansion [38–41] and are given
as

hNS(x f − uδt, u, t )

= heq(x f − uδt, u, t ) − τDheq(x f − uδt, u, t ), (30)

bNS(x f − uδt, u, t )

= beq(x f − uδt, u, t ) − τDbeq(x f − uδt, u, t ). (31)

The second terms on the right-hand side of Eqs. (30) and
(31) are the approximation of the nonequilibrium part of
distribution function. As shown in Refs. [37] and [42], the
substantial derivatives Dheq and Dbeq can be approximated by
the following finite difference scheme:

Dheq(x f − uδt, u, t )

= heq(x f , u, t + δt ) − heq(x f − uδt, u, t )

δt
, (32)

Dbeq(x f − uδt, u, t )

= beq(x f , u, t + δt ) − beq(x f − uδt, u, t )

δt
. (33)

It is noted that this approximation introduces numerical
errors into the computation. Another way to compute the
substantial derivative of distribution function at equilibrium
state can be made by performing the differential chain rule as
follows:

Dheq = ∂heq

∂ρ
Dρ + ∂heq

∂Ui
DUi + ∂heq

∂T
DT, (34)

Dbeq = ∂beq

∂ρ
Dρ + ∂beq

∂Ui
DUi + ∂beq

∂T
DT . (35)

Based on the double-distribution functions at equilibrium
state shown in Eqs. (5) and (6), the partial derivative of
equilibrium distribution function such as ∂heq/∂ρ, ∂heq/∂Ui,
and ∂heq/∂T can be given out explicitly. Furthermore, using
Euler equations, Dρ, DUi, and DT can also be given ex-
plicitly [43,44]. Therefore, explicit formulations of Dheq and
Dbeq can be derived and the final explicit formulations of
hNS(x f − uδt, u, t ) and bNS(x f − uδt, u, t ) can be given out
as

hNS = heq − τheq

×

⎧⎪⎨
⎪⎩

λ

[
C2

x

(
4
3

∂U
∂x − 2

3
∂V
∂y

) + 2CxCy
(

∂U
∂y + ∂V

∂x

)
C2

y

(
4
3

∂V
∂y − 2

3
∂U
∂x

) − 1
2λ

(
2
3

∂U
∂x + 2

3
∂V
∂y

)
]

+ 1
T

(
Cx

∂T
∂x +Cy

∂T
∂y

)[
λ
(
C2

x + C2
y + 1

2λ

) − 5
2

]
⎫⎪⎬
⎪⎭,

(36)
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bNS = beq − τbeq

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

[
C2

x

(
4
3

∂U
∂x − 2

3
∂V
∂y

) + 2CxCy
(

∂U
∂y + ∂V

∂x

)
C2

y

(
4
3

∂V
∂y − 2

3
∂U
∂x

) − 3
2λ

(
2
3

∂U
∂x + 2

3
∂V
∂y

)
]

+ 1
T

(
Cx

∂T
∂x +Cy

∂T
∂y

)[
λ
(
C2

x + C2
y + 3

2λ

) − 5
2

]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(37)

in which Cx = u−U and Cy = v−V represent the peculiar ve-
locities of gas particles. The relaxation time τ is defined as the
ratio of dynamic viscosity μ and pressure p and calculated by

τ = μ

p
. (38)

On the other hand, with the help of double-distribution
functions hNS and bNS shown in Eqs. (36) and (37) and mo-
ment relationships, the expression of stress tensor and heat
flux to the NS level can be calculated as

σ NS
xx = 1

3

〈(
2C2

x − C2
y

)
hNS − bNS〉 = −4μ

3

∂U

∂x
+ 2μ

3

∂V

∂y
,

(39)

σ NS
xy = 〈CxCyhNS〉 = −μ

(
∂U

∂y
+∂V

∂x

)
, (40)

σ NS
yy = 1

3

〈(
2C2

y − C2
x

)
hNS − bNS

〉 = −4μ

3

∂V

∂y
+ 2μ

3

∂U

∂x
,

(41)

σ NS
zz = −σ NS

xx − σ NS
yy = 2μ

3

(
∂U

∂x
+∂V

∂y

)
, (42)

qNS
x = 1

2

〈
Cx
[(

C2
x + C2

y

)
hNS + bNS

]〉 = − 5μ

4λT

∂T

∂x
, (43)

qNS
y = 1

2

〈
Cy
[(

C2
x + C2

y

)
hNS + bNS

]〉 = − 5μ

4λT

∂T

∂y
. (44)

Indeed, these relationships are exactly the same as those
given from linearized constitutive relations and Fourier’s
law for Newtonian fluid when deriving NS equations. Using
Eqs. (39)–(44), the expressions of hNS and bNS can be further
written as

hNS = heq

{
1 + λ

p

(
C2

x σ NS
xx + 2CxCyσ

NS
xy +C2

y σ NS
yy + 1

2λ
σ NS

zz

)
+ 4λ

5p

(
CxqNS

x +CyqNS
y

)[
λ
(
C2

x + C2
y + 1

2λ

) − 5
2

]
}

,

(45)

bNS = beq

{
1 + λ

p

(
C2

x σ NS
xx + 2CxCyσ

NS
xy +C2

y σ NS
yy + 3

2λ
σ NS

zz

)
+ 4λ

5p

(
CxqNS

x +CyqNS
y

)[
λ
(
C2

x + C2
y + 3

2λ

) − 5
2

]
}

.

(46)

Equations (45) and (46) show that to the NS level, the
double-distribution functions can be approximated by stress
tensor and heat flux, which are given explicitly by Eqs. (39)–
(44) in terms of velocity and temperature gradients. Since the
nonequilibrium part of the distribution function is responsible

for contribution to the stress tensor and heat flux, this means
that the nonequilibrium part of distribution function approxi-
mated by the first-order Chapman-Enskog expansion can well
recover the stress tensor and heat flux in the NS equations. To
consider flows beyond the NS level, the nonequilibrium effect
is much stronger than that in the NS level, and for this case,
the stress tensor and heat flux cannot be simply calculated by
Eqs. (39)–(44). We will address this issue in the next section.

C. Approximation of initial distribution function for flows
beyond the NS level

Many research works [19–21,45–47] have pointed out that
NS equations are inadequate for flows beyond the continuum
regime and the stress tensor cannot be simply calculated by
the linearized constitutive relationships. Some efforts have
been made to overcome this shortcoming by revising the
constitutive relationships [20,25,48–50]. In the Burnett-type
equations [25], except for the first-order derivatives of velocity
and temperature, the second-order or third-order derivatives
of macroscopic variables are additionally introduced. In the
NCCR formulations [51], some additional algebraic nonlinear
terms are involved. In the moment methods [52], the high-
order moments are introduced, which are given by solving a
set of partial differential equations. These high-order deriva-
tives, additional algebraic nonlinear terms, and high-order
moments all function as the correction terms to the linearized
constitutive relations, which are the essence for better perfor-
mance of Burnett-type, NCCR, and moment equations. Based
on this recognition, in this work, additional correction terms
are introduced to the NS expressions given by Eqs. (39)–(44).
Thus, the new solver could consider the stronger nonequilib-
rium effect on the stress tensor and heat flux for flows beyond
the NS level. As such, the modified stress tensor and heat flux
are written as

σ modified
i j = −2μ

∂U<i

∂x j>
+ �i j, (47)

qmodified
i = − 5μ

4λT

∂T

∂xi
+ �i, (48)

where

∂U<i

∂x j>
= 1

2

(
∂Ui

∂x j
+∂Uj

∂xi

)
− 1

3

∂Uk

∂xk
δi j . (49)

�i j and �i are the correction terms for the stress tensor and
heat flux, respectively. For the 2D case, σ modified

i j and qmodified
i

can be written into a tensor form as

[
σ modified

i j

] =

⎡
⎢⎣

σ NS
xx +�xx σ NS

xy +�xy 0

σ NS
yx +�yx σ NS

yy +�yy 0
0 0 σ NS

zz +�zz

⎤
⎥⎦, (50)

[
qmodified

i

] = [qx+�x qy+�y]. (51)
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Accordingly, the distribution functions hNS and bNS for NS flows shown in Eq. (45) and Eq. (46) could be modified into the
expressions below:

hmodified = heq

{
1 + λ

p

(
C2

x

(
σ NS

xx + �xx
) + 2CxCy

(
σ NS

xy + �xy
)+C2

y

(
σ NS

yy + �yy
) + 1

2λ

(
σ NS

zz + �zz
))

+ 4λ
5p

(
Cx
(
qNS

x + �x
)+Cy

(
qNS

y + �y
))[

λ
(
C2

x + C2
y + 1

2λ

) − 5
2

]
}

, (52)

bmodified = beq

{
1 + λ

p

(
C2

x

(
σ NS

xx + �xx
) + 2CxCy

(
σ NS

xy + �xy
)+C2

y

(
σ NS

yy + �yy
) + 3

2λ
(σ NS

zz + �zz )
)

+ 4λ
5p

(
Cx
(
qNS

x + �x
)+Cy

(
qNS

y + �y
))[

λ
(
C2

x + C2
y + 3

2λ

) − 5
2

]
}

. (53)

Until now, we establish a modified form to approximate
initial gas distribution function by introducing the additional
correction terms to the stress tensor and heat flux. In this
work, we will not seek to find explicit forms to compute the
correction terms. Instead, we will present an iterative proce-
dure to update them. This will be addressed in the following
section.

IV. GAS KINETIC FLUX SOLVER FOR FLOWS BEYOND
NS LEVEL

In the previous section, a modified form is proposed for
approximation of initial gas distribution function for flows
beyond the NS level. This modified form will be used to
compute the distribution function at the cell interface, which
will be further utilized to evaluate numerical fluxes in the
GKFS. By substituting Eq. (52) into Eq. (28) and Eq. (53)
into Eq. (29), the modified gas distribution function at the cell
interface can be formulated as

hmodified(x f , u, t + δt ) = τ

τ + δt
hmodified(x f − uδt, u, t )

+ δt

τ + δt
heq(x f , u, t + δt ), (54)

bmodified(x f , u, t + δt ) = τ

τ + δt
bmodified(x f − uδt, u, t )

+ δt

τ + δt
beq(x f , u, t + δt ). (55)

In the following, we will show the details of GKFS for
evaluation of numerical fluxes. The first step will be the cal-
culation of initial gas distribution function at the surrounding
points of the cell interface.

FIG. 1. The schematic of calculating the correction terms.

A. Reconstruction of distribution function at surrounding
points of cell interface

For simplicity, we assume that two neighboring cells I and
I + 1 are along the x direction. The initial gas distribution
function hmodified(x f − uδt, u, t ) at the neighboring points of
cell interface x f can be calculated by

hmodified(x f − uδt, u, t )

=
{

hmodified
L (x f , u, t ) − ∇hmodified(xI , u, t ) · uδt, u > 0

hmodified
R (x f , u, t ) − ∇hmodified(xI+1, u, t ) · uδt, u < 0

,

(56)

where xI represents the central position of cell I , which is at
the left side of cell interface x f , and xI+1 means the central
position of cell I + 1, which is at the right side of cell interface
x f . •L and •R are the values of hmodified at the left and the right
sides of the interface, respectively. ∇hmodified is the gradient
of the distribution function hmodified and it can be calculated
by the central difference scheme. Taking the x direction as an
example, on the uniform mesh, we have

∂hmodified(xI , u, t )

∂x
= hmodified(xI+1, u, t )−hmodified(xI−1, u, t )

2 · δx
,

(57)
where δx is the mesh spacing in the x direction.
hmodified(xI+1, u, t ) and hmodified(xI−1, u, t ) are the distribution
functions at the centers of cell I + 1 and cell I−1, respec-
tively. The distribution functions at the left and the right sides
of the interface are interpolated from the distribution functions

FIG. 2. The schematic of planar Couette flow.
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FIG. 3. Comparison of velocity profiles (left) and enlarged ones (right) for Kn = 0.1.

at cell centers as

hmodified
L (x f , u, t ) = hmodified(xI , u, t )

+ ∂hmodified(xI , u, t )

∂x
· (x f − xI ), (58)

hmodified
R (x f , u, t ) = hmodified(xI+1, u, t )

+ ∂hmodified(xI+1, u, t )

∂x
· (x f −xI+1).

(59)

The initial gas distribution function bmodified(x f − uδt, u, t )
at the surrounding point of x f can be calculated by adopting
exactly the same approach.

B. Determination of equilibrium distribution
function at cell interface

Once the initial distribution function at the surrounding
point is approximated, our next task is to determine the
equilibrium distribution function at the cell interface. As
shown in Eq. (5) and Eq. (6), the distribution function at
equilibrium state at the cell interface x f is merely rele-
vant to the macroscopic variables W f = (ρ, ρU, ρV, ρE )T

f .
Hence, the construction of double-distribution functions
heq(x f , u, t + δt ) and beq(x f , u, t + δt ) is equivalent to the

calculation of mass, momentum, and energy at the cell in-
terface. Since W f are conserved during the collision process,
h and heq satisfy the conservation constraint at any time and
space. Hence, at the time step t + δt and interface x f , we have

〈h(x f , u, t + δt ) − heq(x f , u, t + δt )〉 = 0, (60)

〈uh(x f , u, t + δt ) − uheq(x f , u, t + δt )〉 = 0, (61)

〈vh(x f , u, t + δt ) − vheq(x f , u, t + δt )〉 = 0, (62)

1
2 〈u2[h(x f , u, t + δt ) − heq(x f , u, t + δt )]

+ b(x f , u, t + δt ) − beq(x f , u, t + δt )〉 = 0. (63)

Substituting the expression of h(x f , u, t + δt ) and
b(x f , u, t + δt ) given in Eqs. (28) and (29) into Eqs. (60)–(63)
and with the help of moment relationship shown in
Eqs.(11)–(14), the above equations can be reformulated into

ρ f = 〈heq(x f , u, t + δt )〉 = 〈h(x f − uδt, u, t )〉, (64)

(ρU) f = 〈uheq(x f , u, t + δt )〉 = 〈uh(x f − uδt, u, t )〉, (65)

(ρE ) f = 1
2 〈u2heq(x f − uδt, u, t ) + beq(x f − uδt, u, t )〉

= 1
2 〈u2h(x f − uδt, u, t ) + b(x f − uδt, u, t )〉. (66)
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FIG. 4. The contour of �̄σ (left) and its value along vertical central line (right) for Kn = 0.1.
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FIG. 5. Comparison of velocity profiles (left) and enlarged ones (right) for Kn = 0.25.

By substituting the initial distribution function at the sur-
rounding point into Eqs. (64)–(66), the conservative flow
variables W f at the cell interface x f can be calculated by

ρ f =
∫

hmodified(x f − uδt, u, t )du, (67)

(ρU) f =
∫

uhmodified(x f − uδt, u, t )du, (68)

(ρE ) f = 1

2

∫
[u2hmodified(x f − uδt, u, t )

+ bmodified(x f − uδt, u, t )]du. (69)

Once the conservative variables are all known, the double-
equilibrium distribution functions heq(x f , u, t ), beq(x f , u, t )
and relaxation time τ f at the cell interface could be con-
structed accordingly.

C. Update of correction terms for stress tensor and heat flux

As discussed in Sec. III, introducing correction terms to
stress tensor and heat flux in approximation of initial gas dis-
tribution function is the key for simulation of flows beyond NS
level. It will be tedious to derive relevant differential equations
to compute these correction terms. On the other hand, we
notice that for general rarefied flows, the stress tensor and

heat flux can be calculated from the moment integrals of dis-
tribution function. This means that at the cell interface, once
the distribution function is obtained, the actual stress tensor
and heat flux can be calculated. In the meantime, the stress
tensor and heat flux in the NS level can be computed from
the velocity and temperature gradients by using Eqs. (39)–
(44). The difference between them is actually the correction
term. This principle forms a foundation to design an iterative
process to update the correction terms. In the simulation, the
initial values of correction terms are all set as zero. After that,
the update of correction terms is made by a procedure with
three steps. The schematic of this procedure is shown in Fig. 1,
and the three steps are described below.

1. Step 1: Calculate the stress tensor and heat flux at the cell
interface from the distribution function

According to the moment relationship, the stress tensors
σi j and heat fluxes qi are all related to the gas distribution
function. Taking the heat flux in the x direction as an example,
we have

qx = 1
2

〈
Cx
[(

C2
x + C2

y

)
h + b

]〉
. (70)

By substituting the expression of the distribution functions
at the cell interface calculated in Eq. (54) and Eq. (55) into
the above equation, heat flux at the left cell interface could be
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FIG. 6. The contour of �̄σ (left) and its value along vertical central line (right) for Kn = 0.25.
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FIG. 7. Comparison of velocity profiles (left) and enlarged ones (right) for Kn = 0.5.

calculated by

qL
x = 1

2

〈
Cx
[(

C2
x + C2

y

) · h(x f , u, t + δt ) + b(x f , u, t + δt )
]〉
.

(71)
Using the same way, the stress tensor σ L

i j and heat flux qL
y

at the left interface could also be calculated. Their moment
relations are listed as follows:

σxx = 1
3

〈(
2C2

x − C2
y

)
h − b

〉
, (72)

σxy = 〈CxCyh〉, (73)

σyy = 1
3

〈(
2C2

y − C2
x

)
h − b

〉
, (74)

σzz = −σxx − σyy, (75)

qy = 1
2

〈
Cy
[(

C2
x + C2

y

)
h + b

]〉
. (76)

2. Step 2:Compute the stress tensor and heat flux at the cell
interface in the NS level

In the NS level, the stress tensor can be computed from the
linearized constitutive relationship and the heat flux can be
calculated from Fourier’s law. They are related to the velocity
and temperature gradients, which can be approximated by the
central difference scheme. Taking the heat flux qL,NS

x in the
x direction as an example, it can be calculated by averaging
the spatial derivatives of temperature at the centers of cell

(I−1, J ) and (I, J ). Hence, qL,NS
x can be calculated by

qL,NS
x = − 5μ

4λT

(
∂TI−1,J/∂x + ∂TI,J/∂x

2

)
. (77)

The other NS stress tensor and heat flux could be computed
using the same way.

3. Step 3:Update the correction terms at the cell center

For the left interface, the correction terms are calculated
by comparing the difference between actual stress tensor–heat
flux and NS stress tensor–heat flux. Taking the correction term
�L

x as an example, it is calculated by

�L
x = qL

x − qL,NS
x . (78)

The other correction terms for heat flux in the x direction
on the right, upper, and bottom interfaces of the cell (I, J ) can
be calculated in the same way as

�R
x = qR

x − qR,NS
x , (79)

�U
x = qU

x − qU,NS
x , (80)

�B
x = qB

x − qB,NS
x . (81)

Finally, on the uniform mesh, the correction terms at the
cell center could be evaluated by averaging the values at four

Y

⎯Δ
σ

0 0.2 0.4 0.6 0.8 1

0.008

0.01

0.012

0.014

0.016

0.018

0.02

⎯Δσ

FIG. 8. The contour of �̄σ (left) and its value along vertical central line (right) for Kn = 0.5.
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FIG. 9. Schematic of lid-driven cavity flow.

cell interfaces as

�C
x = �L

x + �R
x + �U

x + �B
x

4
. (82)

The other correction terms at the cell center, such as �C
xx,

�C
xy, �C

yy, and �C
y , can be updated following the three steps

shown above. For �C
yx and �C

zz, their values can be given out
directly by

�C
yx = �C

xy, (83)

�C
zz = −�C

xx − �C
yy. (84)

D. Numerical approximation of integrals

In GKFS, the computation of macroscopic variables,
flux vector, and correction terms is based on the moment
integration of distribution function in the particle velocity
space. Theoretically, analytical forms of integrals for the mod-
ified gas distribution function can be given out. In this work,
for simplicity, numerical quadrature is used for approximation
of integrals. In the future work, analytical forms of integrals
for this solver will be presented for saving computational
effort.

For low-speed flows with small temperature variation, the
high-order Gauss-Hermite quadrature rule [53,54] could be
the best choice for approximation of integrals. For a function
h(u), the integral can be approximated as∫ +∞

−∞
h(u)du =

∫ +∞

−∞
e−u2

[eu2
h(u)]du ≈

Q∑
α=1

wαeu2
α h(uα ),

(85)
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FIG. 10. The comparison of temperature contours and streamlines of heat flux by different approaches for Kn = 0.01: (a) DVM, (b) novel
solver, (c) conventional GKFS, (d) present GKFS.
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FIG. 11. Comparison of velocity profiles along central line for Kn = 0.01: (a) vertical U -velocity profiles, (b) horizontal V -velocity
profiles.

where e−u2
is the weighting function and wα is the correspond-

ing quadrature weight, which can be calculated by

wα = 2Q−1Q!
√

π

Q2[HQ−1(uα )]2 . (86)

Here, HQ(u) is the Qth Gauss-Hermite polynomial and
uα (α = 1, . . . , Q) are the positive roots of HQ(u). To apply the
numerical quadrature rule, uα = (uq, vp) are used to discretize
the particle velocity space u = (u, v), where q = 1, . . . , Qx
and p = 1, . . . , Qy are indices to represent the velocity point
(q, p). By applying the integral quadrature, the conservative
variables W f = (ρ, ρU, ρV, ρE ) f at the cell interface can be
approximately calculated by

ρ f ≈
∑

α

wαhmodified(x f − uαδt, uα, t ), (87)

(ρU) f ≈
∑

α

wαuαhmodified(x f − uαδt, uα, t ), (88)

(ρE ) f ≈ 1

2

∑
α

wα

[
u2

αhmodified(x f − uαδt, uα, t )

+ bmodified(x f − uαδt, uα, t )
]
. (89)

Here, hmodified(x f − uαδt, uα, t ) and bmodified(x f −
uαδt, uα, t ) are the modified initial distribution functions

at the surrounding points of cell interface x f . Similarly,
numerical fluxes in the x direction at the cell interface can be
approximately computed by

F x
ρ ≈

∑
α

wαuαhmodified(x f , uα, t ), (90)

F x
ρU ≈

∑
α

wαuαuαhmodified(x f , uα, t ), (91)

F x
ρE ≈ 1

2

∑
α

wαuα

[
u2

αhmodified(x f , uα, t )+bmodified(x f , uα, t )
]
.

(92)

The stress tensor and heat flux at the cell interface can be
rewritten in the form of numerical quadrature as

σxx ≈ 1

3

∑
α

wα

[(
2C2

x,α − C2
y,α

) · hmodified(x f , uα, t )

−bmodified(x f , uα, t )
]

(93)

σxy ≈
∑

α

wαCx,αCy,α · hmodified(x f , uα, t ), (94)

σyy ≈ 1

3

∑
α

wα

[(
2C2

y,α − C2
x,α

) · hmodified(x f , uα, t )

− bmodified(x f , uα, t )
]
, (95)

σzz = −σxx − σyy, (96)

FIG. 12. The contours of �̄σ and �̄q for Kn = 0.01.
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FIG. 13. Comparison of velocity profiles along the diagonal lines for Kn = 0.01.

qx ≈ 1

2

∑
α

wαCx,α
[(

C2
x,α + C2

y,α

) · hmodified(x f , uα, t )

+ bmodified(x f , uα, t )
]
, (97)

qy ≈ 1

2

∑
α

wαCy,α
[(

C2
x,α + C2

y,α

) · hmodified(x f , uα, t )

+ bmodified(x f , uα, t )
]
. (98)
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FIG. 14. The comparison of temperature contours and streamlines of heat flux by different approaches for Kn = 0.0798: (a) DVM, (b)
novel solver, (c) conventional GKFS, (d) present GKFS.
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E. Implementation of kinetic boundary conditions

To evaluate numerical fluxes at the boundary, the distribu-
tion function at the wall should be determined first. In this
work, the isothermal wall boundary condition is considered.
According to no-penetration condition, we can have the fol-
lowing relationship:∑

α

wαuαhout (xw, uα, t )H (A)

+
∑

α

wαuαhin(xw, uα, t )[1 − H (A)] = 0, (99)

where xw denotes the midpoint of a cell interface on the
wall; hout represents the distribution function reflected from
the wall surface. hin denotes the incident distribution function
in the flow domain. A = uα · nw, where nw stands for the
outward unit vector normal to the wall surface and H[A] is
the Heaviside function defined as

H[A] =
{

0, A < 0
1, A > 0 . (100)
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FIG. 16. Comparison of velocity profiles along central line for Kn = 0.0798: (a) vertical U -velocity profiles, (b) horizontal V -velocity
profiles.

Based on the Maxwellian boundary condition with perfect
thermalizing wall [55], the particle is recognized leaving with
the equilibrium state because of the frequent interaction with
the boundary. Then, the distribution function reflected from
the wall can be given as

hout (xw, uα, t ) = ρwλw

π
e−λw[(uα−Uw )2]. (101)

Here, λw = 1/2RTw, Tw is the wall temperature, and Uw

means the wall velocity vector. ρw is the density on the wall,
which will be determined from the no-penetration condition.
The hin(xw, uα, t ) in the flow domain around the wall is
considered as hmodified(xw − uαδt, uα, t ). By substituting the
expression of hin(xw, uα, t ) and hout (xw, uα, t ) into Eq. (99),
the density at the wall surface can be calculated as [56]

ρw = −
∑

α wαuαhin(xw, uα, t )[1 − H (A)]
λw

π

∑
α wαuαe−λw[(uα−Uw )2]H (A)

. (102)

Finally, the distribution function at the surrounding points
of the wall surface can be expressed as

h(xw − uαδt, uα, t ) = hout (xw, uα, t )H (A)

+ hin(xw, uα, t )[1 − H (A)]. (103)

The same expression holds for b(xw − uαδt, uα, t ). Once
the gas distribution function around the wall is obtained,
the conservative variables on the wall can be calculated by
Eqs. (87)–(89). Then, the numerical fluxes at the wall can be
calculated by Eqs. (90)–(92).

F. Time discretization

After evaluation of flux vector F at each cell interface,
the discrete Eq. (25) becomes a set of ordinary differential
equations, which can be solved by the third-order total varia-
tion diminishing Runge-Kutta method [57,58] due to its lower
consumption of storage [14]. At first, Eq. (25) is rewritten as

dW
dt

= L(W), (104)
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FIG. 17. The contours of �̄σ and �̄q for Kn = 0.0798.

with L(W) = − 1
�

∑N
n=1 FnSn. Then, time discretization is

implemented as

W(0) = Wn

W(1) = W(0) + L(W(0) )�t

W(2) = 3
4 W(0)+ 1

4 W(1) + 1
4 L(W(1) )�t

W(3) = 1
3 W(0)+ 2

3 W(2) + 2
3 L(W(2) )�t

Wn+1 = W(3), (105)

where �t is the marching time step for the evolution of the
macroscopic flow variables. In the present solver, the time step
�t is determined by the CFL condition,

�t = CFL
min {δx}

max {|uα|} , (106)

where CFL represents the CFL number. δx = (δx, δy) is the
grid spacing in x and y direction. max{|uα|} means the maxi-
mum discrete particle velocity. In addition, the streaming time
step δt for the local solution reconstruction at the cell interface
should be specified. The main constraint here is to restrict the
local reconstructing points within the neighboring cells. To

satisfy this criterion, it can be computed by

δt <
min {δx}

2 max {|uα|} . (107)

G. Computational procedure

For illustration purpose, the basic computational procedure
of present solver is summarized as follows:

(i) Initialization: Discretize the physical and particle ve-
locity spaces by xi and uα , respectively. Predict the time step
�t and streaming time step δt by Eq. (106) and Eq. (107).

(ii) Reconstruct the initial distribution functions
hmodified(x f − uδt, t ) with Eq. (56). Then, compute
bmodified(x f − uδt, t ) in the same way.

(iii) Calculate the conservative variables W f at cell inter-
face using Eqs. (87)–(89). Then, reconstruct the distribution
function heq(x f , u, t ) and beq(x f , u, t ) at equilibrium state by
Eq. (5) and Eq. (6).

(iv) Construct the distribution functions h(x f , u, t ) and
b(x f , u, t ) at cell interface using Eq. (54) and Eq. (55).

(v) Implement the boundary condition: density ρw at the
boundary point is firstly computed by Eq. (102), and the
distribution functions h(xw − uαδt, uα, t ) are then obtained
with Eq. (103). After that, take the same procedure to calculate
b(xw − uαδt, uα, t ).
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FIG. 18. Comparison of velocity profiles along the diagonal lines for Kn = 0.0798.
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FIG. 19. The comparison of temperature contours and streamlines of heat flux by different approaches for Kn = 0.3989: (a) DVM, (b)
novel solver, (c) conventional GKFS, (d) present GKFS.

(vi) Adopt Eqs. (90 )–(92) to evaluate the numerical flux
Fx = (F x

ρ , F x
ρU , F x

ρV , F x
ρE )T at the cell interface. Calculate the

numerical flux Fy in a similar way.
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FIG. 20. Comparison of temperature profiles along vertical cen-
tral line for Kn = 0.3989.

(vii) Update the correction terms �i j and �i in the modi-
fied gas distribution as shown in Sec. IV C.

(viii) Use three-stage Runge-Kutta scheme shown in
Eq. (105) to update the macroscopic variables at cell centers.

(ix) Repeat steps (ii)–(viii) until the whole computation
satisfies the convergence criterion.

V. NUMERICAL EXAMPLES

In this section, the proposed new variant of GKFS is val-
idated by simulating flows from the continuum regime to
the transition regime. Comparison of numerical results from
various solvers is made for test cases of planar Couette flow,
lid-driven cavity flow, and bottom-heated square cavity. As
discussed in Sec. III, the correction terms for stress tensor and
heat flux are the key for simulation of flows beyond NS level.
To visualize the high-order correction terms in the flow field,
herein we define two parameters �̄σ and �̄q as follows:

�̄σ =
√∑(

�2
i j

)
, (108)

�̄q =
√∑

(�2
i ). (109)
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FIG. 21. Comparison of velocity profiles along central line for Kn = 0.3989: (a) vertical U -velocity profiles, (b) horizontal V -velocity
profiles.

A. Case 1: Planar Couette flow

At first, the planar Couette flow for argon gas in the tran-
sition regime is simulated to validate the present solver. This
case has been simulated by Gu and Emerson [20] using the
NS equations and R13 equations. Liu et al. [33] also tested
this problem by adopting discrete velocity method (DVM)
and a novel solver. As known, the velocity profile for planar
Couette flow is linear in the continuum regime, and it will
be nonlinear in the near-surface region when it comes to the
rarefied regime. This is a critical rarefaction phenomenon
known as the Knudsen layer or kinetic boundary layer [45].
Hence, it is a good example for us to test the performance of
present solver for planar Couette flow in the transition regime.

As shown in Fig. 2, two parallel plates are set at y = ±H/2,
and velocity of the upper and lower moving walls is set as
Uw = ±50 m/s. The wall temperature is fixed at Tw = 273 K.
The left and right boundaries are both set with the periodic
boundary condition. Computational domain is divided uni-
formly into 60 × 60 cells for all cases. In the particle velocity
space, the Gauss-Hermite rule with eight quadrature points is
adopted for integral quadrature.

In the simulation, the viscosity is obtained from Suther-
land’s law:

μ = μref

( T

Tref

)1.5 Tref + Ts

T + Ts
, (110)

where Tref = 273(K), Ts = 104(K). The Knudsen number is
defined as Kn = λ/H , where λ is the mean-free path of
molecule and can be related to the reference viscosity by

λ = μref

p

√
πRTref

2
. (111)

According to the definition of Knudsen number, the refer-
ence viscosity can be expressed by

μref= KnH p

√
2

πRTref
. (112)

In the present work, three benchmark cases with Knudsen
numbers of 0.1, 0.25, and 0.5 are considered. Figure 3 shows
the comparison of velocity profiles obtained by different ap-
proaches at the upper limit of slip regime with Kn = 0.1. As

FIG. 22. The contours of �̄α and �̄q for Kn = 0.3989.
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FIG. 23. Comparison of velocity profiles along the diagonal lines for Kn = 0.3989.

shown in the enlarged plot of Fig. 3, the NS solver could
capture the wall-slip phenomenon near the moving plates;
however, the value of wall slip is overpredicted. In contrast,
the result of present GKFS is comparable with that from
novel solver or R13 equations and even much closer to the
result of DVM. We hold the view that the better prediction of
velocity profiles is mainly related to the correction terms to the
stress tensor. To further validate this standpoint, the contour
of �̄σ , which is defined in Eq. (108), is displayed in Fig. 4.
It is apparent to see that the correction terms for stress tensor
mainly take effect in the near-surface region and its peak value
is equal to 0.002. Therefore, the correction term within the
Knudsen layer indeed contributes to the better prediction of
velocity profile. Additionally, the values of �̄σ in the central
part of the Couette flow are relatively small. Hence, �̄σ almost
makes no contribution to the correction of linearized stress
tensor in the central equilibrium region.

As seen in Fig. 5, when the Knudsen number is increased
to the early transition regime with Kn = 0.25, the nonlin-
ear effect within the Knudsen layer increases simultaneously.
From the enlarged plot of Fig. 5, we can see that NS equa-
tions and R13 equations both fail to capture the nonlinear

Knudsen layer effect. In contrast, the new variant of GKFS
can basically predict the power-law behavior of the velocity
profile and agrees better with the DVM data than the novel
solver. Figure 6 illustrates the contour of �̄σ and its value
along the vertical central line. It is noted that the correction
term to stress tensor indeed makes sense within the Knudsen
layer and its peak value is increased to 0.008. For the central
equilibrium part, the values are still relatively small, which
means the correction terms almost take no effect in the central
region.

As illustrated in Fig. 7, at Kn = 0.5, which is in the tran-
sition regime, there exists extremely strong rarefaction effect
in the near-surface region. The DVM data shows the expected
nonlinear velocity profiles. Although both NS and R13 solvers
fail to capture this aspect of velocity profile, the results from
the present solver follow this behavior and capture the slip at
the wall in better agreement with DVM than the novel solver.
As seen in Fig. 8, the correction terms to the stress tensor take
more effect with the increase of Knudsen number. The peak
value of �̄σ inside the Knudsen layer has been increased to
0.0185. Based on the results shown above, we may conclude
that it is the merit of additional correction terms that enable
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FIG. 24. Comparison of velocity profiles along central line for Re = 100: (a) vertical U -velocity profiles, (b) horizontal V -velocity profiles.
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FIG. 25. Comparison of velocity profiles along central line for Re = 400: (a) vertical U -velocity profiles, (b) horizontal V -velocity profiles.

the new variant of GKFS to have the capability for prediction
of strong nonequilibrium effect in the Knudsen layer.

B. Case 2: Lid-driven cavity flows

The second test case is the 2D lid-driven cavity flow. This
case has been researched by Rana et al. [59] using R13 equa-
tions, and Liu et al. [33] using the novel solver. The schematic
of lid-driven cavity flow is shown in Fig. 9. The velocity of
upper boundary is Uw = 50 m/s and wall temperature TW is
set as 273 K.

In the simulation, the viscosity μ is given by the inverse
power law

μ = μref

( T

Tref

)ω

, (113)

where the reference temperature is Tref = 273 K and the expo-
nent is ω = 1. The mean-free path λ is related to the reference
viscosity by

λ = μref

ρref
√

RTref
, (114)

in which ρref is the reference density. Based on the definition
of Knudsen number, Kn = λ/L, the reference viscosity can be
expressed by

μref = KnLρref
√

RTref . (115)

Here, the monatomic rarefied gas with Kn = 0.01, 0.0798,
and 0.3989 is considered, and the present results are compared
with those from other solvers such as DVM, novel solver, and
conventional GKFS. The computational domain is divided
uniformly into 60 × 60 cells and the Gauss-Hermite quadra-
ture with 8 × 8 points is adopted. It is noteworthy that for the
simulation by DVM, the Gauss-Hermite quadrature with 28 ×
28 points is utilized to ensure the convergence.

In Fig. 10, we compare the temperature contours and the
streamlines of heat flux. We can see that the heat flux predicted
by DVM, novel solver, and present GKFS all go from left
upper corner to right upper corner (low-temperature region to
high-temperature region). However, for conventional GKFS,
this anti-Fourier heat transfer phenomenon cannot be cap-
tured. Figure 11 shows that velocity profiles along central line
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FIG. 26. Comparison of velocity profiles along central line for Re = 1000: (a) vertical U -velocity profiles, (b) horizontal V -velocity
profiles.
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FIG. 27. The U -velocity contour and streamlines for different Reynold numbers: (a) Re = 100, (b) Re = 400, (c) Re = 1000.

calculated by the four solvers match well with each other at
Kn = 0.01.

To further explore the contribution of correction terms on
the nonequilibrium region, the contours of �̄σ and �̄q for
Kn = 0.01 are displayed in Fig. 12. It is obvious to see that the
correction terms to stress tensor and heat flux are both mainly
to take effect in the upper region of the left and right corners.
To make the comparison in more detail, the velocity profiles
obtained by conventional GKFS and present GKFS along the
diagonal lines are compared in Fig. 13. The results suggest
that the velocity profiles along the diagonal lines predicted by
present GKFS match better with those of DVM results than
conventional GKFS, especially near the region of the left and
right corners. This provides clear evidence that the correction
terms really take effect near the region of the left and right
corners.

As shown in Fig. 14, the anti-Fourier heat transfer phe-
nomenon can also be captured by DVM and novel solver
for Kn = 0.0798. The most notable difference between con-
ventional GKFS and present GKFS is the reversed direction
of heat flux. For conventional GKFS, Fourier’s law forces
the heat flux vector pointing from hot region to cold region.
However, in the present GKFS, the direction is inverted and
heat is transferred from cold region to hot region. The com-
parison of temperature profiles along the vertical central line is
illustrated in Fig. 15. As we can see, the temperature deviates
only slightly from the wall temperature because the frictional
heating is quite weak. The results predicted by present GKFS
agree better with the DVM data than conventional GKFS,

especially in the bottom region of cavity. However, it under-
predicts the temperature near the moving wall.

Figure 16 shows the U -velocity and V -velocity profiles
along vertical and horizontal centerline. For the V -velocity
distribution, the result given by R13 equations slightly devi-
ates from DVM near the wall boundary. Conventional GKFS
slightly underpredicts the peak value of V velocity. The
present GKFS and novel solver both predict the data as well
as DVM. The contours of �̄σ and �̄q for Kn = 0.0798 are
demonstrated in Fig. 17. Compared with the contours shown
in Fig. 12, it appears that the correction terms to stress tensor
and heat flux enlarge with the increasing of Knudsen number.
In Fig. 18, the velocity profiles along the diagonal lines are
compared. The results show that the velocity profiles pre-
dicted by present GKFS are in better agreement with those
of DVM results than conventional GKFS. Hence, it can be
further deduced that the correction terms indeed make contri-
bution in the strong nonequilibrium region of the flow field.

Figure 19 shows the comparison of temperature contour
and heat flux lines obtained by different approaches for
the larger Knudsen number with Kn = 0.3989. The present
GKFS can still well predict the anti-Fourier heat transfer
behavior as DVM or novel solver does. For conventional
GKFS, the streamlines of heat flux still go from the high-
temperature region to the low-temperature region as limited
by the Fourier heat transfer law. In Fig. 20, we compare the
temperature profiles along the vertical line across the center of
cavity. The conventional GKFS overpredicts the temperature
in the bottom region and underpredicts the temperature near

FIG. 28. The contours of �̄σ for flows in the continuum regime: (a) Re = 100, (b) Re = 400, (c) Re = 1000.
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TABLE I. Locations of primary vortex centers obtained by dif-
ferent approaches.

Re Ghia et al. [60] Conventional GKFS Present GKFS

100 (0.6172,0.7344) (0.6181,0.7382) (0.6175,0.7386)
400 (0.5547,0.6055) (0.5563,0.6056) (0.5560,0.6059)
1000 (0.5313,0.5625) (0.5320,0.5653) (0.5320,0.5654)

the wall boundary. In contrast, R13 solver, novel solver, and
present GKFS show the opposite tendency. The present GKFS
predicts the thermal behavior of the flow with reasonable
accuracy compared with DVM data.

As displayed in Fig. 21, when the Knudsen number is
increased to 0.3989, both U - and V -velocity profiles of dif-
ferent solvers start to deviate from the DVM data. Overall, the
result of present GKFS is closer to DVM data as compared
with conventional GKFS, which is attributed to the correction
terms. However, it is noted that the peak value of V -velocity
given by the novel solver is in better agreement with DVM
than present GKFS. Figure 22 displays the contours of �̄σ and
�̄q for Kn = 0.3989. Compared with the previous contours of
correction terms at Kn = 0.01 and 0.0798, the nonequilibrium
region at Kn = 0.3989 is enlarged apparently. The correction
terms contribute to the region not only in the upper corners but
also near the whole moving boundary. From the comparison
of velocity profiles along the diagonal lines shown in Fig. 23,
we can conclude that the better performance of present GKFS
than conventional GKFS is indeed attributed to the correction
terms.

In addition, the simulation of continuum flows at Reynolds
number of Re = 100, 400, and 1000 are conducted to vali-
date the present solver. The computational domain is divided
uniformly into 80 × 80, 100 × 100, and 120 × 120 cells with
the increase of Reynolds number. In these cases, the reference
dynamic viscosity μref is calculated by μref = ρrefUW L/Re.
As shown in Fig. 24, Fig. 25, and Fig. 26, the results of
the present solver agree well with those of Ghia et al. [60]
and the conventional GKFS. These test cases prove that the
present solver can recover solutions of conventional GKFS in
the continuum regime and give the same accurate results.

FIG. 30. The schematic of the problem.

As illustrated in Fig. 27, the present solver can capture
two small eddies at the bottom corners reasonably. With the
increasing of Reynolds number, vortex center moves towards
the center of the cavity. Table I compares the locations of
the primary vortex center with different Reynolds numbers
obtained by conventional GKFS and present GKFS using
eight quadrature points with those obtained by Ghia et al. [60].
As shown in this table, the maximum relative error between
the present results and those of Ghia et al. [60] is less than
5.7‰.

Figure 28 shows the contour of �̄σ for Re = 100, 400,
and 1000 in the continuum regime. It is noted that correction
terms almost make no contribution in the whole flow field for
the continuum flow, except a little contribution existing in the
left and right corner of the moving wall. This implies that the
present GKFS could recover solutions of NS equations in the
continuum regime because the correction terms automatically
take no effect for the flows in NS level.

At the same time, the effect of quadrature point number
on the present solver is investigated. As shown in Fig. 29, the

Y, X

U
/U

w
,V

/U
w

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Present GKFS (8X8)
Present GKFS (16X16)
Present GKFS (28X28)

Y, X

U
/U

w
,V

/U
w

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

DVM (8X8)
DVM (16X16)
DVM (28X28)

FIG. 29. The comparison of velocity profiles with different quadrature point numbers for present solver (left) and DVM (right) at Kn =
0.3989.
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FIG. 31. Comparison of temperature contours by different solvers for Kn = 0.05: (a) DVM, (b) explicit novel solver, (c) present GKFS.

velocity profiles predicted by the present solver with 8 × 8, 16
× 16, and 28 × 28 quadrature points are the same. However,
for the DVM method, the velocity profiles calculated with
8 × 8 and 16 × 16 quadrature points cannot converge to
the results with 28 × 28 quadrature points. In this aspect, the
present solver can adopt less quadrature points than DVM to
obtain the converged results and thus improve the computa-
tional efficiency. Furthermore, the explicit formulations of the
present gas distribution function shown in Eqs. (52) and (53),
provide us an opportunity to derive the analytical forms in
the future work. After that, the simulation efficiency can be
further improved.

C. Case 3: Bottom-heated square cavity

For the previous two cases, the temperature difference is
quite small and the present GKFS has shown potential for
capturing the rarefaction effect. To further explore the ability
of the present solver for flows with large temperature varia-
tion, we test the heat transfer flow in a bottom-heated square
cavity [61]. The schematic diagram of this benchmark case
is shown in Fig. 30. The temperature of the bottom wall is
fixed at T∞ + �T , where T∞ is the reference temperature and
�T is the temperature difference. In the simulation, �T is
considered as 300 K. For the other walls, their temperatures
are kept at T∞ = 300 K. In order to test the accuracy of the
present solver for flows in the rarefied regime, the Knudsen

number is taken as 0.05 and 0.13. In Fig. 29, L is the length of
the cavity and the computational domain is divided uniformly
into 60 × 60 cells. In this case, the Gauss-Hermite quadrature
points are increased to 28 × 28 for accurate description of gas
distribution function. In the simulation, the viscosity μ is also
calculated by Eq. (113). The mean-free path λ is determined
by Eq. (114).

Figure 31 shows the comparison of temperature contours
for Kn = 0.05 between DVM [62], explicit novel solver [34],
and the present GKFS. The temperature profiles along the
horizontal and vertical central line are displayed in Fig. 32.
As seen in these two figures, the results of the present
solver match well with those of DVM and the explicit novel
solver. The comparison of temperature contours at Kn = 0.13
between DVM, explicit novel solver, and present solver is
displayed in Fig. 33. As seen in Fig. 34, for the temperature
profiles there exists a little difference between the present
solver and DVM. As shown in Fig. 34(a), the horizontal
temperature profile along the central line given by the present
GKFS matches better with DVM than the explicit novel
solver. On the other hand, for the vertical temperature profile,
the explicit novel solver can give a slightly better result than
present GKFS near the bottom wall. The contours of �̄q

for Kn = 0.05 and Kn = 0.13 are shown in Fig. 35, which
reveals that for flows arising from temperature difference,
the nonequilibrium effect mainly occurs at the left and right
corners of the heated wall.
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FIG. 32. Comparison of temperature profiles along central line for Kn = 0.05: (a) horizontal temperature profiles, (b) vertical temperature
profiles.
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FIG. 33. Comparison of temperature contours by different solvers for Kn = 0.13: (a) DVM, (b) explicit novel solver, (c) present GKFS.
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FIG. 34. Comparison of temperature profiles along central line for Kn = 0.13: (a) horizontal temperature profiles, (b) vertical temperature
profiles.

FIG. 35. The contours of �̄q for Kn = 0.05 (left) and Kn = 0.13 (right).
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VI. CONCLUSIONS

A variant of gas kinetic flux solver is presented for sim-
ulation of flows from the continuum regime to the transition
regime in this work. The method follows the framework of
conventional GKFS and evaluates the numerical fluxes by
the moments of distribution function at the cell interface.
The key contribution of the present work is the introduction
of the correction terms to the stress tensor and heat flux
in the approximation of initial distribution function. These
correction terms will take effect in the strong nonequilib-
rium region for flows beyond the NS level. To avoid finding
complex expressions or solving complicated partial differen-
tial equations for the correction terms, an iterative strategy
is proposed. This strategy updates the correction terms by
computing the difference between the actual stress tensor–
heat flux and linearized ones in the NS level. The present
GKFS is validated by three benchmark cases, and simulation

results show that the present solver could not only provide
accurate solution in the continuum regime but also capture the
strong nonequilibrium effect for flows beyond the NS level.
Furthermore, the correction terms for stress tensor and heat
flux, �̄σ and �̄q, are calculated, which provide conclusive
evidence that the correction terms indeed make contribution
in the strong nonequilibrium region, where the linearized con-
stitutive relationship and Fourier’s law are invalid. It is indeed
the introduction of correction terms that enables simulation of
rarefied flows at moderate Knudsen number.
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