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Quasistatic rheology of soft cellular systems using the cellular Potts model
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Soft cellular systems, such as foams or biological tissues, exhibit highly complex rheological properties, even
in the quasistatic regime, that numerical modeling can help to apprehend. We present a numerical implementation
of quasistatic strain within the widely used cellular Potts model (CPM). The accuracy of the method is tested by
simulating the quasistatic strain of two-dimensional dry foams, both ordered and disordered. The implementation
of quasistatic strain in CPM allows the investigation of sophisticated interplays between stress-strain relationship
and structural changes that take place in cellular systems.
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I. INTRODUCTION

Soft cellular systems, which encompass foams, emulsions
and biological tissues, are constituted of highly deformable—
yet almost incompressible—units (bubbles, drops, cells),
interacting through attractive adhesive interactions and soft
steric repulsions. Interface energy is key to the cohesion and
the rigidity of these systems, sometimes constituted solely of
fluids. Under small strains, they behave elastically. Above a
yield value, plastic rearrangements (called T1 events) occur,
conferring to these systems a complex rheological behavior
[1]. The relationship between the macroscopic response and
the microscopic details, such as packing fraction and struc-
tural disorder, is still the subject of intense research activity
[2–4]. Even the simplest case of quasistatic regime—in which
the structure is at mechanical equilibrium at every time—is far
from being fully understood, in particular in the shear banding
phenomenon, which consists of the concentration of shear
strain in localized zones (bands) and then the coexistence
of flowing and stationary regions in a sheared material [5].
Numerical tools have been proven to be extremely useful to in-
vestigate the relationship between microscopic details and the
macroscopic mechanical response [6–10]. The cellular Potts
model (CPM) is one of the standard numerical modelings of
multicellular systems, with various applications ranging from
foam coarsening to collective behaviors of biological cells.
However, because of its lattice-based modeling technique, it
has been rarely used to investigate mechanical properties of
cellular systems, except for a few exceptions [11,12].

In this paper, we present a rigorous implementation of
quasistatic strain within CPM, offering a versatile tool to
investigate the interplay between mechanical properties and
other processes at work in cellular systems, such as coarsening
in foams, or cell division and cell death in biological tissues.
The outline of the paper is as follows. In Sec. II we introduce
the cellular Potts model and show how it can be conveniently
extended to simulate cellular systems under quasistatic strain.
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The method is compared with other existing approaches, and
extension to higher strain rates is discussed. In Sec. III we
test the proposed method by analyzing the shear strain of
two-dimensional (2D) dry foams. For a regular hexagonal
foam, the shear modulus we obtain numerically agrees with
the corresponding theoretical expression [13,14]. Yield strain
is also analyzed. For disordered foams, we study the effect of
disorder on the affinity of the displacement field and the shear
modulus magnitude, and we compare our results with those
reported in the literature.

II. MODELING QUASISTATIC STRAIN WITH CPM

A. Cellular Potts model

The cellular Potts model (CPM), also called the Glazier-
Graner-Hogeweg model, is one of the most accepted models
of a multicellular system. It is widely used for simulating
cellular systems in various fields of physics or biology, such
as coarsening and mechanics of foams [11,15], tissue mor-
phogenesis [16], cell sorting [17], and collective cell motion
in epithelial tissues [18,19]. The CPM is a lattice-based model
in which each cell in the system is given a different label (cell
ID), and each lattice site k has a value σk taken from the list
of cell IDs. A given cell is then represented by the subset of
lattice sites that have its cell ID. A cell type τ (σ ) can also be
defined for each cellular domain. The CPM makes no assump-
tion on the shape or the connectivity of the cellular domains,
these properties are direct consequences of the energy terms of
the Hamiltonian H. In particular, walls between adjacent cells
are allowed to fluctuate, and T1 events happen spontaneously.
The CPM Hamiltonian H that characterizes 2D soft cellular
systems reads [17] as follows:

H =
∑

neighboring sites〈k, l〉
Jτ,τ ′

(
1 − δσk ,σl

)

+ B

2A0

∑

cells i

(Ai − A0)2. (1)
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The first sum in Eq. (1) is carried over neighboring sites 〈k, l〉
and represents the boundary energy: each pair of neighbors
having unmatching indices determines a boundary and con-
tributes to the boundary energy. Here, σk and σl are the site
values of sites k and l , respectively. δ is the Kronecker delta
symbol: δm,n = 1 if m = n, and 0 otherwise. τ and τ ′ are
abbreviations for τ (σk ) and τ (σl ). Jτ,τ ′ (=Jτ ′,τ ) is the energy
per unit contact length between cell types τ and τ ′. The second
sum in Eq. (1) represents the compressive energy of the cells.
Ai is the area of cell i, and A0 is the nominal area. A factor
of 2 has been introduced in the denominator so that B can
be identified with the effective 2D bulk modulus of a cell,
−d2H/dA2

i .
The state of the system is updated via a Monte Carlo

algorithm. A lattice site is first selected randomly. A target
label is then randomly selected amongst this site’s neighbor-
ing labels, and the update is accepted or discarded following a
Metropolis-like rule which preserves the connectivity of cel-
lular domains [20]. The acceptance probability in this Monte
Carlo scheme requires a temperature, which has to be chosen
carefully. Setting the temperature to a small value is anal-
ogous to performing an energy minimization, which is the
usual choice to study the structure of dry foams. Higher tem-
peratures will induce fluctuations in the boundaries between
adjacent bubbles. Further increase of the temperature leads
to large topological rearrangements and is useful to model
biological systems, the simulation temperature reflecting the
cellular activity.

B. Adding quasistatic strain to CPM

A common way to introduce strain in numerical simula-
tions is by changing the shape of the simulation box. After
proper equilibration, static properties of the materials can
be measured directly for any given strain. However, such a
method cannot be used in lattice-based modeling techniques
like CPM. Nevertheless, strain can be applied by adding ap-
propriate terms in the Hamiltonian. This approach has been
used by Jiang and Glazier to simulate foams submitted to
a time-dependent shear rate [11]. In this study, shear is in-
troduced by adding an energy contribution of the bubble
boundaries, either in the bulk or in those in contact with
the two edges of the sample only, so that updates that move
the wall in the direction of the shear are more likely to be
accepted. The energy term added to the Hamiltonian is actu-
ally an energy gradient and is kept constant throughout the
simulation. In the Monte Carlo algorithm, an energy gradient
is analogous to a stress, so that the simulations are actually
performed by applying a constant stress to the foam. The
same method has been used by Raufaste et al. to simulate a
foam flow around an obstacle [12]. One great advantage of
this method is that it does not require one to wait for mechan-
ical equilibration before incrementing the wall displacements.
However, this approach has also a few drawbacks. First, when
the strain energy term is applied on every bubble boundary
(bulk strain), it overdetermines the displacement field. The
case of a regular hexagonal foam is illustrative in this re-
spect: the method implies an affine deformation of the bubble
boundaries, which is not compatible with the Plateau’s laws
that impose equal 120◦ at mechanical equilibrium [9]. The

FIG. 1. Shape of deformed hexagonal bubbles following the
affine displacement field (top right) and the Princen displacement
field (bottom right). Only the latter satisfies the 120◦ joining angles
that result from mechanical equilibirum.

exact deformation field which is compatible with the Plateau’s
has been derived by Princen [13,14] (see Sec. III B). Affine
deformation and actual (Princen) deformation are compared
in Fig. 1. As is discussed in Sec. III B, the shear modulus
derived from affine deformation is 25% lower than the actual
(Princen) shear modulus.

Similarly in Ref. [12], the added energy term sets the
rheological behavior of the foam, resulting in a plug flow of
the foam in the channel. Second, when the applied stress is
larger than the yield value, the foam deformation produces
a stress that opposes the one applied by the energy term.
As a consequence, the actual shear rate of the simulation is
not constant, but is the difference between the applied stress
and the stress produced by the foam as an elastic response.
This makes evaluating the actual shear strain quite difficult
(in Ref. [11] it is assumed that it is proportional to the number
of Monte Carlo steps).

We develop here an alternate method to simulate qua-
sistatic strain within the CPM, while avoiding these draw-
backs. It first requires the Potts lattice to be nonperiodic in
one direction, which we choose to be the y direction. This
nonperiodicity effectively creates a foam encased between
two walls. To simulate a given strain created by the movement
of these walls, we impose the displacement of the bubbles that
touch the edges y = ±L/2, where L is the size of the box in
the y direction. This is done by adding the following term to
the Hamiltonian:

Hstrain =
∑

i

k

2
δi,e|ri − r�

i |2, (2)

where ri is the position of the center of mass (c.m.) of bubble
i, and r�

i is its target position. For instance, to simulate a shear
strain ε along the x direction, r�

i = ε yiex, where ex is the unit
vector along the x axis. The Kronecker δi,e in Eq. (2) is there to
restrict the application of the strain to the bubbles in contact
with the top and bottom edges of the box (symbolized with
index e). The displacement and deformation of the bubbles in
the bulk result only from the minimization of the total energy.

The constant k acts as a spring coefficient. Higher values
will impose a stronger restraint on the position of the c.m.
This value must be high enough so that the c.m. of each bubble
stays in the vicinity of its target position, but not so high that it
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strain increment

FIG. 2. Energy evolution during an increment of strain. Green
curve: Spring energy [Eq. (2)] normalized by the foam energy at zero
strain E0. Blue curve: Foam energy E [Eq. (1)] −1 normalized by E0.
Orange curve: Normalized foam energy averaged over time between
two strain increments.

affects the shape of the bubbles. It can be chosen empirically:
starting from a low value, the constant k can be increased until
the average position of each c.m. is close enough to its target
value (typically within a distance of 1 pixel). Alternatively, an
estimation of a proper value can be obtained by considering
the stress that these harmonic restraints apply on the bubbles.
They create a potential energy gradient around the c.m. of
bubble i, which is equivalent to a force of k(ri − r�

i ). This
force is actually the shear stress that is applied to the system
in order to induce the shear strain. In the elastic regime, this
stress is proportional to the strain and depends only on the
shear modulus. With an estimation of the shear modulus, we
can find the value of k that will induce an average distance
between the c.m. and its target position of any arbitrary value,
typically chosen to be of the order of a pixel. With this
method, k will depend linearly on the imposed shear strain.

The methodology to simulate quasistatic strain is then
the following. Starting from an unstrained foam, we slowly
increase the applied strain ε over multiple simulations. The
strain is kept constant over the course of a given simulation,
and the final configuration is used as the starting point of the
simulation at a higher strain. The increments of ε must remain
small in comparison with �/L (where � is the typical size
of a bubble), especially at yield strain and above, to ensure
that the structure relaxes in accordance with a true quasistatic
regime; i.e., the succession of T1 events that would occur in
a real foam is reproduced accurately. When ε is incremented,
bubbles at the boundary translate to their final positions over
the course of just a few Monte Carlo steps. However, proper
equilibration over the whole sample takes longer and depends
on both the temperature and the system size. We check that
equilibrium is reached by monitoring the total energy, and
we run each simulation until the energy fluctuates around a
steady value. As an illustration, Fig. 2 shows the evolution of
foam energy [Eq. (1)] and spring energy [Eq. (2)] during an
increment of strain.

Ensemble averages and relevant quantities can be obtained
for each value of the strain. In particular, the energy is used to

extract the relevant information about the elastic modulus and
the yield strain. In the elastic regime, the stress is proportional
to the strain, so that the strain energy varies quadratically with
the strain, with a prefactor that depends only on the size of
the system and the effective elastic modulus. For instance, the
energy of a 2D medium with surface area A under a shear
strain ε is

E (ε) − E0 = AG

2
ε2, (3)

where E0 is the energy at zero strain, and G is the 2D shear
modulus. Yield strain is determined either by tracking the
drop of the strain energy or counting the frequency of T1
rearrangements.

C. Validity beyond quasistatic regime

In the quasistatic regime, viscous dissipation plays no role,
and the typical timescale of T1 rearrangements [21] is much
smaller than the timescale of strain. Although it is tempting
to simulate mechanics of cellular systems beyond the qua-
sistatic regime, it must be warned that the CPM is a Monte
Carlo simulation technique, and as such the kinetics of the
relaxation process is determined by the Monte Carlo updating
rule. Therefore, the rheological behavior in this regime will
depend on the chosen updating rule. The CPM traditionally
uses a Metropolis-like algorithm, because of its ability to
mimic overdamped force-velocity behavior [22].

III. QUASISTATIC SHEAR OF 2D FOAMS

A. Initial state preparation

We test our method and assess its performances by simulat-
ing 2D foams under quasistatic shear strain. Although liquid
content can be readily incorporated in the CPM, we assume
the dry foam limit in this study. We first simulate regular
hexagonal foams, for which quasistatic shear deformation,
shear modulus, and yield strain can be calculated analytically.
We then extend our study to polydisperse disordered foams,
to check that our method allows us to capture the effect of
disorder, and compare our results with those obtained in a
previous study [7] using SURFACE EVOLVER, another popular
numerical model for cellular systems [23].

For the regular hexagons, we use 100 bubbles on a 10 × 10
arrangement. Periodic boundaries are used along the x direc-
tion, but not along the y direction, which effectively results in
walls at the top and bottom of the simulation box. The initial
and target surface areas of the bubbles that lie at the bound-
aries are set to half of the surface area A0 = 1000 pixels2 of
the other bubbles. This is done so that interbubble edges meet
with the boundaries at 90◦ angles, which is expected for a
foam at rest. Special care is taken so that the aspect ratio of the
simulation box matches the aspect ratio of a regular hexagonal
lattice (2/

√
3).

The polydisperse foam is created from a random distribu-
tion of points in a square box. A Voronoi tessellation is done
on this array of points to generate the starting configuration.
Each bubble is given a random target surface area, A0, follow-
ing a normal distribution with an average of 1000 pixels2 and
a standard deviation of �A = 125 pixels2. The foam is then
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FIG. 3. Nonaffine component of the displacement field of the
bubble centers (in red) and threefold junctions between edges (in
blue) for a regular hexagonal foam under quasistatic shear (image
corresponds to the strain value ε = 0.45).

equilibrated in consecutive stages. A temperature annealing is
first performed with a small bulk modulus B. Lowering the
bulk modulus enhances topological rearrangements, resulting
in faster and more thorough equilibration. In a second stage,
the bulk modulus is progressively increased to a more realistic
value. Finally, the foam is sheared along the x axis in both
directions up to a strain of 0.1. This final step ensures that the
shear loading that will be performed in the following will not
trigger many, if any, T1 events. At the end of this equilibration
procedure, the standard deviation of the distribution of side
numbers per bubble is found to be �n = 0.48.

In all our simulations, we set J = 1 and B = 30. Note that,
as shearing is done at constant volume, the results are not
really affected by the compressibility of the cells.

B. Hexagonal foam

1. Displacement field and shear modulus

For a regular, hexagonal foam, the deformation, and sub-
sequently the elastic moduli, can be calculated analytically
[13,14]: since the foam cells are spatially periodic, for any
deformation, the centers of the hexagonal cells move affinely
with the bulk. Cell symmetry implies that the midpoints of
each edge also move affinely. Further, in any deformation, the
edges remain planar, in accordance with Young and Laplace’s
equations. Note that, as a consequence, the threefold junc-
tions between edges do not move affinely. We define the
nonaffine component of the displacement field as the actual
displacement field to which the affine displacement field εy
is subtracted. Figure 3 shows the nonaffine displacement field
of both the bubble centers and the edge junctions that we ob-
tained numerically. In agreement with the theory, only bubble
centers follow the affine displacement field.

The exact stress-strain relationship has been calculated
by Princen, yielding the following expression for the shear

modulus [13,14]:

GPrincen = 2λ√
3lh

1√
ε2 + 4

, (4)

where λ is the line tension (so an edge of length � has an
energy of 2λ�) and lh is the length of the side of a hexagon.
Equation (4) gives the shear modulus for a foam up to the
yield point. For small strains, its expression simplifies to

GPrincen = λ√
3lh

. (5)

We can compare this expression with the shear modulus that
the foam would have if the strain field was affine everywhere
(what is called bulk strain in Ref. [11]). Using simple ge-
ometry arguments, and assuming ε � 1, the strain energy
is Eaffine = E0 + A

√
3λε2/8lh. Using Eq. (3), the associated

shear modulus is then Gaffine = 3GPrincen/4. Note that in CPM
simulations, the line tension λ is proportional to J: λ = zJ ,
where the prefactor z depends on the range of interactions
between lattice sites [24,25]. Actually, the underlying lattice
introduces some anisotropy, so that z depends slightly on the
orientation of the edge. Increasing the neighbor order helps to
smooth out this anisotropy, but increases the computational
cost. For this reason, we use fourth-neighbor order (corre-
sponding to 20 neighbors per pixel) in our simulations, which
is a good compromise between cost and accuracy. However,
a residual anisotropy can still have significant impact on the
mechanical response of the simulated foam, as edges tend
to be pinned in orientations that minimize energy. This is
especially pronounced for the regular hexagonal foam, whose
edges have three possible orientations only. For disordered
foams, anisotropy of the line tension is somehow smoothed
out by the wider orientational distribution of the edges.

Fortunately, the effect of lattice anisotropy can be circum-
vented by increasing the simulation temperature, which has
for effect to induce sampling over more edge orientations.
However, increasing the temperature also tends to increase the
overall energy of the system, mostly because the fluctuating
edges are longer than at zero temperature. Precisely, when
fluctuations are small, the increase in length of an edge at
temperature T is proportional to its length at zero temperature:
δ� = �T/2λa, where a (a ∼ 1 pixel) is some cutoff length
[25]. Therefore, one must evaluate G at different temperature
values and then extrapolate its value at zero temperature to
circumvent anisotropy artifacts.

For a given simulation temperature, a series of simulations
is performed at different shear strains. A quadratic fit of E =
f (ε) gives us the numerical value of the shear modulus of the
hexagonal foam Ghex. The value of Ghex as a function of the
normalized temperature is reported in Fig. 4. For temperatures
T/J � 1.5, the energy does not vary quadratically with the
strain, because of the anisotropy of the underlying lattice,
leading to inaccurate values of Ghex. For the temperature range
T/J > 1.5 on the other hand, the quadratic fit converges and
the reported value Ghex varies linearly with the simulation
temperature. We adjust the value of the prefactor z such that
the intercept of the linear fit of Ghex is equal to the theoretical
value GPrincen [Eq. (5)]. We obtain z = 10.50 ± 0.07, in very
good agreement with other values reported in the literature
[24–27] and, hence, confirming the accuracy of the method.
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FIG. 4. Dimensionless shear modulus Ghex/GPrincen of a hexag-
onal foam as a function of the normalized temperature T/J . The
orange line represents the linear fit over the range T/J > 1.5.

2. Yield strain

Unlike shear modulus, the yield strain of a regular hexag-
onal foam changes with the orientation of the strain. With
our chosen orientation (Fig. 3), the expected value is 2/

√
3

[13,14]. Note that this theoretical value assumes that the foam
is homogeneous and invariant by translation in both direc-
tions, so that at yield strain T1s occur simultaneously and
uniformly in the hexagonal foam [13,14].

As for the shear modulus, we study the evolution of the
yield strain with temperature and extrapolate to zero tem-
perature to circumvent any effect of the underlying lattice
anisotropy (Fig. 5). For a given temperature, the yield strain
is determined by tracking the strain energy of the system: it
is defined as the strain value at which energy drops abruptly,
as illustrated in Fig. 6. Extrapolation leads to a yield strain
value of 0.74 at zero temperature, which is significantly lower
than the theoretical value. The cause of this discrepancy is
the presence of the walls: in our simulations, as well as in
real foams, the presence of these walls breaks the translational

FIG. 5. Yield strain as a function of the normalized temperature.
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FIG. 6. Normalized strain energy E (ε)/E0 − 1 of a hexagonal
foam as a function of the shear strain ε [Eq. (3)]. The yield strain
is indicated by the dashed vertical line. The first orange curve is a
quadratic fit of the simulation points below the yield strain of 0.51.
The second curve is identical but offset to the right by a quantity of
�ε = 2/9

√
3.

invariance in the y direction, because edges meet the walls at
right angles [9]. As a consequence, edges in the vicinity of
the walls are smaller than in the bulk, as this can be seen in
Fig. 7, and the structure then relaxes through a line of T1s in
the vicinity of one of the two walls at a strain lower than the
theoretical yield value.

Because our system is periodic in the x direction, a shear
band does not create any topological defect, it just changes the
neighboring of the bubbles that belong to the two rows that
slide with respect to each other. Therefore, the configuration
right after the shear banding is still a hexagonal foam, but with
a lower effective strain. This strain is actually lowered by a
fixed amount: for a system of N rows of bubbles, a translation
of one bubble to the side changes the strain by an amount of
�ε = 2/N

√
3. Figure 6 shows the normalized strain energy

as a function of the shear strain, for a normalized temperature
of T/J = 2.26. The first curve on the graph is a quadratic fit
of the simulation points below the yield strain of 0.51. The
second curve corresponds to the same parabola, but offset to
the right by a quantity of �ε = 2/9

√
3 (our simulation box

FIG. 7. Configurations right before and after the creation of a
shear band. The black line indicates the localization of the shear
band.
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FIG. 8. Nonaffine component of the displacement field of the
bubble centers (in red) and threefold junctions between edges (in
blue) for the polydisperse foam under quasistatic shear (image cor-
responds to a strain value of ε = 0.10).

contains ten rows, two of which are half rows). This second
curve has no fitting parameter and shows that after a shear
band the system still has the same shear modulus.

C. Polydisperse foam

We now test our method with a polydisperse, disordered
foam. Structural disorder is known to affect the mechanical
properties of foams [7,28], so it is important to check that
our method allows one to detect the effect of structural dis-
order on the mechanical response of a 2D foam. As for the
monodisperse case, we first plot the nonaffine component of
the displacement field (see Fig. 8). In contrast with the regular
case, both the bubble centers and the threefold edge junctions
have a strong nonaffine component.

For the polydisperse foam, shearing was this time done
along both +x and −x directions, as shown on Fig. 9. This
setup improves the accuracy of the quadratic fit used to obtain
the shear modulus and allows us to check that there is no
residual stress in the initial state.

Once again, the shear modulus is measured at differ-
ent temperatures, and then its zero temperature value is
extrapolated from a linear fit. For each temperature, the
temperature-dependent modulus Gpoly was obtained from a
quadratic fit of the energy. This modulus was then divided
by the shear modulus of the hexagonal foam Ghex at the
same temperature and with the same mean bubble area (A0 =
1000 pixels2). Note that the ratio Gpoly/Ghex is then inde-
pendent of z. Figure 10 shows that this normalized modulus
converges to a constant value as temperature is increased. This
plateau value is ∼89% of the value found for perfect hexagons
in our simulation. This value is consistent with those obtained
by Cox and Whittick [7] with the SURFACE EVOLVER program
[23], for foams with similar values of �A/〈A〉 and �n/〈n〉.
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FIG. 9. Normalized strain energy E (ε)/E0 − 1 of a polydisperse
foam as a function of the shear strain ε [Eq. (3)]. The orange curve
is a quadratic fit.

IV. CONCLUSION

Numerical simulations are valuable tools to investigate the
relationship between the mechanical response and the mi-
croscopic details of a cellular material, such as a foam or
a biological tissue. The cellular Potts model is a standard
numerical modeling tool of multicellular systems, with var-
ious applications ranging from foam coarsening to collective
behaviors of biological cells. We have shown that quasistatic
strain can easily be implemented in the CPM, and we have
checked the accuracy of our method by analyzing the shear
strain of 2D foams. For ordered foams, the shear modulus ob-
tained numerically agrees well with the theoretical expression,
and bubble centers follow affine displacement as expected.
For disordered foams, bubble centers do not follow affine dis-
placement and the shear modulus is found to be lower than for
ordered foam with the same average bubble area. We obtained

he
x

FIG. 10. Shear modulus of the polydisperse foam, normalized
by the shear modulus of regular hexagonal foam with the same
mean bubble area and at the same temperature, as a function of
the normalized temperature T/J . The dashed red line represents the
average value from simulations with T/J > 1.5.
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good agreement with SURFACE EVOLVER simulations, another
popular numerical model of multicellular systems. Systematic
characterization of the effect of disorder will be investigated
in a future study. More generally, the implementation of qua-
sistatic strain into the CPM provides a versatile numerical tool
to investigate the interplay between the rheological behavior
and the additional structural changes that take place in cellular
systems.
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