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Effect of ionic disorder on the principal shock Hugoniot

Crystal F. Ottoway, Daniel A. Rehn , Didier Saumon , and C. E. Starrett*

Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA

(Received 30 August 2021; accepted 11 November 2021; published 29 November 2021)

The effect of ionic disorder on the principal Hugoniot is investigated using multiple scattering theory to very
high pressure (Gbar). Calculations using molecular dynamics to simulate ionic disorder are compared to those
with a fixed crystal lattice, for both carbon and aluminum. For the range of conditions considered here we find
that ionic disorder has a relatively minor influence. It is most important at the onset of shell ionization and we
find that, at higher pressures, the subtle effect of the ionic environment is overwhelmed by the larger number of
ionized electrons with higher thermal energies.
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I. INTRODUCTION

The principal shock Hugoniot is the locus of final states
in single-shock experiments where the material is initially
at standard temperature and pressure. It is a method with a
long history [1] and it is used to measure the equation of
state at high pressures and temperatures. In flyer plate shock
experiments, a pusher is driven into the material of interest,
launching a shock wave. In laser-driven shock experiments, a
layer of ablator material is laser heated. The rapid expansion
of the ablator launches a shock wave into the target mate-
rial. Conservation of mass, energy, and momentum across the
shock front and the assumption of an ideal shock translate the
measured pusher and shock front velocities into the desired
equation of state variables.

Recent experiments at the National Ignition Facility (NIF)
[2] have resulted in accurate measurements of the Hugo-
niot curve at very high pressures [3] and are of relevance
to inertial confinement fusion and white dwarf physics [4].
These experiments at hundreds of Mbar complement the older,
lower-pressure techniques, including gas-gun technology [5],
diamond anvil cells [6], and lower-energy laser compression
[7,8], that have challenged and guided equation of state (EOS)
models and tables for many years [9].

Models for the equation of state have for many years used
these experiments for validation and testing. Practical models,
used to build equation of state tables, need to be reasonably
accurate, computationally cheap, and applicable over a huge
range of conditions and materials. These pragmatic restric-
tions often require the use of simplified models of the EOS
physics. For example, many widely used EOS tables are based
on so-called average atom models. These attempt to capture
the properties of one averaged atom that is representative of
the system [10–15], but do not include the effect of ionic
disorder. As a result, ionic disorder has to be included via a
separate model [16–18].

The effect that a consistent treatment of ionic disorder has
on Hugoniot curves remains largely untested for dense plas-
mas. Some modeling methods are capable of evaluating this.
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For example, the widely used density functional theory (DFT)
molecular dynamics (MD) method includes ionic disorder
through the use of ensemble averaging over MD time steps
[19,20]. While accurate, this method is generally limited to
degenerate systems (read lower temperature, higher density)
due to computational expense and contains the additional
complication of pseudopotentials. Several recent works have
presented solutions to the problem of temperature scaling
of the computational expense of DFT MD [21–26]. Another
method that includes ionic disorder is path integral Monte
Carlo [27]. This is also an accurate method, but is generally
restricted to high temperatures due to the fermion sign prob-
lem [27].

Recently, a DFT-based method that can reach high tem-
peratures and that does not use pseudopotentials has been
developed. This method, known as multiple scattering theory
(MST), has a long history in solid state physics [28,29]. It
has recently been adapted to high-temperature dense plasmas
[30,31]. Multiple scattering theory includes a sophisticated
DFT treatment of the electrons and includes ionic disorder
through ensemble averaging over ionic configurations ob-
tained with molecular-dynamics simulations.

In this work, we use MST to assess the impact of ionic
disorder on the principal Hugoniots of carbon and aluminum.
We report results up to several Gbar using both ionic config-
urations from molecular dynamics and a fixed crystal lattice
structure. We also compare our results to those from an av-
erage atom model and existing ab initio simulations [27].
We find that inclusion of ionic disorder has a relatively
small effect on the Hugoniot, but this effect is larger for
aluminum than carbon. Further, we find that at high pres-
sures, where the plasma is significantly ionized, a crude
treatment of ionic disorder is accurate enough for Hugoniot
predictions.

II. METHOD

The methods used here are described in detail in
Refs. [30,31]. In this section, we give a broad summary,
sufficient to allow the reader to assess the results presented
and get a broad understanding of the method itself, together
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with calculational details. If more detail is desired, we refer
the reader to Refs. [30,31].

Multiple scattering theory is based on the idea that the
time-independent Green’s function for a system containing
electrons and nuclei can be found by solving Dyson’s equa-
tion. This equation relates the a priori unknown Green’s
function G(x, x′, ε) to the known Green’s function of some
reference system g(x, x′, ε) [32],

G(x, x′, ε)

= g(x, x′, ε) +
∫

dx1G(x, x1, ε)V (x1)g(x1, x′, ε), (1)

where V (x) is the potential difference between the reference
system and the desired electron-nucleus system. Choosing a
free-electron reference system,

g(x, x′, ε) = − me

2π

exp(ı|x − x′|)
|x − x′| , (2)

where me is the electron mass and V (x) becomes the potential
for the electron-nucleus system.

The next step is to carry out a multicenter expansion of
the Green’s functions using spherical harmonics Ylm(r̂). The
positions of the expansion centers were originally chosen to
coincide with the nuclear positions [28,29]. This works well
for close-packed crystal structures. However, it is not appro-
priate for disordered plasmas, and in addition to these nuclear
centers, extra expansion centers are used [30]. These expan-
sion centers are used to tessellate space into space-filling,
nonoverlapping cells. The result of this multicenter expansion
is

G(r + Rn, r′ + Rn′
, z) = Gss(r + Rn, r′ + Rn′

, z)

+ Gms(r + Rn, r′ + Rn′
, z), (3)

where Rn is the position vector of the nth expansion center, r is
a vector pointing from this center to a point within cell n, and
z is an (in general, complex) electron energy. The so-called
single-site Green’s function Gss is

Gss(r + Rn, r′ + Rn′
, z)

= 2meδnn′

∞∑
L=0

Hn,×
L (r>, z)Rn

L(r<, z), (4)

where L = {l, m}, i.e., the usual orbital angular momentum
and magnetic quantum numbers, Hn

L (r, z) and Rn
L(r, z) are

the irregular and the regular solutions of the Schrödinger
equation, and r> (r<) means to take r or r′ according to
which one is greater (lesser) in magnitude. This single-site
Green’s function corresponds to the Green’s function for a
cell with free-electron boundary conditions. The so-called
multisite Green’s function is

Gms(r + Rn, r′ + Rn′
, z)

= 2me

∞∑
LL′

Rn
L(r, z)Gnn′

LL′ (z)Rn′×
L′ (r′, z), (5)

which can be viewed as a correction to the single-site Green’s
function that modifies the boundary conditions such that all
incoming and outgoing waves from the cells match at the
interfaces. The superscript × means to take the complex

conjugate of the angular part of Hn
L or Rn

L. Throughout, we
use Hartree atomic units with h̄ = 4πε0 = e2 = 1, leaving
me symbolic for easy conversion to Rydberg units. For other
normalization and sign conventions, see Ref. [30].

The Gnn′
LL′ (z) are elements of the so-called structural Green’s

function matrix G(z). This is found by solving a variation
of Dyson’s equation, in what is sometimes referred to as the
fundamental equation of MST,

G(z) = G0(z)[I − t (z)G0(z)]−1. (6)

Here t (z) is the t matrix, found by matching the numerical
solutions Rn

L and Hn
L to their free-electron forms at the cell

boundaries [33]. In addition, G0(z) is the structure constant
matrix. Its dependence on the set {Rn} has been suppressed in
the notation. For a given set of expansion centers and energies,
it can be calculated using a cluster approximation [31] or as-
suming a periodically repeating crystal structure [30]. Here we
use the cluster approximation for all plasma conditions. For
the initial state calculations for the Hugoniots (see Sec. III)
we use the periodic crystal structure calculation.

In practice, these equations are solved using Mermin-
Kohn-Sham density functional theory [34,35]. For a given
set of expansion centers, the t-matrix, regular, and irregular
solutions to the Kohn-Sham equation are found for all cells
and the Green’s function is then constructed. Note that the
global t matrix t (z) is block diagonal. Each block element
corresponds to a t matrix for a particular cell. In the cal-
culations and results presented here we use the muffin-tin
approximation, where the effective Kohn-Sham potential in
each cell is spherically averaged inside the muffin-tin radius
and takes a constant interstitial value elsewhere, as detailed in
[30]. Further, we have used the temperature-dependent local
density approximation (LDA) of Karasiev et al. [36] for the
exchange and correlation functional. The nuclear positions
are provided by an external model, pseudoatom molecular
dynamics (PAMD) [37], which is thought to be accurate for
all materials and conditions considered here. The equation of
state is then calculated as a time average over uncorrelated
time steps (Fig. 1).

The infinite sum over L in Eq. (4) is in practice converged
automatically and only a finite number of terms are needed.1

The two infinite sums in Eq. (5) are more challenging due to
high computational expense. In practice, we use the method
analyzed in Ref. [30], where only chemically relevant terms
are retained. Here we keep terms up to and including l = 2,
which should be sufficient for the cases considered here. Cal-
culations with higher numbers of terms were considered in
Ref. [30] but do not lead to significant changes to the EOS.

With the Green’s function determined, the electron density
is calculated

ne(r) = − 2

π
�

∫ ∞

−∞
dε f (ε, μ)G(r, r, ε), (7)

where the 2 is due to spin degeneracy, the integral is along the
real energy axis, and f (ε, μ) is the Fermi-Dirac function with

1The number depends on the degeneracy of the system. For cold
dense material, only a few terms are needed, while for hot dilute
systems, many are needed.
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FIG. 1. Time variation of pressure for aluminum at 1 eV and
2.7 g/cm3. The pressure fluctuates over molecular-dynamics time
steps (blue line). The average pressure is shown by the red horizontal
line and the gray area covers one standard deviation from this mean
value. For this case, the time step is 2.2 fs and we calculate the
pressure at every 50th time step.

chemical potential μ. A key advantage of the MST method
is that, because the (retarded) Green’s function is analytic in
the upper-half complex energy plane, the energy integral in
Eq. (7) can be carried out using Cauchy’s integral theorem
[38,39]. On the real energy axis, the full structure of the
Green’s function must be resolved. For periodic systems, this
means that one would need to find all the discrete eigenvalues,
a notoriously difficult problem [38]. By carrying out the inte-

gral in the complex energy plane, this problem is completely
avoided: One no longer solves an eigenvalue problem. More-
over, the integrand becomes a smooth function of the energy
away from the real energy axis [40], reducing the number of
quadrature points needed.

The equations are then solved to self-consistency. We use
Eyert’s acceleration method, which is a quasi-Newton tech-
nique, to speed up convergence [41]. The equation of state
can then be calculated using the method given in Ref. [30].
The initial guess for the potential in each cell is based on the
Thomas-Fermi cell model [10].

III. RESULTS

As in Ref. [31], our physical model is a computational cube
that is periodically repeated. As discussed above, a cluster
approximation is used to solve Eq. (6). The cluster should con-
tain enough centers in it such that adding more does not affect
the desired quantities. Our cluster contains, at a minimum, the
centers in the computational cube. We then add centers within
a fixed distance, called the correlation radius, of any center in
the computational cube. Hence, for zero correlation radius the
cluster includes all centers within the computational volume,
which for the cases presented here is 43 centers (8 nuclei plus
35 extra centers).

In Fig. 2 we show the effect of increasing cluster size
on the pressure for density and temperature points close to
the Hugoniot curve for aluminum. Figure 2 shows that for
pressure, relative errors of less than 1% are achieved at 1 eV
and 4.29 g/cm3 with a correlation radius of 1.2 ion-sphere

FIG. 2. Effect of the correlation radius on the pressure for aluminum plasmas at conditions close to points on the principal Hugoniot.
Each panel corresponds to a different temperature and density. Each line corresponds to a different molecular-dynamics snapshot. The percent
change in the pressure is relative to the value at the largest correlation radius shown. Note that the correlation radius is in units of ion-sphere
radii for each case.
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TABLE I. Effect of the number of extra centers on the pressure of carbon for a simulation with eight nuclei. No significant difference is
observed at these conditions between 30 and 35 extra centers. We used 35 extra centers for all MD calculations presented, having checked
convergence at other conditions.

Temperature Density Pressure (Mbar) Absolute Percent

(eV) (g/cm3) 8+30 centers 8+35 centers difference difference

10 3.52 10.205 ± 0.604 10.228 ± 0.627 0.0232 0.23%
100 3.52 140.038 ± 0.953 139.916 ± 1.084 0.1222 0.09%

radii, and for the highest-temperature case, much smaller
relative errors are seen for all correlation radii. In between
these extremes, the relative error steadily decreases as tem-
perature increases. This behavior can be explained by noting
that the relative contribution of the multiple scattering Green’s
function becomes smaller as temperature increases. This is
because the scattering electrons have more energy on average
and are therefore more free-electron-like. As such, the correc-
tion to the single-site term of the Green’s function becomes
smaller as temperature increases. This effect was already
noted in Refs. [30,31]. The convergence of the internal energy
is similar and is discussed in the Supplemental Material [42].

We have previously explored the effect that the number of
extra expansion centers has on the EOS for aluminum plasmas
(Ref. [31]). In Table I we show the effect of the number
of extra centers on the pressure for carbon plasmas at two
temperatures. Here we show the time-averaged pressure and
standard deviation for a computational box with eight unique
nuclei, for both 30 and 35 extra centers. For both temperatures
the pressure is not significantly affected by the difference in
the number of extra centers. For reference, we have used 8
nuclei, 35 extra centers, and 100 molecular-dynamics frames,
for all plasma calculations presented here.

It is worth commenting on whether this number of particles
is sufficient for the present purposes. Unfortunately, we cannot
definitively answer this question quantitatively, as the memory
requirement of our code currently limits calculations to these
small systems. Based on other studies [43] and our own expe-
rience, we expect that larger system sizes will be necessary for
more strongly correlated ionic fluids, i.e., lower temperatures
and higher densities. For the principal Hugoniot, therefore, the
points most affected will be those at low temperature, near
the initial conditions. To mitigate this issue, we therefore only
calculate Hugoniot points above 1 eV (≈11 600 K).

The Hugoniot curve is the solution to the Rankine-
Hugoniot equation

1
2 (v0 − v)(P + P0) − (e − e0) = 0, (8)

where v is the specific volume, e the specific internal energy,
and P the pressure. The subscript 0 refers to those quantities of
the initial, unshocked, state of the material. Given an equation
of state P = P(v, T ) and e = e(v, T ), Eq. (8) has a sequence
of solutions (the Hugoniot) that can be expressed as T (v). For
an initial state, the resulting locus of final states in a single-
shock experiment is the principal Hugoniot.

In Fig. 3 the principal Hugoniot for aluminum is shown.
Let us first consider the full model calculation, labeled
MST MD, which includes disordered, molecular-dynamics-
determined, nuclear positions. The curve labeled MST fcc
uses the same MST method but assumes an fcc crystal struc-

ture at all temperatures and densities. The initial state was
calculated assuming an fcc structure for the structure con-
stants and it is the same for both calculations. The differences
between the calculations MST MD and MST fcc are then
solely due to the treatment of the ionic disorder.

We see that overall, these calculations are in reasonable
agreement, especially at high pressures, above 100 Mbar,
corresponding to temperatures greater than 40 eV. This
high-pressure region is where the ionization of the n = 2
(lower-pressure lobe) and n = 1 (higher-pressure lobe) shells
occur. The reason that the ionic structure does not strongly
influence these features is due to the increased thermal energy
of the ionized electrons. They behave more free-electron-like
and are therefore less sensitive to the ionic structure.

At lower pressures (12–100 Mbar) the calculation with
ionic disorder (MST MD) predicts that the plasma is stiffer
(less compressible) than the fcc calculation (MST fcc). In this
pressure region, we find that both pressure and energy increase
relative to the fcc calculation. At a given temperature, an in-
crease in energy leads to a more compressible Hugoniot, while
an increase in pressure leads to a stiffer, less compressible
Hugoniot. Thus, the overall effect on the Hugoniot depends
on a delicate interplay of these competing effects.

FIG. 3. Aluminum Hugoniot with experimental data [44–59].
Shown are results from the present model with molecular-dynamics
configurations (MST MD), the present model with an fcc lattice
(MST fcc), the Tartarus average atom model [15], and the FPEOS
of Militzer and co-workers [27,60]. The “No MS” calculation is a
simplified model described in the text. The two set of stars corre-
spond to the temperatures labeled on the plot. Note that the initial
density was taken to be 2.7 g/cm3.
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Also show in Fig. 3 is the result from the average atom
model Tartarus [15], which does not include ionic disorder.
From that point of view, it is even simpler than the MST fcc
model, but is similar in spirit. The agreement between this
model and the fcc calculation seems to bear this out. Some
differences between these two models appear at low compres-
sions and pressures. Clearly, the MST fcc calculation will give
a much more realistic prediction of the initial state [61] than
the average atom model, leading to the differences observed
in the figure. Unfortunately, the experimental data, also shown
in the figure, do not discriminate between the models. Modern
shock experiments at very high pressure are starting to be-
come available [3] and could potentially resolve some of the
differences between models. Next we consider a simplified
model, labeled “No MS” in Fig. 3. This model is identical to
the full MST MD calculation except that we set the multiple
scattering Green’s function (5) to be identically zero. Thus,
due to its relative computational simplicity and rapidity, it is
a useful first approximation for including ionic structure and
as such represents an intermediate model between an average
atom and the full multiple scattering solution. Indeed, it agrees
rather well with the full multiple scattering Hugoniot (Fig. 3),
showing the stiffer feature for compressions of 2.5–4.5 that
is seen in the full calculation. It does not agree perfectly,
however, and in particular disagrees more for lower pressures
(temperatures), where multiple scattering is more important.

Finally, we show comparison with the first-principles
equation of state (FPEOS) calculation of Militzer and
co-workers [27,60]. The FPEOS approach uses plane-wave-
based DFT molecular-dynamics-based calculations up to
174 eV (∼700 Mbar) and then switches to path-integral Monte
Carlo (PIMC) calculations for higher temperatures. There
is good agreement between this method and MST MD for
pressures below 70 Mbar and above 1 Gbar. In the region in
between, corresponding to the ionization of the n = 2 shell,
the FPEOS Hugoniot is significantly stiffer. This lobe on
the Hugoniot is in the region covered by the DFT calcula-
tions in the FPEOS. Both our calculation and the FPEOS
use eight-atom calculations in this region and both use an
LDA for the exchange and correlation. We have used the
temperature-dependent LDA of Karasiev et al. [36], whereas
the FPEOS use the zero-temperature LDA of [62]. We have
recalculated the Tartarus Hugoniot using a zero-temperature
LDA [63] and found no significant difference (see [42]). Since
the calculations both use DFT simulations of the same size
and the difference is not due to the exchange and corre-
lation functional, this leaves four possible sources for this
discrepancy: (i) differences in the nuclear positions, (ii) some
ill-converged numerical parameter, (iii) the muffin-tin approx-
imation in MST, and (iv) the pseudopotential approximation
in the FPEOS.

Let us address these in turn. (i) The good agreement of
MST with the fcc calculation for the n = 2 feature strongly
indicates that the ion positions should not be the source of the
difference, provided reasonable MD configurations are used.
(ii) We have checked that our calculation is converged in terms
of the number of energy grid points, the correlation radius,
the number of extra centers, and other internal numerical
parameters. (iii) The muffin-tin approximation should perform
more poorly at lower temperatures, where electrons have less

FIG. 4. Aluminum Hugoniot focused on the region of ionization
of the n = 2 shell. Shown are results from the present multiple scat-
tering calculation with an fcc lattice (MST fcc), the present model
with molecular-dynamics configurations (MST MD), and the FPEOS
of Militzer and co-workers [27,60]. The points labeled “Elk” and
“VASP” are our own calculations of a Hugoniot point at 50.1 eV
using the ELK [64] and VASP [65–67] codes, where an fcc lattice has
been assumed. The black stars show the effect of reducing the MST
internal energy in steps of 1EH (right to left stars, starting at 1EH ).

energy on average and are therefore more sensitive to the
details of the potential. As the differences appear at rather
high temperatures (greater than 40 eV), it is unlikely that the
muffin-tin approximation is to blame. (iv) The pseudopoten-
tial approximation that appears in the plane-wave calculations
does affect core states and has been the source of numerical
issues in other calculations. The effect of the pseudopotential
approximation on the EOS of aluminum has been quantified
in Ref. [60], but we are unable to determine if the observed
differences are sufficient to cause the discrepancies in the
Hugoniot (Fig. 3).

The table in the Supplemental Material of Ref. [60] gives
the EOS from which the Hugoniot curve was calculated
therein. At a temperature of ∼174.2 eV and compression of
4.5, Ref. [60] reports energies and pressure from both cal-
culation methods: PIMC and DFT MD. At that temperature
[60] reported that DFT MD has an internal energy ∼5.3EH

lower than that for PIMC and a pressure ∼1% lower. We have
checked the effects on the Hugoniot curve that such changes
would have using our EOS. For pressure, a reduction of 1%
moves the compression at 50.1 eV from 4.86 to 4.89 and
at 158.4 eV from 4.94 to 4.97, i.e., relatively small effects.
Figure 4 shows the effect of shifting the internal energy on
the Hugoniot. At a temperature of 50.1 eV, a shift of just 1EH

is sufficient to explain the difference between MST and the
FPEOS. At a temperature of 158.4 eV, the two calculations
can be reconciled with a shift of 5EH , which is compara-
ble to the reported difference between PIMC and DFT MD
at 174.2 eV. Further, also shown in Fig. 4 are our own
calculations of Hugoniot points at 50.1 eV using the ELK

code version 6.8.4 [64] and VASP version 5.4.4 [65–67]. Both
calculations use an fcc crystal structure, adding on the ideal
ion pressure and kinetic energy to determine the Hugoniot
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point. In both codes, we use the LDA of Perdew and Zunger
[63]. For ELK calculations, we constructed a species file that
treats the 1s states as core states and the 2s and higher-energy
states as valence states. This species file is constructed with a
0.6-bohr muffin-tin radius in order to ensure that nearest-
neighbor atoms in the fcc configuration at the compressions
studied do not overlap (the nearest-neighbor distance is
roughly 3.2 bohrs at the levels of compression studied). In
ELK, we use the built-in “very-high-quality” parameter set,
with the exception that we further increase the default plane-
wave cutoff energy to a value corresponding to 5442 eV. We
also use a 12 × 12 × 12 �-centered k-point grid (72 total
irreducible k points) and 300 non-spin-polarized unoccupied
states to ensure all states with fractional occupations of 10−10

and above are included in the calculation. Calculations are
converged so that the total energy changes by less than 10−5

hartree and the Kohn-Sham potential changes by less than
10−6 hartree. For VASP calculations, we use the projector aug-
mented wave (PAW) method [68] to treat the 1s core states,
with the 2s and higher-energy states treated as valence states.
The PAW potential we use was constructed specifically for
LDA calculations, referred to as the Al_sv_GW PAW LDA
potential in VASP [69]. This potential is constructed using a
1.7-bohr PAW radius, which at the compression studied in the
fcc configuration allows the PAW radii of nearest neighbors to
overlap by up to 7%. We also use a 3000-eV plane-wave en-
ergy cutoff and a 12 × 12 × 12 �-centered k-point mesh (72
total irreducible k points) and include 200 non-spin-polarized
bands to ensure inclusion of all states with fractional occupa-
tions of 10−6 and above. Calculations are converged so that
the total energy changes to less than 10−6 eV. The Hugoniot
points from both VASP and ELK agree well with our MST
fcc calculation. In addition, we find that for fcc aluminum,
the energies calculated using VASP, ELK, and MST along the
13.136-g/cm3 isochore, from 1 eV up to 50.1 eV, are in ex-
cellent agreement (see the Supplemental Material [42]). Both
the agreement in the Hugoniot points and the isochore provide
strong verification of our code and method.

We have also performed MST calculations for carbon,
assuming a diamond initial structure. The EOS of carbon
is of interest due to its relevance to white dwarf modeling
[3]. Figure 5 shows the principal Hugoniot for diamond. The
crystal structure of diamond in the initial state presents a
difficulty because, unlike an fcc structure, it is not closely
packed. The expansion of the Green’s function that only in-
cludes the nuclear centers is therefore inaccurate, in contrast
to fcc structures. As a metric to appreciate this, the percentage
of the volume in the muffin-tin spheres for fcc is 74% (using
only nuclear positions as expansion centers). For diamond the
number is 34%. Hence, we add eight extra expansion centers,
filling 68% of the volume. This improves agreement of the
MST result with our density of states calculations for diamond
using ELK and VASP (Fig. 6). The remaining small differences
are due to different broadening (0.5 eV for ELK and VASP

versus 0.27 eV for MST) and the muffin-tin approximation.
The MST MD diamond Hugoniot agrees very well with the

FPEOS calculation [78,79]. As for aluminum, the ionization
feature due to the 1s shell is in good agreement between
the approaches. The effect due to ionic disorder appears to
be smaller than for aluminum, with a slight stiffening of the

FIG. 5. Diamond Hugoniot with experimental data [70–77].
Shown are results from the present MST calculation with an as-
sumed diamond structure (MST Diamond), the present model with
molecular-dynamics configurations (MST MD), the FPEOS model
[27], and the Tartarus average atom model [15]. Note that the initial
density was taken to be 3.52 g/cm3.

Hugoniot near a compression of 4. Differences between the
full MST MD result and that assuming a diamond structure are
largely confined to lower compressions. Note that the PAMD
method for producing the nuclear positions is reliable for car-
bon only at elevated temperatures, roughly above 5 eV [80],
due to a neglect of chemical bonds in that method. The first
four points on our MST MD curve correspond to temperatures
from 1.2 to 3.9 eV, while the fifth point is for a temperature of
6.3 eV. Hence, the nuclear positions are probably somewhat
unrealistic for the first four points, where there is a small
disagreement with the FPEOS results.

To explore further why the ionic structure seems to have
more influence on the aluminum Hugoniot compared to that
for carbon, in Fig. 7 we show the average ionization Z̄ along
these Hugoniots as predicted by the Tartarus average atom

FIG. 6. Density of states for diamond at a temperature of 0.5 eV.
The VASP and ELK calculations (present work) are compared to MST
calculations. The MST calculation with eight extra expansion cen-
ters noticeably improves agreement with the VASP and ELK results,
compared to the calculation with zero extra centers.
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FIG. 7. Average ionization along principal Hugoniot from the
Tartarus average atom model.

model. As has been discussed many times, this quantity is
not uniquely definable [15,81,82]. Here we choose to define
ionized electrons as those having enough energy to escape the
average atom potential. This includes, for example, electrons
in resonance states, but not in bound states. This definition
therefore is sensitive to changes in the states close to this
threshold, which are also likely to be sensitive to the ionic
environment. Figure 7 shows that for carbon, the 1s2 state does
not start to ionize until the compression reaches ∼3.6. This
ionization corresponds to the slight stiffening of the Hugoniot
near a compression of 4 mentioned above (Fig. 5). For alu-
minum Z̄ ∼ 3 up to a compression of ∼3, then ionization of
the n = 2 shell begins. Again, this corresponds to the stiffen-
ing of the MST MD Hugoniot in Fig. 3. We therefore conclude
that the Hugoniot is sensitive to ionic structure where shell
ionization is beginning, for the two cases we have studied,
and this effect is expected for other materials. In other words,
the disordered ionic structure affects the ionization balance,
and therefore the EOS, most strongly when states are close to
the threshold. The size of the effect is larger for aluminum,
presumably because the n = 2 shell contains eight electrons
before it is ionized (out of a total of 13 per atom), whereas
for carbon, the n = 1 shell contains only two out of six. The
observed effects on the Hugoniots due to a disordered ionic
environment are confined to this weakly-ionized-shell region
and do not extend to higher pressures. This is due to the
increased level of ionization being less sensitive to the ionic
environment as these electrons are promoted into higher-lying
energy states.

Finally, we note that, despite the relatively small influence
of the ionic structure on the Hugoniot curve, the effect on an
EOS point at a given temperature and density can be more
impressive. This is shown in Fig. 8, where we compare the
MST fcc and MD curves along the 13.5-g/cm3 isochore for

FIG. 8. Pressure along the 13.5-g/cm3 isochore. Despite having
relatively small influence on the Hugoniot curve, the effect of ionic
disorder can be significant. Note that the vertical lines on the MST
MD results show plus or minus one standard deviation (see Fig. 2).

aluminum. The effect on pressure is large, with up to an ∼30%
increase over the fcc result observed.

IV. CONCLUSION

We have presented calculations of principal Hugoniots for
diamond and aluminum using multiple scattering theory. Re-
sults including ionic disorder, through the use of molecular
dynamics, as well as for fixed crystal structures, were given.
It was found that ionic disorder has generally a small effect of
the Hugoniot for the conditions considered and most strongly
affects the Hugoniot curve where bound states are beginning
to be ionized. For higher pressures (temperatures) still, the
effect of ionic disorder is overwhelmed by the higher level of
ionization and increased thermal energy of both the electrons
and ions, which washes out the more subtle influence of the
ionic disorder on the states near the ionization threshold. This
result should give guidance to experimentalists seeking to
understand comparisons of models with data. We also hope
it will be useful to model developers in assessing the impact
of ionic structure on shock Hugoniots.

Comparison was also made with the FPEOS model [27]
and generally good agreement was found. The one instance of
significant disagreement was the n = 2 shell ionization fea-
ture for aluminum. We have argued that this could be caused
by the precision of the FPEOS results reported for that case.
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