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Asymmetric one-dimensional slow electron holes
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Slow solitary positive-potential peaks sustained by trapped electron deficit in a plasma with asymmetric ion
velocity distributions are in principle asymmetric, involving a potential change across the hole. It is shown
theoretically how to construct such asymmetric electron holes, thus providing fully consistent solutions of the
one-dimensional Vlasov-Poisson equation for a wide variety of prescribed background ion velocity distributions.
Because of ion reflection forces experienced by the hole, there is generally only one discrete slow hole velocity
that is in equilibrium. Moreover the equilibrium is unstable unless there is a local minimum in the ion velocity
distribution, in which the hole velocity then resides. For stable equilibria with Maxwellian electrons, the potential
drop across the hole is shown to be �φ � 2

9 f ′′′ Te
e ( eψ

mi
)2, where ψ is the hole peak potential, f ′′′ is the third

derivative of the background ion velocity distribution function at the hole velocity, and Te is the electron
temperature. Potential asymmetry is small for holes of the amplitudes usually observed, ψ � 0.5Te/e.
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I. INTRODUCTION

A Bernstein, Greene, Kruskal [1] (BGK) mode is a one-
dimensional potential structure in a collisionless plasma that
in the mode’s frame of reference is a steady nonlinear solution
of the Vlasov-Poisson system of equations relating electron
and ion velocity distribution functions, fe(v), fi(v), to the
electric potential φ. Electron holes are a subset of these BGK
modes for which a positive potential peak is sustained by a
deficit of electrons trapped by the potential [2,3], hence the
name. Normally electron holes are considered to be solitary
waves in which a single potential peak is embedded in a
plasma that is uniform far from the peak. When there is negli-
gible reflection of ions by the potential, for example, because
the ions’ mean velocity in the rest frame of the hole far
exceeds their distribution width, electron holes are symmetric
about the potential peak. This symmetry is required by the fact
that the trapped-electron distribution must be symmetric in
velocity, and the passing-electron and ion densities are func-
tions only of potential, regardless of any velocity distribution
asymmetry. Such holes can move at essentially any velocity
relative to the ions greater than a few ion sound speeds,
up to the electron thermal speed. A considerable theoretical
literature on symmetric electron holes has established many
of their important properties (e.g., Refs. [4–13]). Moreover,
space plasma observations of sufficient time resolution now
often observe fast-moving potential peaks interpreted as elec-
tron holes (e.g., Refs. [14–23]).

By contrast, when the fi(v) (in the hole frame) is non-
negligible near v = 0 (which we call a “slow” electron hole
situation) reflection of ions from the hole potential can pro-
duce a net interaction force exerted by the potential hill on
the ions, Fi. It is generally nonzero when the background
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ion distribution is asymmetric in velocity. Since the potential
is sustained in place only by the plasma particles, in steady
equilibrium the ion force must be balanced by an equal and
opposite force exerted by the potential on the electrons, Fe,
making the total zero: F = Fi + Fe = 0. But the electron force
Fe can be nonzero in equilibrium only if there is some (posi-
tional) asymmetry in the potential. In fact, as we shall show,
for given fi and fe in some other fixed frame (e.g. the “ion”
frame in which mean ion velocity is zero), there is generally
only one discrete mode velocity that gives rise to an equilib-
rium Fi + Fe = 0. All other hole velocities will be unsteady
and experience acceleration.

Moreover, even if Fe + Fi = 0, for example, when there
is a velocity about which both fe and fi are symmetric, the
equilibrium it represents may be unstable. It has been estab-
lished [24] that electron holes interacting with single-humped
ion distributions are essentially always unstable [25], acceler-
ating the hole velocity till ion reflection becomes negligible
[26], or until the hole itself is trapped by coupling to an ion
acoustic soliton [27,28]. It is crucial for the long term persis-
tence of an electron hole experiencing ion reflection, that it
be stable against such self-acceleration. A number of recent
spacecraft plasma observations have reported slow holes for
which ion reflection should be important [20,21,23,29].

Ion reflection dictates the equilibrium slow electron hole
velocity, and asymmetric ion velocity distributions make elec-
tron hole potentials asymmetric. In particular, the ion density
will generally be different on either side of the potential peak,
requiring the electron density there likewise to be asymmetric
to satisfy quasineutrality far from the hole. This will generally
require there to be a potential difference �φ = φ(+∞) −
φ(−∞) across the hole that persists into the quasineutral
region. Figure 1 illustrates schematically the potential, and
electron and ion distribution function contours in their re-
spective phase-spaces. There is a region of closed (trapped)
electron orbits whose distribution function fe(x, ve) is set
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FIG. 1. Schematic of a hypothetical asymmetric electron hole.

by the formation conditions of the structure. It is generally
lower than the nearby untrapped (passing) fe, which is set by
boundary conditions and the constancy of f on orbits, because
of the Vlasov equation. The trapped electron deficit causes
ne(x) < ni(x) near x = 0 and thereby sustains the potential φ.
The incoming ion distribution is everywhere set by its value
at the x-boundaries (infinity). In this illustration it is a single
Maxwellian shifted by 1.5 velocity units. The outgoing distri-
bution is complicated by reflection and has discontinuities at
the transition between reflected and unreflected orbits.

The problem addressed in the present work is this. Given
prescribed electron and ion velocity distributions incoming at
the boundaries, far from the potential structure, find a fully
self-consistent electron hole equilibrium (with a local poten-
tial peak), and show how to calculate the electron hole velocity
relationship to the distributions, the potential drop �φ, and the
relationship between the hole potential and the trapped elec-
tron distribution function. Furthermore, establish the circum-
stances under which such an asymmetric equilibrium is stable.

In a recent publication [24], the equilibrium and stability
of slow electron holes with symmetric and asymmetric ion
distributions, and ion reflection, was analyzed under the rather
ad hoc assumption that the hole potential is symmetric. It
was found that an essential ingredient of stability under this
approximate ansatz was that fi(v) should be double humped.
And this is in accord with recent space plasma observa-
tions [29]. The present purpose is to proceed instead without
assuming the potential to be symmetric, and thereby to com-
plete and validate the analysis of slow asymmetric electron
holes. The findings substantially confirm the prior simplified
analysis.

II. THEORY BACKGROUND

In this paper the Vlasov equation will not actually be writ-
ten down. Instead its property that the distribution function
f (v) is constant along orbits will be used directly. In a steady
potential, the particle energy is also a constant of the motion,

and so f is a function of energy. Together with the knowledge
that particle density is n = ∫

f dv these facts are sufficient to
analyze equilibria.

Bernstein, Greene, and Kruskal, in their original paper [1]
showed that one can formally solve to find the required
distribution functions to create any arbitrary mode potential
shape φ(x), with an arbitrary number of minima and max-
ima, as follows. Dividing the spatial domain into segments
between adjacent local minima and maxima (φmin and φmax),
consider the ions in a segment of increasing φ(x) and sup-
pose their velocity distribution to be known for all relevant
energy Ei ≡ 1

2 miv
2 + eφ > eφmin and the passing electron

distribution to be known for Ee ≡ 1
2 mev

2 − eφ > −eφmin. The
electrons reflected from this potential segment −eφmax <

Ee < −eφmin, entering from the right, have a velocity distri-
bution fer symmetric in v and a function only of energy. Their
density must satisfy Poisson’s equation ner (φ) + nep(φ) −
ni(φ) = ε0

e
d2φ

dx2 , where subscripts r and p refer to reflected and
passing (unreflected) particles. Since ner = 2

∫ vs

0 fe(v)dv =
(2/me)

∫ −eφmin

−eφmax
fe(E )/

√
2(E + eφ) dE , and nep(φ), ni(φ), and

d2φ

dx2 are known, giving ner (φ), an integral equation governs
the reflected part of fe(E ) and can be solved to find the
unique required trapped-electron distribution consistent with
the specified potential profile. For the next segment to the
right, which has decreasing φ(x), the roles of electrons and
ions are reversed, the entire fe and the passing ion distribution
fip are known. One can thus find the required reflected ion
distribution from an integral equation. By this sequential pro-
cess one can in principle find the sequence of reflected (and
trapped) distribution functions that self-consistently satisfy
Poisson’s equation and dependence of f (v) only on energy,
i.e., the steady Vlasov equation.

Concerning a solitary potential structure like an electron
hole, if the asymmetry �φ becomes so great that it removes
the local potential maximum, giving rise to a monotonic po-
tential φ(x), and removing all local electron trapping [30],
then the structure is called a Double-Layer. Double-layers
have a long history of study since their first experimental
observation and analysis by Langmuir [31]. Although the
possibility of asymmetric solitons, with local potential min-
ima or maxima has been noted in these and other double
layer studies [2], almost all of the analysis assumes that
the double-layer potential is monotonic or occasionally has
a local minimum (i.e., an ion hole, or an electron-acoustic
soliton [32]). A (monotonic) double-layer has a single po-
tential segment, and the approach of BGK described in the
previous paragraph describes how, given φ(x) and the entire
incoming distribution of the reflected species on one side, the
required distribution of the other species on the other side
can be found. Variations around the BGK integral equation
method appeared in the early development of double-layer
analysis [33,34]. They were joined by approaches that ex-
press the shape of the velocity distribution in terms of a few
fluidlike parameters such as reflected species effective tem-
perature and passing mean velocity. These often used what
is essentially BGK’s differential equation method and the
requirement of net charge and force neutrality in the form
of boundary conditions for given potential drop �φ (e.g.,
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Ref. [35]). The influential model of Perkins and Sun [36],
for example, showed that provided the passing particle
distributions are chosen appropriately, no net electric current
need flow across the double-layer, which had previously been
in doubt; but their model had only one adjustable parameter
governing the reflected ions, thereby constraining both �φ

and the trapped ion parameter to be unique functions of the
passing electron to ion temperature ratio. One should beware
of so called nonlinear dispersion relations like this; they arise
because of artificially prescribing the shape of the trapped
distribution. Double-layer analysis is well summarized in the
extensive reviews of Raadu [37,38] and their references.

An electron hole, though, such as illustrated in Fig. 1, has
two segments and a single local potential maximum, thus
occasionally being referred to as a “Triple-Layer.” Moreover,
neither the double-layer analyses nor the BGK sequential
integral equation approach show how to deal with a situation
in which the incoming velocity distributions of the particles
on either side of the potential structure are broad but known,
and we wish to solve instead for the potential φ(x) when it is
unknown. This is nearest to the situation encountered in space
observations, on which most of the electron hole experimental
research is currently focused, and in which satellites generally
measure the ion and electron distribution functions in the
background plasma. It is also what is needed to initialize a
consistent slow electron hole in a simulation with prescribed
particle velocity distributions. And it is the subject of the
present work. Our interest includes the stability of the electron
hole velocity, which is vital in this context for a slow electron
hole to persist. All of the considerations here are purely one-
dimensional.

III. PROBLEM SPECIFICATION AND APPROACH

Since several different steps are required to determine the
slow hole equilibrium, each of which is quite complicated, a
summary that is likely to be more comprehensible in hindsight
is given here as orientation. The subsequent subsections will
explain in detail the steps briefly enumerated. The algorithm
has been implemented numerically. Algebraic confirmation is
pursued in Sec. V.

a. From specified fi∞(v∞), which is in principle arbi-
trary but is conveniently represented by a sum of shifted
Maxwellian components of different densities and temper-
atures, and specified potential peak ψ , integrate the ion
distribution, Eq. (1), using constancy along orbits, Eq. (2), to
obtain the ion density everywhere as a function of potential
and sign-of-x: ni(φ, σx ).

b. Determine the distant potential asymmetry �φ =
φ(+∞) − φ(−∞) using a search followed by Newton it-
eration of �φ, to satisfy distant quasineutrality, Eq. (3).
The algorithm of step (a) is used to give each iteration’s
ni[φ(±∞), σx].

c. Find the equilibrium hole velocity vh by searching, with
repetitive use of step (b) to evaluate the total force F exerted
by the potential on particles. This is implemented by a coarse
scan of vh (which provides data for explanatory plots such as
Fig. 7) followed by iterative refinement of the precision of the
equilibrium vh that makes F = 0.

d. Construct the φ(x) by prescribing the higher potential
side’s (σm) φ(x) using a convenient potential form Eq. (7),
giving the trapped electron density net (φ). Solve Poisson’s
equation on the other side (−σm) using the then known ni(φ),
ne(φ).

e. Verify the dynamic stability by calculating the force
response to rapid hole shifts, δF/δx. If desired, then solve
the integral equation to find the trapped electron distribution
function from the prescribed φ(x).

A. Specifying the ion distribution

We begin by supposing that the incoming ion velocity dis-
tribution far from the hole is known and the potential is steady
in the rest frame of the hole. The distribution at arbitrary
position x is then governed by fi(x, v) = fi(∞, v∞), with
energy conserved along orbits giving total ion energy E =
mv2/2 + eφ = mv2

∞/2 + φ∞, and v∞ and φ∞ corresponding
to whichever side of the hole the ion entered. Denote the sign
of x (the position relative to the potential peak at x = 0) by
σx(= ±1). At x, all inward moving ions entered from the
same side σ∞ = σx; but outgoing ions entered from the other
side σ∞ = −σx if they are passing, or the same side σx if
they have been reflected. The sign of the entering velocity
(v∞) is of course −σ∞. So v∞ = −σ∞

√
2(E − eφ∞)/m =

−σ∞
√

v2 + 2e(φ − φ∞)/m, and consequently

ni(x) =
∫

fi(x, v)dv

=
∫

fi(σ∞∞,−σ∞
√

v2 + 2e(φ − φ∞)/m) dv. (1)

Evaluation of this integral requires knowledge of the peak
potential height ψ (at x = 0) because outgoing ions of energy
E < eψ have been reflected, while those with E > eψ have
not. Thus, σ∞ changes sign at E = eψ . This change generally
causes a discontinuity in fi(x, v). Figure 2 illustrates these
features for an incoming ion velocity distribution consisting
of the sum of two Maxwellians having density, mean velocity,
and temperature respectively: (0.3,1.5,1) and (0.7,−1.5, 1),
and potential peak ψ = 0.09. In the codes and this and
all other plots we use units normalized to Debye length√

ε0T0/nie2, reference ion thermal energy T0 and thermal ve-
locity

√
T0/mi, and densities are unity when φ = ψ = 0. In

these units, the ion mass is 1 and the ion charge is e = 1, and
potential is in units T0/e. The (untrapped) electron tempera-
ture Te is equal to T0 unless otherwise noted. Recognize that
φ∞ is initially unknown, and different for different sides σ∞.

In view of the energy conservation that yields Eq. (1), it
seems best to regard fi(∞) as a fixed function of energy E
and velocity sign, regardless of φ∞, to make the passing ion
distribution independent of �φ = φ(+∞) − φ(−∞). To do
so requires us to prescribe fi(∞) at some negative values
of energy, since for nonzero �φ, when φ̄∞ = (φ(+∞) +
φ(−∞))/2 is taken to be the zero of potential, the lower side’s
potential becomes negative and we need the incoming ion
distribution there down to zero velocity. We therefore regard
a function fi∞(v) to be prescribed, and take

fi(σ∞∞, E ) = fi∞(−σ∞
√

2E/m) for E � 0
fi∞(0) for E < 0.

(2)
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FIG. 2. Illustration of ion distributions on either side of the
potential hill, and their integral P(v), which is the cumulative proba-
bility distribution multiplied by ni(φ) (equal to ni(φ) at v = +∞).

Then we will later display the chosen distant ion distributions
by a plot of fi∞(v).

B. Determining distant potential asymmetry

Knowledge of the incoming fi(σ∞∞,−σ∞|v∞|) and ψ is
sufficient to determine also the distant outgoing distribution as
a function of energy, when both of φ(±∞) are known. The ion
densities ni∞(σ∞∞, ψ ) on either side then generally differ,
and depend on ψ . Figure 3 illustrates the result for the same
incoming ion distribution and potential peak height as Fig. 2.

For a solitary structure like an electron hole, the plasma
must be neutral (ni∞ − ne∞ = 0) at distant positions on both
sides, to bring the external potential curvature to zero. Con-
sequently, if the electron distribution fe(Ee) is known, and
therefore ne(φ) is a known fixed function, then the two si-
multaneous neutrality requirements are sufficient in principle
to determine the two φ∞ values. In practice it is convenient
to choose the electron parameters so that ne(φ) is an easily
invertible function. A natural choice is to assume it has Boltz-
mann dependence ne ∝ exp(eφ/Te), so

�φ = φ(+∞) − φ(−∞) = (Te/e) ln(ni(+∞)/ni(−∞)).
(3)

But for numerical solution one could make other choices.
Indeed, one could consider electron distributions that are
asymmetric in incoming velocity, so that when �φ is nonzero,
giving rise to electron reflection, the electron density then
depends on σx (as well as φ). A treatment that performed the
integration over specified electron distribution, like Eq. (1),
would then be required, imposing moderate extra computa-
tional effort.

In any case, since the distant ion density ni(±∞) is itself
a nonlinear function of φ(±∞), �φ solutions in general have
to be found by iteration. In the present work it is assumed
that ne = ne0 exp(eφ/Te). That is a good approximation for

FIG. 3. Illustrative asymmetric electron hole parameters
(a) φ(x), which is ion potential energy; (b) −φ(x), electron potential
energy; (c) ni(x) ion density; (d) ‘Classical’ potential giving force.
The vertical bars in (a) and (b) indicate ranges of particle energy
that are passing, reflected, or trapped. The two points in (c) show the
matching distant electron density. The nonzero value of

∫ +∞
−∞ nidφ

shows this hole is subject to nonzero ion force.

Maxwellian electrons and weak current density. We shall also
take ψ to be fixed relative to the mean φ̄∞ = [φ(+∞) +
φ(−∞)]/2, which is taken to be the zero of potential. The
difference �φ evolves during solving iterations. Newton’s
method applied to the residual (Te/e) ln[ni(+∞)/ni(−∞)] −
�φ is observed to converge to numerical integration accuracy
in fewer than 10 iterations. Once �φ is converged, ne0 is de-
termined by ne0 = ni(±∞)/ exp(±e�φ/2Te). This procedure
produces potential limits that are consistent with the incoming
ion and electron distributions and ψ . Figure 3 illustrates the
spatial dependencies using the converged �φ, when the hole
velocity vh is zero in the ion frame.

C. Poisson’s equation and force balance

A full solution of a one-dimensional electron hole shape
satisfies Poisson’s equation

ε0
d2φ

dx2
= −ρ, (4)

where ρ is the charge density ρ = e(ni − ne). When ρ is
a function only of potential not directly x, as is the case
here, such a differential equation can be integrated once
as [ ε0

2 ( dφ

dx )2]φφ0
= − ∫ φ

φ0
ρdφ ≡ −V ; and the second integral

[x]φφ0
= ± ∫ φ

φ0

√
ε0/2|V |dφ provides the solution in the form

x(φ). In the soliton context, V is often called the “classical”
or “Sagdeev” potential. The key boundary conditions of a
solitary solution are that V be zero at the extrema of φ,
including at x → ±∞ where dV/dφ = e(ni − ne) = 0 (just
discussed) and d2V/dφ2 � 0 (to ensure the nearby V is non-
positive). Behind the mathematics, though [39], V = ∫

ρ
dφ

dx dx
is physically minus the integrated force exerted on the charge
by the electric field; and ε0

2 ( dφ

dx )2 is the Maxwell stress, whose
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difference expresses the same quantity V =− ∫
ε0

d2φ

dx2
dφ

dx dx=
− [ ε0

2 ( dφ

dx )2]. Figure 3(d) shows the integration
∫

nidφ for
ions alone, representing minus the force on the ions. For a
symmetric electron hole (or other soliton) the forces on the
two sides cancel by symmetry; but an asymmetric potential
has no guaranteed force cancellation. And in fact the total
force (per unit transverse area) F will generally be nonzero,
causing hole acceleration, except when the hole has a partic-
ular velocity relative to the specified incoming distributions.
There is thus an additional criterion for a steady equilibrium
that enforces a particular hole velocity to satisfy force balance.
A symmetric-potential hole satisfies this criterion when it has
zero or symmetric reflected particle velocity distribution in the
hole frame. Figure 3, in fact, has nonzero F and so does not
satisfy force balance. It is not actually an equilibrium. The
potential structure would be subject to acceleration.

Satisfying F = 0 places no direct constraints on the
trapped electron distribution, having energy −eψ � Ee �
−e|�φ/2|. The reason is that trapping enforces symmetry
of the distribution, so the trapped densities net (and elec-
tron charge-densities) on the two sides of the potential peak
at the same potential are equal, and the two contributions
−e

∫
net

dφ

dx dx are equal and opposite (as are the passing elec-
tron contributions). The remaining contribution of electrons to
F arises from the integral of the electron density over �φ, that
is

Fe = −Ve = e
∫ �φ/2

−�φ/2
nedφ = ne0Te[exp(e�φ/2Te)

− exp(−e�φ/2Te)]. (5)

It is the force of electron reflection from the potential differ-
ence across the hole, and for the present Maxwellian electrons,
is manifestly the electron pressure-difference across the hole.

The ion force also arises from reflection, in its case from
either side of the potential hill, and since there are no trapped
ions, it can be written simply

Fi = −
∑

σx=±1

σxe
∫ ψ

φ(σx∞)
nidφ, (6)

with ni given by Eq. (1). If we regard the electron and ion
distant distributions as given in the fixed ion frame, then the
only freedom we have to satisfy Fe + Fi = 0 is to suppose that
the hole moves with some velocity vh relative to that frame,
and that vh is to be adjusted to satisfy force balance. This
viewpoint is intuitive, since the result of a nonzero total force
will in fact be hole acceleration, that is modification of vh.

Thus, we must (again iteratively) search for a vh that gives
F = 0, when �φ is given as in Sec. III B by the requirements
on n(±∞). The result will be to find vh, �φ, that satisfy
all the boundary conditions (including force balance), with-
out any constraints (beyond symmetry) so far on the trapped
electron distribution. Figure 4 illustrates the search process
graphically. Figure 4(a) simply plots, in the fixed ion frame,
the distant ion velocity fi∞(v∞) distribution used for the ex-
amples we are giving. Figure 4(b) shows as a function of vh the
total force on ions, electrons, and their sum, when �φ is such
that ne(±∞) = ni(±∞), that is, distant neutrality is satisfied.
Notice that there is substantial cancellation between Fi and
Fe. The total force Fi + Fe is the critical quantity. Equilibria

FIG. 4. Distant velocity distribution of the ions ( fi∞) and the
composition of the forces exerted on the electrons and ions, as vh

is varied.

occur where it is zero. This scan shows that there are three
such vh roots. However, at two of them, the ones located near
the distribution maxima, the slope dF/dvh is positive. That
sign means that at any adjacent velocity the nonzero force
acts to accelerate the hole potential velocity vh away from the
equilibrium value. Thus, those equilibria are unstable to slow
acceleration (in which ion density remains its steady function
of potential). Therefore, the F zero that is of interest is the
middle one where dF/dvh < 0, and is selected by the scan
for further refinement of the vh value. The vertical line and the
cross on the fi∞ plot indicate that equilibrium value. Figure 5
shows the resulting potential, density, and force distributions
as a function of position when the hole speed corresponds to
equilibrium. Now the total force is zero

∫ ∞
−∞(ni − ne) dφ

dx dx =
0, and to achieve this the shift of the hole-frame ion

FIG. 5. Converged equilibrium shape of potential φ(x), ion den-
sity ni(x), and ion force, when the hole required velocity vh = 0.57
for equilibrium has been discovered. For the same ψ and fi∞ as
before.
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(a) (b)

FIG. 6. (a) Potentials on the two sides of the hole. Prescribed side dashed line, Poisson solution side solid. (b) Corresponding trapped
electron distribution function at x = 0, φ = ψ .

distribution (by −vh) has almost (but not quite) symmetrized
the densities and potentials: ni(+∞) � ni(−∞), φ(+∞) �
φ(−∞). The remaining asymmetry of the distant ion density
(which is tiny, <5 × 10−4 of the nearly uniform background)
is canceled by a very small potential difference changing the
electron density. It should be emphasized that this near spatial
symmetry only occurs at or near equilibrium. At vh values
in Fig. 4 where the forces are large, there are much larger
asymmetries in the three curves than Fig. 5 shows; compare,
for example, Fig. 3 (vh = 0), where the ion density asymmetry
is ∼2 × 10−2 and �φ ∼ 0.035 � 0.4ψ .

D. Potential shape

The shape φ(x) is so far undetermined except for the values
of its extrema. We are therefore in the usual situation for
BGK modes of having great liberty in the potential shape,
depending on the velocity distribution of trapped electrons.
The φ(x) plots given so far should be considered illustrative
of plausible possibilities. The difference in potential �φ is of
course, induced by ion-density differences. So ions must be
accounted for in relating the trapped electron distribution to
φ(x). The simpler choice is to regard φ(x), rather than fet (v),
as prescribed in the trapping region, and deduce the required
trapped electron distribution by solving the integral equation
that arises from setting e(ni − ne) = −ε0

d2φ

dx2 . Naturally, there
will be some constraints on the trapped distribution such as
nonnegativity and finite slope. But these should be no more
difficult to satisfy than they are for symmetric holes. More-
over, it is not actually necessary to solve to find fet (v) to
complete the hole structure determination, because it is only
the trapped density net (φ) that is required.

We are, however, not now free to choose separately the
φ(x) profiles on both sides of the hole (σx = ±1), because the
trapped electron density at a particular potential is the same
on both sides. The ion density is not symmetric, but is already
prescribed on both sides. Let σ∞ = σm ≡ sgn(�φ) denote the
side with higher distant potential. Then there is no freedom
to adjust the potential profile by trapped electron distribu-
tion choices at energies −eφ(σm∞) < Ee < −eφ(−σm∞),

because those electrons are not trapped, they are reflected.
If we freely prescribe the potential profile for side σx = σm,
then it determines the required trapped velocity distribution.
But then the spatial profile on the other side (σx = −σm) must
be found by solving Poisson’s equation there, because the
trapped electron distribution has already been determined. By
virtue of the way we chose �φ and vh to satisfy equilibrium,
all the boundary conditions on the −σm side can be satis-
fied; that is, if we start the Poisson solution with φ = ψ and
dφ/dx = 0 at x = 0, then we will find that φ(∞) = −|�φ|/2
and dφ

dx |∞ = 0. The natural way to solve for the entire profile

is to use the implicit form x = ± ∫ φ(x)
ψ

√
ε0/2|V |dφ. This

integration has been implemented numerically, and gives re-
sults consistent with the boundary conditions at infinity, to an
accuracy dependent on the fineness of the integration grids.

The illustrative form of the potential prescribed on side σm

is chosen to be

φ(x) = φ∞ + (ψ − φ∞)
exp(L) + 1

exp(L) + cosh4(x/4λ)
, (7)

where the adjustable parameter L when positive is the approxi-
mate length of a flattened region at the top of the potential, and
when negative rapidly suppresses flattening; and λ controls
the distant exponential decay, usually being the (generalized)
Debye screening length. This yields electron trapped velocity
distributions of approximately the (negative temperature Tet )
Maxwellian form ∝ exp(−E/Tet ), when L → −∞ [3]. Fig-
ure 6(a) shows [for L = −10, λ = 1 and the fi∞ of Fig. 4(a)]
that the potential shape derived from the solution of Poisson’s
equation (side −σm, solid curve) is very close to that for the
prescribed side σm: Eq. (7). The trapped electron distribu-
tion derived from solving the integral equation is shown in
Fig. 6(b).

E. Stability to fast acceleration

In addition to the steady-state force imbalance already
discussed, an additional mechanism that could give rise to
hole velocity instability involves force imbalance arising from
hole acceleration itself. An electron hole accelerating on the
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electron response timescale (of order a few times 1/ωpe)
does not permit adjustment of the ion density fast enough
to be effectively steady. As an approximation based on the
separation of timescales, one can approach this issue by sup-
posing there is negligible ion density change during some
fast shift of the electron hole’s velocity and position from a
full steady equilibrium. There would then arise a net force
change of the hole potential on the ions (but by assumption
not on the electrons) due to the shift displacement δx of
the potential structure from the original equilibrium, acting
on the undisplaced ion density. For small displacements, the
linearized change in potential at any position is − dφ

dx δx, giv-

ing rise to a change in force δF = −eδx
∫ − d2φ

dx2 ni(x)dx =
−eδx

∫ dφ

dx
dni
dx dx = −eδx

∫ dni
dx dφ. Notice that the integral is

of two (approximately) antisymmetric quantities dφ

dx and dni
dx ,

so it is finite regardless of potential shape, but has the sign
of −dni/dφ of the dominant contributions to the integral.
Stability depends on the sign of δF/δx, and therefore of
the integral. If it is such as to enhance δvh and hence δx,
which arises if δF/δx is positive, then exponential growth of
hole shift δx will occur. In so far as the system is correctly
described dynamically by this shift motion with static ions,
it will be stable if both δF/δx and the equilibrium quantity
dF/dvh are negative. Given the equilibrium solution, it is easy
(numerically) to evaluate δF/δx, and it can be used to qualify
an equilibrium’s dynamic as well as static stability.

Since the potential asymmetry is generally very small, and
the δF/δx depends only weakly on the φ(x) shape, it is usually
sufficient to calculate it approximately using a model φ profile
whose Poisson-solution side is approximated as equal to the
specified-side’s φ(x) matched at φ = ψ with φ − ψ scaled to
give the known �φ. That is what is plotted in Figs. 3 and 5.
Varying the x-scale-length on either side makes no difference.

It is valuable to explore the existence of a stable equilib-
rium for a range of ion distribution shapes. One way to do this
is to scale the velocity shift of each Maxwellian component
(but not their width or density) by a range of factors. The
result of such a set of calculations is shown in Fig. 7. It
includes (a) the velocity distribution, fi∞(v∞), (b) the steady
force F (vh), and (c) the dynamic-shift force coefficient δF/δx
for a set of seven different velocity shift scalings, colored by
shift factor. The middle scaling factor is 1 and corresponds to
the distribution of the previous five figures. It confirms that
δF/δx is negative for the equilibrium vh shown by the cross,
as previously found. Therefore, by the approximate dynamic
analysis this equilibrium is stable. For zero shift factor the ion
distribution is a single Maxwellian. Its equilibrium F (vh) = 0
is unstable, and in such cases no cross is plotted. For a large
shift factor of 2 the distribution consists of two components
hardly overlapping. All distributions plotted from shift-factor
of ∼1 upward are stable. All below are unstable. A refined
intermediate value of the scaling factor at the threshold for
stability is found and plotted as black points with the corre-
sponding equilibrium vh indicated by a short vertical line. It is
noticeable that the required vshift to achieve static dF/dv < 0
and dynamic δF/δx stability are the same for this coarse scan.
In other words (approximately): if and only if a distribution
allows a statically stable equilibrium, it is dynamically stable.
Moreover, it is required to have a local minimum in fi∞ in

FIG. 7. Stability parameters as a function of vh, for a range of
distributions obtained by scaling the Maxwellian components’ shift
velocity (vshift ∝ 0, 0.33, 0.66, 1.0, 1.33, 1.66, 2.0).

order for a stable equilibrium to exist. As has been shown
previously [24], the larger the ψ the deeper the minimum has
to be. But for this moderate case, ψ = 0.09T0 (and smaller
ψ), the depth required is small.

IV. ASYMMETRIC HOLES AT A RANGE
OF PARAMETERS

We now illustrate asymmetric hole equilibria with fi∞
consisting of two shifted Maxwellian components, having
densities n1,2, temperatures T1,2, and velocities in the refer-
ence (not hole) frame v1,2 = ±vs. The reference temperature
is taken equal to the temperature of component one T0 = T1,
and the sum of the densities (the total background ion density)
is unity n1 + n2 = 1. Thus, n2, T2, and vs are the three pa-
rameters determining the distribution shape. Figure 8 surveys
the shapes fi∞(v), and the resulting ion density profiles ni(x)
for those hole amplitudes (ψ) which possess stable slow hole
equilibria.

The overall scaling of the ion density perturbation is seen to
be ni − 1 ∼ ψ . This is intuitive; the amplitudes of the poten-
tial perturbation and the density perturbation are proportional
to one another, when small. We observe that there is very
little difference in the scaled density perturbation between the
lower amplitude cases ψ = 0.04, 0.004, even quantitatively.
This is because for these cases the deficit in fe(v), and of ni,
supporting the hole, is fractionally small and can be linearized.
By contrast, for ψ = 0.4, the hole is deep and the ion density
response is no longer linear. Moreover, for the bottom row
of Fig. 8, none of the distributions permits a stable hole at
ψ = 0.4 even though it does at the lower amplitudes. That is
because deeper holes would require a deeper local minimum
in fi∞ for stability than is provided by these cases.

The top right case (T2 = 1, n2 = 0.5) is completely
symmetric, and the equilibrium is at vh = 0, the
symmetry axis. Also there is no ion density difference
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FIG. 8. A 3 × 3 display of nine different cases T2 = (0.2, 0.6, 1), n2 = (0.1, 0.3, 0.5) for which vs = 0.75 + √
T2; here Te = T0. Each case

has two adjacent subframe plots: the left-hand side is fi∞(v) and the right-hand side represents scaled ion density perturbation as [ni(x) − 1]/ψ .
All corresponding frames have the same axis ranges −4 � v∞ � 4, −12 � x � 12. Densities are plotted for three different potential peak
heights ψ = (0.4, 0.04, 0.004) indicated by different colors, but only if a stable equilibrium hole velocity (vh) exists. If it does, then a cross is
plotted on the left-hand side subframe at that velocity and distribution height.

across the hole and the corresponding potential difference
�φ = (Te/e){ln[n(+∞)] − ln[n(−∞)]} is zero. At lower
values of T2, substantial asymmetry in ni appears, becoming
quite pronounced for T2 = 0.2, (at the left) regardless of n2

for the largest ψ . For smaller ψ , density ni(∞) becomes
more symmetric, although some small asymmetry remains,
most noticeable at low T2. Overall, though, the asymmetry in
ni(∞) at equilibrium remains less than ∼0.2ψ , and in fact
scales like ψ2.

V. ALGEBRAIC CALCULATION OF ASYMMETRY

A. Explanation of approach

The scaling of potential asymmetry can be understood
qualitatively as follows. We recognize that there are two
types of asymmetric contribution to the neutrality re-
quirement (�ne = �ni) and the force balance requirement
(F = 0). There is an intrinisic asymmetry arising even when
�φ = 0 that comes from the asymmetry of fi∞, and there
is an extrinsic asymmetry that comes from �φ. The asym-
metry (strictly antisymmetric part) of fi∞ can be expressed
as the odd terms of its Taylor expansion in velocity in the
hole frame f ′v + 1

6 f ′′′v3 + O(v5), f ′ and f ′′′ are the first and
third velocity-derivatives of fi∞ evaluated at v = 0 (i.e., at
ion-frame velocity vh) taken as constants.

The intrinsic ion density asymmetry, which is to be
evaluated between the positions on either side of the hole
corresponding to φ = +|e�φ|/2, has then two terms propor-

tional respectively to f ′ψ and f ′′′ψ2. The ψ dependencies
arise from integrals over v to the hole height energy v =√

2eψ/m. There is no intrinsic electron density asymmetry
because electrons are trapped by the positive potential peak,
not reflected from it. The extrinsic density asymmetry arises
from the change of ne and ni, on the low potential side, across
the range −|�φ|/2 � φ � |�φ|/2. These changes are both
proportional to �φ, but with different coefficients.

The intrinsic ion force asymmetry likewise has two terms
∝ f ′ψ2 and ∝ f ′′′ψ3, where the additional power of ψ (rel-
ative to �n) comes from the integral

∫
ndφ. There is no

intrinsic electron force. The total extrinsic force arises from
reflection of ions and electrons from the potential range
−|�φ|/2 � φ � |�φ|/2, but it is most easily expressed as the
difference in the Maxwell stress on the low potential side be-
tween −|�φ|/2 and |�φ|/2, which is simply (ε0/2λ2)(�φ)2,
where λ is the length for generalized Debye screening includ-
ing the response of both electrons and ions. Therefore, the
simplified structure of the simultaneous equilibrium require-
ments (writing coefficients a, b, c, d to be found later) is

�φ = aψ f ′ + b f ′′′ψ2, �φ2 = cψ2 f ′ + df ′′′ψ3. (8)

Eliminating the f ′ terms,

�φ2 − c

a
ψ�φ −

(
d − bc

a

)
f ′′′ψ3 = 0, (9)
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which can be solved for �φ as

�φ = cψ

2a

⎡
⎣1 ±

√
1 +

(
d − bc

a

)(
2a

c

)2

f ′′′ψ

⎤
⎦. (10)

The discriminant’s sign must be chosen to be opposite the sign
of the first term. When �φ/ψ is small, only the linear term is
important in Eq. (9), and

�φ �
(

b − ad

c

)
f ′′′ψ2. (11)

Thus, both �φ and �ni scale proportional to the two inde-
pendent parameters ψ2, and f ′′′. The latter is the lowest order
contribution to asymmetry in fi∞ about the local minimum
where f ′ = 0. Actually the solution is not exactly at f ′ = 0,
but it is at a value that makes the two equations consistent,
which is

f ′ = (�φ − b f ′′′ψ2)/aψ � −(d/c) f ′′′ψ. (12)

And the distribution derivatives f ′ and f ′′′ must be evaluated
at the vh value that satisfies this equation.

B. Intrinsic ion density asymmetry

To quantify our analytic asymmetry expressions we need
to evaluate the a, b, c, d coefficients used in Eqs. (8)–(12), to
relevant order in ψ and �φ/ψ . Those equations have already
assumed that ψ is a small quantity to allow the fi∞ expansion;
Eq. (11) shows that �φ/ψ = O(ψ ); and Eq. (12) shows that
f ′/ f ′′′ = O(ψ ). In this section for brevity we introduce a
notation for the equivalent velocity, vψ−φ = √

2e(ψ − φ)/m,
and in a similar way vφ = √

2eφ/m, vψ = √
2eψ/m, and

vE = √
2E/m =

√
v2 + v2

φ . We also work in scaled units so

that e = 1, m = 1, and T0 = 1.
The intrinsic ion density asymmetry between two points on

opposite sides of the potential peak, at the same potential φ, is
found from Eq. (2). Noting that only for reflecting energies is
there any asymmetry, we get

�n f (φ) = 2
∫ vψ−φ

0
fi∞

(−√
v2 + v2

φ

) − fi∞
(√

v2 + v2
φ

)
dv

= 2
∫ vψ−φ

0
� fidv. (13)

Substituting the expansion for the antisymmetric part of fi∞,
so that � fi = −(2 f ′vE + 1

3 f ′′′v3
E ) we have

�n(φ)

= −2
∫ vψ−φ

0

[
2 f ′(v2 + v2

φ

)1/2 + 1

3
f ′′′(v2 + v2

φ

)3/2
]

dv.

(14)

Performing the integrals, we find

�n(φ)

= −2

[
vψ−φvψ + v2

φ ln

(
vψ−φ + vψ

vφ

)]
f ′

− 1

12

[
vψ−φvψ

(
2v2

ψ + 3v2
φ

)+ 3v4
φ ln

(
vψ−φ+ vψ

vφ

)]
f ′′′.

(15)

The lowest potential at which this applies is φ = |�φ|/2,
because on the higher side there are no lower potentials.
Then �n f = �n(|�φ|/2) is the intrinsic contribution to the
neutrality criterion. But because of the smallness of �φ/ψ , to
lowest order we find a result independent of �φ:

�n f = −2v2
ψ f ′ − 1

6v4
ψ f ′′′ + O

(
v2

ψv2
|�φ/2|

)
= −4ψ f ′ − 2

3ψ2 f ′′′ + O(ψ |�φ|). (16)

C. Intrinsic ion force

The integral of Eq. (15) also provides us with the
intrinsic force exerted by the potential on ions, Ff =∫ ψ

|�φ|/2 �n(φ)dφ = 1
2

∫ v2
ψ

v2
|�φ/2|

�n dv2
φ . Closed form indefinite

integrals exist:∫
vψ−φvψ + v2

φ ln

(
vψ−φ + vψ

vφ

)
dv2

φ

= 1

2

[
vψ−φvψ

(−2v2
ψ + v2

φ

) + v4
φ ln

(
vψ−φ + vψ

vφ

)]
(17)

and∫ [
vψ−φvψ

(
2v2

ψ + 3v2
φ

) + 3v4
φ ln

(
vψ−φ + vψ

vφ

)]
dv2

φ

= 1

3
vψ−φvψ

(−8v4
ψ + 2v2

ψv2
φ + 3v4

φ

)
+ v6

φ ln

(
vψ−φ + vψ

vφ

)
. (18)

Noting that the upper limits do not contribute because at
vφ = vψ , vψ−φ = 0, the required definite integral becomes, to
lowest order [40]:

Ff = −v4
ψ f ′ + − 1

9v6
ψ f ′′′ + O

(
v4

ψv2
|�φ/2|

)
= −4ψ2 f ′ + − 1

9 8ψ3 f ′′′ + O(ψ2|�φ|). (19)

D. Extrinsic density difference and force

The neutrality condition requires in addition the change
in ni − ne, which occurs between potentials −|�φ|/2 and
|�φ|/2 on the lower φ∞ side (−σm). It can be written

�n�φ =
(

dni

dφ
− dne

dφ

)
�φ = −ε0

e

�φ

λ2
. (20)

The electron density change, since electrons are Maxwellian,
is simply the Boltzmann factor, which gives dne

dφ
= ne0e/Te.

If this were the only source of charge, then Poisson’s equa-
tion would be d2φ

dx2 = φ/λ2
De, where 1/λ2

De = ne0e2/ε0Te which
in (the Debye) normalized units is T0/Te. Thus, dne

dφ
e/ε0 =

1/λ2
De = T0/Te gives the shielding length due to electrons

alone; and we can write −( dni
dφ

− dne
dφ

)e/ε0 = 1/λ2 = T0/Ts =
1/Ts (normalized) expressing the modified shielding length λ

including the linearized dielectric response of both electrons
and ions in terms of an effective shielding temperature Ts

which is generally �Te.
Similarly, as previously noted, the extrinsic force on the

particles can be expressed using λ as the difference in the
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FIG. 9. (a) Comparison of numerical (solid black) and algebraic (dashed red) estimates of potential asymmetry �φ, showing its scaling
proportional to the square of the electron hole peak potential ψ . In panel (b) is shown the ion distribution comprising Maxwellians T1 = 1,
n1 = 0.7, v1 = 1.197, T2 = 0.2, n2 = 0.3, v2 = −1.197, and Te = 1, in scaled units. The potential profiles in panel (c) are from the ends of
the scaling range.

Maxwell stress in the range −|�φ|/2 (|x| = ∞) and |�φ|/2,
in which the potential is exponential with decay length λ.
Thus, |F�φ| = ε0

2 ( dφ

dx )2 = ε0
2λ2 �φ2, with sign σ� equal to that

of �φ:

F�φ = sgn(�φ)
1

2Ts
�φ2 ≡ σ�

1

2Ts
�φ2. (21)

E. Comparison with numerics

Dividing the neutrality �n�φ + �n f = 0 and force bal-
ance F�φ + Ff = 0 conditions by minus the coefficients of
their extrinsic terms −1/Ts and σ�/2Ts, we obtain the coef-
ficients for Eq. (8):

a = 4Ts, b = 2
3 Ts, c = −8σ�Ts, d = − 16

9 σ�Ts. (22)

Substituting for them we find the potential asymmetry

�φ = σ�ψ (1 −
√

1 − σ�(4Ts/9) f ′′′ψ ) � 2Ts

9
f ′′′ψ2 (23)

and f ′ � − 2
9 f ′′′ψ . The density asymmetry is �ni = �ne �

�φ/Te = Ts/Te
2
9 f ′′′ψ2.

The ion response dni
dφ

contribution to Ts = ( 1
Te

− dni
dφ

)−1 is
estimated on an ad hoc basis to be typically 0.3. This estimate
is probably the biggest fractional uncertainty unless Te is very
small (in which case the ion contribution to shielding is small).
Then we compare the present algebraic estimate with the nu-
merical evaluation in Fig. 9(a). The good agreement between
the two except in the region where ψ is no longer small, is
gratifying and serves as a verification of the numerical and
algebraic integrations. The potential profiles Fig. 9(a) empha-
size that even at the upper end of the scaling range (where the
agreement is compromised by ψ no longer being small) the
asymmetry in the potential at equilibrium remains small. This
case, corresponds to the n2 = 0.3, T2 = 0.2 case of Fig. 8,
correcting any false impression given there by the density
profiles that the potential asymmetry is strong. Because of
force-balance requirements, it never is.

VI. DISCUSSION

This numerical and algebraic analysis of asymmetric elec-
tron holes is, to my knowledge, the first that treats plausibly
realistic external ion distributions taking into account the
criteria of equilibrium. It shows that for truly solitary equi-
librium positive potential structures, sustained by the plasma
velocity distributions and not imposed by local constraints,
potential asymmetry is only minor, and for small amplitude
electron holes is negligible. This finding moderates past spec-
ulations about asymmetric electron holes in the Double Layer
literature. It shows that in the absence (assumed here) of
strong external electron velocity distribution asymmetry, soli-
tary electron holes are nothing like asymmetric enough to be
considered double layers. It also justifies the approximation of
ignoring potential asymmetry used in the recent theory [24]
of slow electron holes, and confirms its results. The present
treatment remains purely an equilibrium theory, but the force
on the hole out of equilibrium has been calculated, and its
required sign to avoid exponential instability determined. For
a stable equilibrium to exist, the ion distribution must neces-
sarily have a local minimum, and the hole velocity must lie
within it. This necessary condition does not, however, estab-
lish stability against oscillatory instability of all frequencies.
A full frequency range analysis, which is beyond the present
scope, would be required to do so.

It is possible for an electron hole to be formed at a velocity
that does not satisfy the equilibrium force constraint, or in an
ion distribution shape that causes any slow equilibrium to be
unstable. If so, then it might initially have substantial potential
asymmetry, or develop it during unstable acceleration. But
once a hole finds a stable equilibrium velocity, that asymmetry
will be largely suppressed. If, therefore, a substantially asym-
metric electron hole were to be convincingly observed, then its
asymmetry might be an indication that it was young, dynamic,
and still in the process of accelerating toward equilibrium. Of
course, this treatment is also only one-dimensional, and all of
its conclusions should be qualified by the possibility of being
changed by multidimensional effects.
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