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Momentum distribution of the uniform electron gas at finite temperature:
Effects of spin polarization
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We carry out extensive direct path integral Monte Carlo (PIMC) simulations of the uniform electron gas
(UEG) at finite temperature for different values of the spin-polarization ξ . This allows us to unambiguously
quantify the impact of spin effects on the momentum distribution function n(k) and related properties. We find
that interesting physical effects like the interaction-induced increase in the occupation of the zero-momentum
state n(0) substantially depend on ξ . Our results further advance the current understanding of the UEG as a
fundamental model system, and are of practical relevance for the description of transport properties of warm
dense matter in an external magnetic field. All PIMC results are freely available online and can be used as a
benchmark for the development of methods and applications.
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I. INTRODUCTION

The uniform electron gas (UEG) [1,2] is one of the most
fundamental model systems in theoretical physics and re-
lated disciplines. In particular, the UEG has been pivotal
for the development of groundbreaking concepts such as
Fermi liquid theory [2], the Bardeen-Cooper-Schrieffer the-
ory of superconductivity [3], and the quasiparticle picture
of collective excitations [4]. Despite its apparent simplic-
ity, it exhibits a wealth of interesting physical effects such
as Wigner crystallization [5,6], a potentially incipient exci-
tonic mode at low density [7–9], and the possibility of a
charge-density or spin-density wave [2,10,11]. Consequently,
the accurate description of the UEG based on ground-state
quantum Monte Carlo (QMC) simulations [12,13] has been
important for many applications such as the emergence of
density-functional theory [14].

Over the last decades, there has emerged growing interest
in so-called warm dense matter (WDM), an exotic state char-
acterized by extreme temperatures and densities [15,16]. In
nature, these conditions occur in astrophysical objects such
as giant-planet interiors [16–19], brown dwarfs [20,21], and
neutron star crusts [22]. Furthermore, WDM plays an impor-
tant role in cutting-edge technological applications such as
inertial confinement fusion [23], hot-electron chemistry [24],
and the discovery of materials [25–27]. From a theory point
of view, WDM is defined by two characteristic parameters
that are simultaneously of the order of unity: (1) the density
parameter (also known as the Wigner-Seitz radius or quantum
coupling parameter [28]) rs = r/aB, with r and aB being the
average interparticle distance and first Bohr radius, and (2)
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the reduced temperature θ = kBT/EF, with EF being the usual
Fermi energy, cf. Eq. (12).

Phenomenologically, these conditions manifest as the
highly nontrivial interplay of quantum effects, Coulomb cou-
pling, and thermal excitations, which renders WDM theory a
most formidable challenge [29,30]. Coming back to the UEG,
it has become clear that previous ground-state descriptions of
the UEG are often not sufficient for applications in the WDM
regime [31–33]. Consequently, a gamut of theoretical methods
has been introduced to describe electrons at these conditions.
A particularly successful approach are dielectric theories
[34,35], which have been adapted to finite temperature mainly
in the works by Tanaka and Ichimaru and Ichimaru et al.
[36,37] in the 1980s and are continually being developed
[10,38–42] and used for various practical applications [43,44].
Other prominent examples include diagrammatic techniques
[45–47], quantum-to-classical mapping schemes [48–51], and
nonequilibrium Green’s functions [52,53]. While all of the
aforementioned methods have substantially improved our un-
derstanding of electrons in the WDM regime, they are afflicted
with systematic errors such that the accuracy of these data has
remained unclear.

This unsatisfactory situation has sparked a surge of devel-
opments in the field of fermionic QMC simulations at finite
temperatures [54–65] (see Ref. [66] for a review), which
has culminated in the first accurate parametrizations of the
exchange-correlation free energy of the UEG at WDM con-
ditions [67–70]. In particular, this allows for thermal density
functional theory simulations on the level of the local den-
sity approximation [31,32], and constitutes the basis for the
development of more sophisticated functionals that explicitly
take into account the temperature [71,72]. Further progress
on the UEG at WDM conditions includes the characterization
of linear-response properties such as the static local field
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correction [73–76], numerical and theoretical results for the
nonlinear electronic density response [77,78], and even the
study of dynamic quantities based on the analytic continuation
of imaginary-time correlation functions [9,73,79–81].

Another fundamental property of the UEG is the momen-
tum distribution function n(k), which can be directly accessed
in experiments with positron annihilation spectroscopy in
metals [82,83], and which is highly important for the devel-
opment of accurate models for the computation of different
transport properties of WDM [84]. At finite temperatures,
the first QMC results have been presented by Militzer et al.
[85,86] based on approximate restricted path integral Monte
Carlo (PIMC) simulations. More recently, the momentum
distribution of the unpolarized UEG has been revisited by
Hunger et al. [87], who have carried out exact configuration
PIMC simulations at high densities (rs � 1), and by Dornheim
et al. [88] on the basis of exact direct PIMC simulations
going from metallic densities rs ∼ 2 to the strongly coupled
electron liquid regime (rs ∼ 10 − 100). More specifically,
these studies have addressed interesting phenomena such
as the interaction-induced increase in the occupation of the
zero-momentum state [47,85], the related negative exchange-
correlation part to the kinetic energy Kxc, and the algebraic tail
in the limit of large momenta k, cf. Eq. (14) below.

At the same time, a thorough investigation of the depen-
dence of the momentum distribution function on the spin
polarization ξ = (N↑ − N↓)/N (with N↑, N↓, and N being
the number of spin-up electrons, spin-down electrons, and all
electrons, respectively) has yet been missing. In the present
paper, we aim to fill this gap by presenting extensive direct
PIMC results for n(k) for different values of ξ . First, we men-
tion that such an investigation is interesting in its own right,
and helps to significantly advance our current understanding
of the UEG as a fundamental model system [69,70]. Second,
the impact of the spin polarization is of central importance
for the properties of WDM in an external magnetic field. In
the case of strong electronic degeneracy (θ � 1) in a non-
quantizing magnetic field, the effect of the spin polarization
on transport properties is negligible as it scales as ξ ∼ O(θ )
[89]. Similarly, quantum effects are not relevant due to strong
thermal excitations in the regime of very high temperatures,
θ � 1. In stark contrast, the effects of the spin polarization
play an important role precisely in the WDM regime (θ ∼ 1)
in an external magnetic field, as both aforementioned condi-
tions do not apply here. More specifically, the condition for
a nonquantizing magnetic field follows from the requirement
that the electron cyclotron energy h̄ωc is much smaller than
the characteristic quantum kinetic energy

√
E2

F + T 2 [90].
From this condition, one can find that the range of non-
quantizing magnetic fields is given by B/B0 � 18.4

r2
s

√
θ2 + 1

(where B0 � 2.25 × 105T). For example, at θ ∼ 1 and rs ∼
1, nonquantizing strong magnetic fields B ∼ 10 T − 104 T
can be generated in experiments related to inertial confine-
ment fusion [91,92]. Yet, the physical properties of WDM
in such strong magnetic fields remain largely unknown. We
are thus convinced that our results for the impact of the spin
polarization on the momentum distribution are of direct im-
portance for the future exploration of WDM at these extreme
conditions.

Furthermore, we mention that, in addition to its relevance
for the field of WDM, the UEG at finite T can be approxi-
mately realized in semiconductors [2,93], which can be tuned
experimentally to a high degree. Finally, we note that the em-
ployed direct PIMC method constitutes the method of choice
for the present paper, as it is capable of giving exact results
that can be used as a benchmark for other approaches like
restricted PIMC. At the same time, we stress that other meth-
ods are superior for other parameters, such as high densities
(rs � 0.1), when relativistic effects become dominant.

The paper is organized as follows: In Sec. II, we in-
troduce the required theoretical background including the
PIMC method (Sec. II A), the corresponding estimation of
the momentum distribution function (Sec. II B), and the spin-
resolved reduced system parameters (Sec. II C). Section III is
devoted to the presentation of our simulation results, starting
with PIMC data for the fully spin-polarized case (Sec. III A).
Subsequently, we extend these considerations to arbitrary
values of the spin polarization in Sec. III B. The paper is
concluded by a brief summary and discussion in Sec. IV.

II. THEORY

We assume Hartree atomic units throughout this paper.

A. The path integral Monte Carlo method

Throughout this paper, we simulate N = N↑ + N↓ spin-
restricted electrons in a cubic simulation box of constant
volume V = L3, and at a fixed temperature T = 1/β. Further,
we restrict ourselves to the case of thermodynamic equilib-
rium, and the expectation value of a physical observable Ô is
given by

〈Ô〉 = 1

Z
Tr

(
ρ̂Ô

)
. (1)

Here ρ̂ = exp(−βĤ ) denotes the (unnormalized) canonical
density operator and the normalization is given by the cor-
responding canonical partition function Z . The basic idea
of the PIMC method [94–96] is the stochastic evaluation of
the matrix elements of ρ̂. More specifically, this requires the
evaluation of extremely high-dimensional integrals, which is
accomplished efficiently using variations of the Metropolis
Monte Carlo method [97]. While being computationally in-
volved, the PIMC method is, in principle, capable of providing
a quasiexact solution of the quantum N-body problem of
interest. The term quasiexact implies that PIMC estimations
of Eq. (1) can be made arbitrarily accurate in a controlled
way when the convergence parameters (typically the number
of imaginary-time slices P and the number of Monte Carlo
samples NMC) are increased. A more detailed introduction to
the PIMC method is beyond the scope of the current paper,
and the interested reader is referred to Refs. [69,94,98].

An additional problem arises due to the fermionic nature
of electrons, which manifests as an antisymmetry under the
exchange of particle coordinates in Eq. (1). This is the ori-
gin of the notorious fermion sign problem [99–101], which
leads to an exponential increase in computation time with
increasing the system size N or decreasing the temperature
T ; see Refs. [101,102] for an accessible topical discussion. A
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popular approach to circumvent this issue is the application
of the fixed-node approximation [103] (commonly known as
restricted PIMC or RPIMC), which formally removes the sign
problem for simulations in the canonical ensemble. Indeed,
the RPIMC method constitutes at present the only QMC
approach that is capable of simulating real materials in the
WDM regime, e.g., Refs. [104–106]. Unfortunately, this great
advantage comes at the cost of an uncontrolled approximation,
as the exact nodes of correlated quantum many-body systems
are a priori unknown. More specifically, Schoof et al. [56]
have shown that RPIMC leads to errors of up to 10% in the
description of exchange–correlation properties of electrons in
the WDM regime.

For this reason, we do not impose any nodal restriction in
the present paper. Consequently, our direct PIMC simulations
are computationally extremely demanding, and we spend up
to O(105) CPUh for a single density-temperature combination
in the most challenging regime. Still, the sign problem consti-
tutes the main limitation of our approach and prevents us from
accessing the low-temperature regime (θ < 1) except for very
strong coupling.

B. PIMC estimation of the momentum distribution

The momentum distribution of Nσ (with σ ∈ [↑,↓] denot-
ing the spin) electrons is defined as [86]

nσ (k) = (2π )d

V

〈
Nσ∑
l=1

δ(k̂l − k)

〉
, (2)

with the corresponding normalization∑
k

nσ (k) = Nσ . (3)

In addition, we mention that Eq. (2) is related to the
off-diagonal density matrix in coordinate space nσ (s) :=
nσ (r, r′), with s = |r − r′|, by

nσ (k) =
∫

ds nσ (s)e−is·k. (4)

For an ideal (i.e., noninteracting) Fermi system, Eq. (2) is
given by the well-known Fermi distribution

n0(k) = 1

1 + exp[β(Ek − μ)]
, (5)

with μ being the usual chemical potential [2], and the ideal
dispersion relation

Ek = k2

2
. (6)

Interestingly, the evaluation of Eq. (2) is not straightfor-
ward in the PIMC method, as it constitutes an off-diagonal
observable in the underlying coordinate representation. More
specifically, each particle is represented as a closed path
over different coordinates in the imaginary time within the
PIMC method. In contrast, the estimation of n(k) requires the
presence of a single open path within the PIMC simulation,
thereby resulting in a modified configuration space. This is
illustrated in Fig. 1 for a schematic configuration of N = 3
electrons on P = 6 imaginary-time slices (with ε = β/P be-
ing a discretized time step), depicted in the τ -x plane. While

FIG. 1. Schematic illustration of the off-diagonal configuration
space Zr,r′ ;σ including a single open trajectory with different start
and end points r and r′. Adapted from Ref. [88] with the permission
of the authors.

the two rightmost paths exhibit the same coordinates for τ = 0
and τ = β, the electronic path on the left is open and has
different coordinates r and r′ at its start and end.

The expression for Eq. (2) in the path-integral picture is
then given by [86,94]

nσ (k) = 1

V

Zr,r′;σ

Z
〈eik(r−r′ )〉r,r′;σ , (7)

where the subscript of the angular brackets indicates this
modified configuration space, and Zr,r′;σ its corresponding
normalization. In practice, we use the extended-ensemble
approach presented in Ref. [88], which is based on the
worm algorithm by Boninsegni et al. [98,107]. One particular
strength of this scheme compared to earlier works [86,94] is
the possibility to directly compute the normalization of Eq. (7)
without the need for a subsequent fitting of the off-diagonal
density matrix n(r, r′) or an artificial imposition of the con-
dition in Eq. (3). The practical implications of this advantage
are discussed in Sec. III A below.

C. Reduced system parameters for arbitrary spin-polarizations

To understand the effect of an arbitrary spin-polarization
ξ ∈ [0, 1] on physical observables, it is helpful to consider
modified, explicitly spin-resolved reduced parameters. To this
end, we introduce the spin-resolved density parameter rσ

s via
the relation

4

3
π

(
rσ

s

)3 = V

Nσ
, (8)

which immediately gives

rσ
s = rs

(
N

Nσ

)1/3

. (9)

Furthermore, Eq. (9) can be expressed in terms of the spin
polarization ξ as

r↑
s = rs

(
1 + ξ

2

)−1/3

and (10)
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FIG. 2. Polarization dependence of the spin-resolved density pa-
rameter rσ

s (top panel) and reduced temperature θσ (bottom panel) for
rs = 2 and θ = 2 (using the Fermi energy of the unpolarized system
as a reference).

r↓
s = rs

(
1 − ξ

2

)−1/3

.

The dependence of Eqs. (10) on ξ is shown in the top
panel of Fig. 2, using a total density parameter rs = 2 as a
reference (dashed black line). For ξ = 0, the system is fully
unpolarized, i.e., N↑ = N↓ = N/2, which immediately gives
r↑

s = r↓
s = 21/3rs. Upon increasing ξ , the fraction of spin-up

electrons increases, and, consequently, r↑
s converges towards

the full density parameter rs in the limit of ξ = 1. In contrast,
the number density of spin-down electrons decreases with ξ

and eventually attains zero. Thus, r↓
s actually diverges towards

the fully spin-polarized case.
A second parameter that is relevant to the present paper

is given by the spin-resolved reduced temperature, which we
simply express as a function of rσ

s ,

θσ (β ) = 1

βEσ
F

(
rσ

s

) , (11)

with Eσ
F (rσ

s ) being the Fermi energy for a fully spin-polarized
system with the density parameter rσ

s ,

Eσ
F (rσ

s ) =
(
kσ

F

)2

2
, (12)

with the corresponding spin-dependent Fermi wave number:

kσ
F = (6π2nσ )1/3. (13)

The results for Eq. (11) are shown in the bottom panel of
Fig. 2, using θ = 2 as a reference for the unpolarized case.
With increasing ξ , the number density of the spin-up electrons
is increased, which results in a larger Fermi energy. Therefore,
the reduced temperature is decreased when β (or, equivalently,
T ) are being kept constant. Conversely, both the number den-
sity of the spin-down electrons and the corresponding Fermi
energy vanish toward ξ = 1, which means that θ↓ diverges.

III. RESULTS

A. The spin-polarized electron gas

1. Density dependence

Let us start our investigation of spin effects on the momen-
tum distribution with an analysis of the fully spin-polarized
case, ξ = 1. To this end, we show the density dependence of
n(k) for θ↑ = 1 in Fig. 3. More specifically, the dashed black
curve shows results for the ideal Fermi gas [cf. Eq. (5)], which
are independent of the density when the reduced tempera-
ture is being kept constant. In addition, the different symbols
show our PIMC results that have been obtained for N↑ = 33
electrons for different values of rs. For completeness, we
mention that the left and right panels correspond to a linear
and logarithmic scale, which allows to focus on different
features of n(k) at different k. Furthermore, an extensive
analysis of finite-size effects for different densities is shown
in Sec. III B 1 below.

First and foremost, we find that all depicted data sets
are qualitatively quite similar to the ideal Fermi distribution,
which is substantially broadened at these conditions due to
the comparably large thermal energy. For completeness, we
mention that the PIMC data for n(k) have been obtained
within the canonical ensemble, whereas Eq. (5) is derived
for the grand-canonical ensemble [2]. Still, this does not
pose an inconsistency, as it is well-known that the different
thermodynamic ensembles converge toward each other in the
thermodynamic limit and finite-size effects in the PIMC data
are shown to be small in Sec. III B 1 below.

Interestingly, the momentum distribution at zero momen-
tum, n(0), is increased compared to n0(0) for rs = 2 (red
circles), rs = 4 (green crosses), and rs = 6 (blue diamonds),
and this trend even increases with rs for these three cases.
This fairly counterintuitive phenomenon was first reported
by Militzer and Pollock [85], and can be explained in terms
of a negative mean-field contribution to the single-particle
dispersion. A more systematic investigation of this trend and
its relation to the kinetic energy is shown in Fig. 4 below.
For rs = 40 (yellow triangles), the system becomes strongly
correlated and we find n(0) < n0(0), although both are com-
parable in magnitude.
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FIG. 3. Momentum distribution of the spin-polarized (ξ = 1) electron gas for θ↑ = 1. The dashed black curve shows results for the ideal
Fermi gas [Eq. (5)], and the data points correspond to our PIMC data for different rs. The left and right panels shows n(k) on a linear and
logarithmic scale, respectively.

The logarithmic depiction of n(k) shown in the right panel
of Fig. 3 allows us to study the behavior of the momentum
distribution at large momenta, where it rapidly decays. Conse-
quently, this regime is hard to resolve with the PIMC method
and the relative noise level increases and eventually surpasses
100%. For the unpolarized UEG, it can be shown analytically
that n(k) decays algebraically in the limit of large k, and the
exact relation is given by [108,109]

lim
k→∞

n(k) = 4

9

(
4

9π

)2/3( rs

π

)2 k8
F

k8
g↑↓(0), (14)

FIG. 4. Top: rs dependence of n(0) for the spin-polarized UEG
with θ↑ = 1. Bottom: rs dependence of the exchange–correlation
part to the kinetic energy (per particle) Kxc [Eq. (16)], with the red
circles being our PIMC results and the dotted green line having been
computed from Eq. (17) using the parametrization by Groth et al.
[68].

with g↑↓(0) being the pair correlation function between
electrons of opposite spin, which has been parametrized in
Ref. [75] for different values of rs and θ . This relation has re-
cently been verified on the basis of highly accurate numerical
data by Hunger et al. [87]. For the spin-polarized case, on the
other hand, Eq. (14) cannot hold as there is only a single spin
component, and the on-top pair correlation function is always
zero. Instead, Rajagopal et al. [110] have found the relation

lim
k→∞

n(k) = 4

3

8

9π2
(αrs)2 g↑↑′′

(0)

2

(
kF

k

)10

, (15)

with α = ( 4
9π

)1/3, which depends on the second derivative
of the pair correlation function between electrons of equal
spin, again at zero distance. While being asymptotically exact,
Eqs. (14) and (15) do not give any information about the
particular values of k for which these limits are attained in
practice. The empirical findings for the unpolarized case in
Ref. [87] indicate that this happens for k � 5kF at these con-
ditions. Therefore, resolving the asymptotic tail would require
us to accurately estimate the momentum distribution over at
least eight orders of magnitude in n(k) itself, which is beyond
the capability of PIMC methods operating in coordinate space.
The same issue has been reported by Dornheim et al. [88] for
the unpolarized case, too.

Let us next get back to the topic of the counter-intuitive,
interaction-induced increase of n(0), which we analyze in de-
tail in the top panel of Fig. 4. More specifically, the horizontal
dashed black line corresponds to the ideal Fermi gas, which
does not depend on rs. In addition, the red circles show our
PIMC data for different densities. First, we note the increasing
error bars toward small rs, which are a direct consequence
of the fermion sign problem. More specifically, a decrease in
the coupling strength leads to an increase in the frequency of
permutation cycles within the PIMC simulation, and cycles of
adjacent lengths contribute with a different sign. The resulting
cancellation of positive and negative terms then leads to a
decreasing signal-to-noise ratio; see Refs. [101,111] for more
detailed information.

In the limit of rs → 0, the UEG becomes ideal [69] and
the PIMC data approach the horizontal line. With increasing
coupling strength, the occupation at k = 0 systematically in-
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creases, and attains a maximum at rs ≈ 10 at these conditions.
Increasing the density parameter even further leads to the
opposite trend and, eventually, n(0) will even become smaller
than n0(0) as the electrons are pushed to larger k by the strong
repulsion. The particular comparison between n(k) and n0(k)
strongly depends on the value of ξ , which is explained in
detail below.

Let us next consider the connection between the
correlation-induced increase in the momentum distribution at
zero momentum to the exchange-correlation part of the kinetic
energy,

Kxc = K − E0, (16)

where K and E0 are the total kinetic energy of the interacting
and noninteracting system, respectively. For completeness, we
mention that Kxc is directly related to the asymptotic behavior
of the electronic local field correction at large wave numbers
[74,112,113]. The rs dependence of Eq. (16) is shown in the
bottom panel of Fig. 4 for the same conditions as n(0). More
specifically, the red circles have been obtained by taking our
direct PIMC results for K for N = 33 electrons and subse-
quently subtracting E0 (taken from Ref. [60]) for the same
system size. The large error bars for small rs are again a
direct consequence of the fermion sign problem, which is
exacerbated by the definition of Kxc as the difference between
two quantities that are more or less comparable in magnitude.
Furthermore, the dotted green curve has been computed from
the parametrization of the exchange-correlation free energy
fxc by Groth et al. [68] by evaluating the relation [69]

Kxc = − fxc(rs, θ ) − θ
∂ fxc(rs, θ )

∂θ

∣∣∣∣∣
rs

− rs
∂ fxc(rs, θ )

∂rs

∣∣∣∣∣
θ

. (17)

First and foremost, we note the good qualitative agreement
between Eq. (17) and the PIMC data, although there appear
small but significant differences toward large rs. The most
likely explanation for the latter are finite-size effects in the red
circles in either (or both) K or E0, whereas the green curve has
been constructed in the thermodynamic limit, i.e., in the limit
of an infinite number of particles taken at a constant number
density. A second, somewhat less likely explanation is the
finite accuracy of the utilized parametrization of fxc, which
might be exacerbated by the evaluation of the derivatives in
Eq. (17).

From a physical perspective, we do indeed find a lowering
in the kinetic energy due to electronic exchange-correlation
effects for rs � 10, whereas the total kinetic energy is in-
creased for stronger coupling. Therefore, the negative values
of Kxc are certainly related, but not equal to the increase in
n(0) discussed above, which is consistent with recent findings
for the unpolarized electron gas [88].

2. Comparison to restricted PIMC

Let us conclude this study of the purely spin-polarized
UEG with a comparison between our direct PIMC results for
n(k) and the restricted PIMC data by Militzer et al. [86].
This is shown in Fig. 5, where the top row corresponds to
rs = 4 and θ↑ = 1, i.e., a metallic density that is of relevance
to contemporary WDM research [29]. The left panel shows

results for n(k) itself, and the ideal Fermi function (dashed
black line) has been included as a reference. Further, the red
circles and green crosses depict the PIMC and RPIMC data,
respectively, which are in qualitative though not quantitative
agreement. More specifically, the RPIMC data are systemat-
ically higher than the PIMC data, which is consistent to the
recent findings by Dornheim et al. [88] for the unpolarized
UEG. In the latter study, this discrepancy was explained by
the normalization of n(k), which is computed exactly within
our extended ensemble formalism, but has to be inferred from
the off-diagonal density matrix n(r, r′) in the case of RPIMC.
Therefore, multiplying the RPIMC data by a constant factor
of Q = 0.977 led to perfect agreement between direct PIMC
and restricted PIMC for ξ = 0.

Following the same procedure (with the same factor) in the
present case leads to the yellow crosses, which, indeed, are in
excellent agreement to the PIMC data over the entire range
of wave numbers. This can be seen particularly well in the
right panel, where we show the relative deviation between the
momentum distribution of the UEG and the ideal Fermi gas
(in percent) with respect to n0(0),

�n

n(0)
[%] = n(k) − n0(k)

n0(0)
× 100. (18)

In addition, this depiction also allows one to gain a more vivid
insight into the behavior of Kxc shown in Fig. 4 above: For
small momenta (k � kF), the momentum distribution func-
tion of the interacting electron gas plainly exceeds the ideal
Fermi distribution n0(k), whereas the relative occupation is
decreased in the range of kf � k � 2kF. Since the total kinetic
energy is simply given by the integral

K = 1

2

∫
dk n(k) k2, (19)

the observed deviation profile directly indicates the relation
K[n(k)] < K[n0(k)] at these conditions, thus resulting in the
negative values of Kxc shown above.

We next consider the central row of Fig. 5, where we show
the same analysis for rs = 40 and θ↑ = 1. Physically, these
conditions are located within the strongly coupled electron
liquid regime [9,11], where the strong Coulomb repulsion
between the electrons predominates over quantum degener-
acy effects such as Pauli blocking or quantum diffraction. In
particular, this regime is expected to give rise to a negative
dispersion relation [9,73,80,81], which is of a potentially
incipient excitonic nature [7,8]. At these conditions, the
momentum distribution function of the interacting UEG com-
pares markedly different to the ideal Fermi function, and the
direct PIMC method predicts a depletion in the occupation at
zero momentum, which holds for k � 1.5kF. While the raw
RPIMC data (green crosses) actually predict an increase in
n(0) compared to the ideal system, this effect is most likely
spurious. Specifically, multiplying the RPIMC data by the
same factor Q as in the previous case leads to the yellow
crosses, which, again, results in a perfect agreement to the
direct PIMC data.

Let us conclude this comparison between the direct and
restricted PIMC methods by investigating a lower temper-
ature, θ↑ = 0.5, shown in the bottom row of Fig. 5. For
completeness, we mention that such low values of the reduced
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FIG. 5. Momentum distribution function of the spin-polarized (ξ = 1) UEG for N = 33 electrons. Top row: rs = 4 and θξ=1 = 1; center
row: rs = 40 and θξ=1 = 1; bottom row: rs = 40 and θξ=1 = 0.5. Left column: n(k), with the red circles, green crosses, and yellow crosses
corresponding to our direct PIMC results, restricted PIMC results from Ref. [86], and modified RPIMC results (see text), respectively. Right
column: Relative difference between n(k) and n0(k) in percent, cf. Eq. (18).

temperature cannot be accessed by the direct PIMC method
at metallic densities due to the aforementioned fermion sign
problem. At these conditions, the occupation of momentum
states at small k is substantially depleted compared to n0(k)
as the electrons are pushed out to large momenta, resulting in
a positive value of Kxc. The comparison between direct and
restricted PIMC reveals the same issue with the normalization
as in the two previous cases, and the thus modified yellow
crosses agree with the red circles over the entire depicted k
range.

In summary, the only systematic error that we can find
in the RPIMC data both at rs = 4 and rs = 40 are due to
the normalization and not a consequence of the fixed-node
approximation that has been used to deal with the fermion
sign problem. This is certainly encouraging, as the extended
ensemble approach introduced in Ref. [88] can easily be

incorporated into RPIMC as well, which would completely
overcome this problem.

B. Intermediate polarizations and spin dependence

In the following section, we explicitly go beyond the purely
ferromagnetic case to more closely isolate the effect of the
spin polarization itself.

1. Analysis of finite-size effects

Being restricted to the description of a finite number of
particles, PIMC results are in general afflicted with so-called
finite-size effects [64,66,114–116]. Therefore, a careful anal-
ysis of the dependence of the results on the system size is
usually indispensable. In the present paper, this is shown in
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FIG. 6. Top: System-size dependence of the momentum distribution of the UEG at rs = 10, θ = 2, and ξ = 2/3. The left and right columns
correspond to the spin-up and -down electrons, respectively. Bottom: Relative deviation between PIMC data for nσ (k) and the ideal Fermi
distribution nσ

0 (k) in percent, cf. Eq. (18). Note that we use the Fermi wave number of the unpolarized system kξ=0
F as a reference.

Fig. 6 for rs = 10 and θξ=0 = 2 for ξ = 2/3. Note that we
always use the reduced temperature θξ=0 of the unpolarized
system as a reference throughout the remainder of this pa-
per. We further mention that the selected polarization ξ =
2/3 constitutes a particularly relevant choice for the study
of finite-size effects, as there are, by definition, always five
times the number of spin-up compared to spin-down electrons.
For example, we have N↑ = 50 but only N↓ = 10 for a total
system size of N = 60 in this case. Since only electrons of the
same spin-orientation exchange with each other, it is therefore
reasonable to expect a different manifestation of finite-size
effects in n↑(k) and n↓(k), which needs to be checked.

Let us start our investigation by considering results for
n↑(k) shown in the left column of Fig. 6, where the top and
bottom panels show results for the momentum distribution
itself and for the relative deviation to the ideal Fermi function
[cf. Eq. (18)], respectively. More specifically, the different
data points show our direct PIMC data that have been obtained
for different values of N . Remarkably, we find hardly any
dependence of n↑(k) on the system size even for as few as
N = 18 electrons. This can be seen particularly well in the
bottom panel, where small deviations between the different
data sets are noticeable only for small momenta. Still, even
here these differences are clearly below 1%. From a phys-
ical perspective, we find a pronounced interaction-induced
increase in n↑(k) compared to n↑

0 (k), with a maximum of
∼8% at zero momentum.

Let us next consider the top right panel of Fig. 6, where
we show our direct PIMC results for n↓(k). Again, hardly any

dependence on N can be resolved on this scale even for N =
18, where there are only N↓ = 3 spin-down electrons within
the simulation. The bottom panel of the same figure does
reveal some systematic deviations for N = 18 and N = 36,
but even the maximum finite-size effect is below 1%. In addi-
tion, we find that the occupation at small momenta is actually
depleted compared to n↓

0 (k), which is in stark contrast to the
behavior of the spin-up electrons observed in the left column
of the same figure. A more detailed investigation of this effect
is presented below.

Lastly, we show PIMC results for the off-diagonal density
matrix in coordinate space n(s) [cf. Eq. (4) above] in Fig. 7.
Specifically, the left and right panels show results for spin-up
and spin-down electrons, and the red circles, green crosses,
and yellow stars correspond to N = 18, N = 36, and N = 60,
respectively. Evidently, both n↑(s) and n↓(s) converge toward
unity in the limit of s → 0, as expected [86,88,94]. Further-
more, the off-diagonal density matrix is of an approximately
Gaussian shape, and no oscillations can be found at large
separations s. This negligible impact of permutation cycles in-
volving a large number of particles further helps to explain the
small manifestation of finite-size effects at these conditions.

While the small magnitude of the finite-size effects ob-
served in Fig. 6 are certainly encouraging, it is expected
from previous studies [64,69,115] that they might increase
for higher densities. For this reason, we present a similar
analysis for the same conditions at rs = 2 in Fig. 8. Phys-
ically, this corresponds to a metallic density that is highly
relevant to contemporary WDM research and can be realized
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FIG. 7. Off-diagonal density matrix n(s) [cf. Eq. (4)] of the UEG at rs = 10, θ = 2, and ξ = 2/3. The left and right panels show results
for spin-up and spin-down electrons, and the red circles, green crosses, and yellow stars have been obtained for N = 18, N = 36, and N = 60,
respectively.

experimentally for example with aluminum [75,117,118]. For
completeness, we mention that the interpretation of the ex-
periment in Ref. [117] remains a controversial topic. For
example, even a basic plasma parameter such as the electronic
temperature is still under debate [75,119]. While the present
paper examines a similar density, it is not suitable to resolve
these controversies and a new experiment is likely needed.
In addition, we note that the smaller value of the coupling
parameter rs leads to a more pronounced impact of quantum
degeneracy effects, which, in turn, results in a more severe
fermion sign problem. This is conveniently characterized by

the so-called average sign S (see, e.g., Ref. [101] for details),
which constitutes a straightforward measure for the amount
of cancellations of positive and negative terms within the
simulation. In particular, the required computation time scales
as 1/S2, such that a value of S = 0.1 would increase the CPU
time by a factor of 100 compared to a PIMC simulation with-
out a sign problem. For the system at hand, we find an average
sign of S ≈ 0.01 in the extended ensemble for N = 60 and
rs = 2, whereas it is S ≈ 0.4 for rs = 10. Therefore, PIMC
simulations of N = 90 electrons are at present not computa-
tionally feasible at the higher density.

FIG. 8. Top: System-size dependence of the momentum distribution of the UEG at rs = 2, θ = 2, and ξ = 2/3. The left and right columns
correspond to the spin-up and -down electrons, respectively. Bottom: Relative deviation between PIMC data for nσ (k) and the ideal Fermi
distribution nσ

0 (k) in percent, cf. Eq. (18). Note that we use the Fermi wave number of the unpolarized system kξ=0
F as a reference.
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FIG. 9. Momentum distribution function nσ (k) for θξ=0 = 2. Top left: rs = 0.5; top right: rs = 2; bottom left: rs = 4; bottom right: rs = 10.
The colors distinguish different values of the spin-polarization ξ , and the dashed black curves show the corresponding results for the ideal Fermi
gas nσ

0 (k). Finally, the crosses and diamonds correspond to spin-up and spin-down electrons, respectively. Note that we use the Fermi wave
number of the unpolarized system kξ=0

F as a reference.

Returning to the topic of finite-size effects, again no devi-
ations between the PIMC data sets for different N can be seen
with the naked eye in the top row of Fig. 8 for either n↑(k)
or n↓(k). The relative deviation to the ideal Fermi function
shown in the bottom row allows for a more detailed perspec-
tive, where small differences between N = 18 and N = 60
of approximately 1% can be resolved for small momenta. In
any case, it is safe to conclude that direct PIMC simulations
with N ∼ 60 electrons allow us to reliably estimate the main
physical features of the momentum distribution function as
finite-size effects are small at the conditions that are consid-
ered in this paper. For completeness, we mention that this
changes at very low temperatures, where both the application
of twisted boundary conditions [120,121] and an additional
finite-size correction are required [122].

2. Interplay of spin-polarization with density and temperature

In the following, we will explicitly investigate the impact
of the spin polarization on the momentum distribution n(k)
and its spin-resolved components n↑(k) and n↓(k). To ensure
a better comparability, we will always compare results for the
same temperature T for all ξ , thus resulting in different values
of θσ [cf. Eq. (11)]. As a reference, we always give both θ and
kF for the case of a fully unpolarized system.

In Fig. 9, we show the momentum distribution function
of the UEG at θ = 2 for different values of ξ for rs =
0.5 (left) and rs = 10 (right). For rs = 0.5, the PIMC data
closely follow the ideal curves for all ξ as electronic corre-
lation effects are comparably small. In addition, we observe
the following monotonous ordering of nσ (k): Starting at
n↑(k) = n↓(k) for the unpolarized case (green crosses), both
the ideal curves and the PIMC data for the spin-up electrons
monotonically increase with ξ . This is mainly a consequence
of the increase in the number density n↑ (or, equivalently, the
decrease in the density parameter r↑

s , cf. Fig. 2). Conversely,
we find the opposite behavior for the spin-down electrons,
with n↓(k) = 0 in the limit of ξ = 1.

A less obvious question is the behavior of the total momen-
tum distribution function n(k) = n↑(k) + n↓(k), which we

show in the left panel of Fig. 10 for these conditions. We note
that the curves and data points for ξ = 1/3 and ξ = 2/3 have
been omitted for better visibility. Interestingly, we observe the
opposite ordering compared to n↑(k) shown above, i.e., the
largest value around zero momentum occurs for ξ = 0, both in
the PIMC data and the ideal Fermi distribution function. This
is a direct consequence of the fermionic antisymmetry under
particle exchange and the resulting Pauli blocking and can be
understood as follows: In the limit of ξ = 1, all electrons in
the system are mutually affected by their common fermionic
nature, which effectively pushes them toward larger momenta.
In the opposite limit of ξ = 0, only half of the electrons
mutually affect each other and, consequently, the fermionic
push toward larger momenta is weaker. Naturally, ξ = 1/2 is
located between these two extremes and, thus, located some-
where in the middle.

Let us next consider the impact of an increasing density pa-
rameter rs on the spin-resolved components n↑(k) and n↓(k).
This is shown in the right panel of Fig. 9 for the case of
rs = 10. Evidently, the effect of the coupling strength is most
pronounced for the spin-up electrons, where, in particular,
the occupation of the zero-momentum state is substantially
increased compared to the ideal Fermi distribution. Further,
we observe that this effect increases with ξ . The spin-down
electrons, on the other hand, can hardly be distinguished from
n↓

0 (k) with the naked eye on the depicted scale.
To get a more complete picture of the physics at play,

we analyze the total momentum distribution n(k) for rs =
10 in the right panel of Fig. 10. As a direct consequence
of the increased coupling strength, the electrons are more
strongly spatially separated, and quantum degeneracy effects
are less pronounced. Therefore, spin effects play a substan-
tially smaller role in the direct PIMC data for the UEG than
for the ideal curves. The large correlation-induced increase
in n↑(0) for large ξ is thus caused by the substantial spin
dependence of n0(0), which is masked for the UEG by the
Coulomb repulsion at low densities. Furthermore, the data
for the UEG are closer to the unpolarized ideal curve than
its polarized analog, as spin effects are less important for the
ideal Fermi gas at ξ = 0 as well.
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FIG. 10. Total momentum distribution function n(k) at θξ=0 = 2. Left: rs = 0.5; right: rs = 10. The colors distinguish different values of
the spin-polarization ξ , and the corresponding dotted curves show results for the ideal Fermi gas nσ

0 (k). Note that we use the Fermi wave
number of the unpolarized system kξ=0

F as a reference.

Let us next investigate the effect of the temperature on
the spin dependence of the momentum distribution, which is
analyzed in Fig. 11 for the metallic density of rs = 4. The
left column corresponds to θξ=0 = 1 and the top panel shows
results for the spin-resolved components n↑(k) (crosses) and
n↓(k) (diamonds). Evidently, the reduction of the temperature
by a factor of one half compared to Fig. 9 leads to a more
pronounced difference in n↑(0), in particular, for the fully
ferromagnetic case. The spin-down electrons, on the other
hand, are hardly affected by the Coulomb repulsion for ξ > 0.

The bottom panel shows the corresponding results for the total
momentum distribution n(k), where again the impact of the
spin-effects is less pronounced for the UEG compared to the
ideal Fermi gas.

The right column of Fig. 11 shows the same investiga-
tion for a higher temperature, θξ=0 = 4. First, we note that
all curves are substantially broadened by thermal excitations,
as expected. Furthermore, the correlation-induced increase in
the zero momentum state is less pronounced than at lower
temperatures and will eventually completely vanish in the

FIG. 11. Top: Spin-resolved momentum distribution function nσ (k) for rs = 2. Left: θξ=0 = 1; right: θξ=0 = 4. The colors distinguish
different values of the spin polarization ξ and the dashed black curves show the corresponding results for the ideal Fermi gas nσ

0 (k). Finally,
the crosses and diamonds correspond to spin-up and spin-down electrons, respectively. Bottom: Corresponding total momentum distributions
n(k) = n↑(k) + n↓(k). Note that we use the Fermi wave number of the unpolarized system kξ=0

F as a reference.
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FIG. 12. Density dependence of the occupation at zero momen-
tum n(0) of the UEG at θξ=0 = 2. Top panel: Direct PIMC data
for the total momentum distribution n(0) = n↑(0) + n↓(0) for ξ = 0
(red circles), ξ = 1/3 (black stars), and ξ = 1 (green crosses). The
horizontal lines depict the corresponding ideal values n0(0). Bottom
panel: Direct PIMC results for ξ = 1/3, black stars: n(k); red circles:
n↑(k); green crosses: n↓(k).

limit of large T when the system becomes increasingly ideal.
Furthermore, n↓(k) can hardly be distinguished from the cor-
responding ideal curves with the naked eye. Considering the
total momentum distribution function n(k) depicted in the
bottom panel, we find that the deviations between the curves
for the different values of ξ are substantially smaller compared
to the cases of θξ=0 = 2 and θξ=0 = 1 both in the PIMC data
for the UEG, and in the ideal results. This is expected as
spin effects, too, will completely vanish in the limit of large
temperatures, where the system becomes classical. In partic-
ular, n(k) will converge toward the well-known Boltzmann
distribution in this regime.

3. Zero-momentum occupation and exchange–correlation
kinetic energy

Let us conclude our investigation with a more detailed
study of the interaction-induced change in the occupation at
zero momentum and the related lowering of the kinetic energy.
As a first step, we show the density dependence of the total
momentum distribution n(0) at θξ=0 for three different values
of the spin-polarization ξ in the top panel of Fig. 12. More
specifically, the red circles, black stars, and green crosses
show our direct PIMC data for the UEG for ξ = 0, ξ = 1/3,

FIG. 13. Density dependence of the exchange–correlation part of
the kinetic energy Kxc at θξ=0 = 2 for different values of the spin
polarization ξ evaluated from the parametrization of fxc by Groth
et al. [68] via Eq. (17).

and ξ = 1, respectively, and the horizontal lines depict the
corresponding ideal values n0(0) that do not depend on the
density. For small rs, all three data sets exhibit a qualitatively
similar behavior and monotonically increase starting from the
ideal value at rs = 0. In addition, the data points for ξ = 0 and
ξ = 1/3 remain close to each other over the entire depicted
rs-range and almost agree with each other at rs = 20. This is,
of course, expected, as spin effects will eventually completely
vanish at large rs due to the increased coupling strength [11].
Furthermore, the PIMC results for n(0) at rs = 20 is below the
ideal value for both of these spin polarizations, as the electrons
are pushed toward larger momenta by the Coulomb coupling.

In contrast, the green crosses exhibit a related but clearly
distinct progression. In particular, the interaction-induced in-
crease in n(0) is substantially larger compared to the other
data sets and attains a maximum for rs ∼ 10. This has already
been explained above by the more pronounced spin depen-
dence of n0(0) compared to n(0) of the UEG and is thus
directly caused by the large gap between the respective Fermi
functions for the different values of ξ .

For completeness, we also show the rs dependence of
the spin-resolved components of the momentum distribution
functions n↑(0) and n↓(0) at ξ = 1/3 in the bottom panel of
Fig. 12. This plot further substantiates our previous findings
that the correlation-induced increase in the occupation of the
zero-momentum state is mostly caused by the spin-up elec-
trons. In addition, we find that the PIMC data for n↓(0) are
actually smaller than n↓

0 (0) for rs � 10, whereas the opposite
still holds for n↑(0). A possible explanation for this effect
is given by the comparably increased spin-resolved density
parameter r↓

s shown in Fig. 2 above.
Let us next consider Fig. 13, where we show the density

dependence of the exchange–correlation part to the kinetic
energy Kxc (obtained by evaluating Eq. (17) using as input
the parametrization of fxc by Groth et al. [68]) for different
values of the spin-polarization ξ . First and foremost, we note
the similar progression of Kxc · rs for all ξ , which attain a finite
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FIG. 14. Polarization dependence of the occupation at zero mo-
mentum for rs = 2 (top), rs = 10 (center), and rs = 50 (bottom) at
θξ=0 = 2. The red circles, green crosses, and black stars correspond
to the spin-up component n↑(0), spin-down component n↓(0), and
the total distribution function n(0), respectively. The corresponding
lines show the respective ideal Fermi distribution function.

negative value in the limit of rs → 0, monotonously increase
with rs, and eventually become positive. In addition, we find
a strict ordering of these curves with ξ , and the distancing be-
tween individual curves increases with the spin polarization.
This is again directly caused by the comparably larger spin
dependence of the ideal energy E0 for large ξ , whereas the
actual kinetic energy K of the UEG is less affected by the
spin, and thus more closely resembles E0 for the unpolarized
case. From a physical perspective, we note that the behavior
observed in Fig. 13 might indicate a substantial negative tail
at large momenta in the static local field correction of the
ferromagnetic UEG at WDM conditions. This prediction can
be verified by independent PIMC simulations of the spin-
polarized UEG, which constitutes an interesting project for
future research.

The final investigation to be presented in this paper is
the dependence of the occupation at zero momentum on the
spin-polarization with both the density and the temperature
being kept constant. This is shown in Fig. 14 for θξ=0 and three

FIG. 15. Polarization dependence of the exchange–correlation
contribution to the kinetic energy Kxc at θξ=0 = 2 evaluated from the
parametrization of fxc by Groth et al. [68] via Eq. (17). The different
lines correspond to various values of the density parameter rs.

different values of the density parameter rs. In particular, the
top panel shows results for rs = 2 and the red circles, green
stars, and black crosses correspond to the spin-up component
n↑(0), spin-down component n↓(0), and the total momentum
distribution n(0). Most obviously, both the individual spin-up
and spin-down components strongly depend on ξ , which is
a direct consequence of the corresponding relative shift in
the number densities n↑ and n↓. Furthermore, the total distri-
bution n(0) also noticeably depends on ξ both for the ideal
and the interacting case, and monotonically decreases with
ξ . The physical origin of this effect is the increased impact
of the Pauli blocking between electrons of the same species,
which pushes the occupation toward large momenta. Finally,
we again find that the correlation-induced increase in n(0) is
nearly exclusively due to n↑(0), as it is by now expected.

The center panel of Fig. 14 shows the same information
for a larger value of the coupling strength, rs = 10. Overall,
the results are qualitatively quite similar to the rs = 2 case
shown in the top panel, but the difference between n(0) and
n0(0) is significantly increased at ξ = 1 as the spin-effects are
effectively masked in the UEG by the Coulomb repulsion.

Lastly, the bottom panel shows results for strongly cou-
pled electron liquid regime, rs = 50. In this case, the strong
Coulomb coupling almost completely removes the depen-
dence of the PIMC data for the total momentum distribution
function on the spin polarization, and the corresponding black
stars are well reproduced by a constant fit (dotted grey line).
In addition, both spin components exhibit a decreased occupa-
tion at zero momentum compared to the ideal Fermi function
over the entire ξ range.

Let us conclude our investigation with an analysis of the ξ

dependence of the exchange–correlation kinetic energy Kxc.
To this end, we again compute Kxc via Eq. (17) from the
accurate parametrization by Groth et al. [68], and the results
are shown in Fig. 15. Overall, the relative spin dependence
is substantial for all depicted values of the density parameter
rs and is of the order of 100%. Even at rs = 20, where most
physical observables of the UEG like the total energy K only
weakly depend on ξ , the strong ξ dependence of E0 is directly
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reflected in Eq. (16). In the WDM regime (rs = 0.5, 2, 4), we
find substantially larger values for Kxc for the ferromagnetic
case, which might be directly reflected in important material
properties like the static local field correction [73,74,113].
In particular, a pronounced negative tail of the local field
correction at intermediate to large wave numbers could have
a noticeable impact on the spectral properties [9,73,79–81] of
the system, with potentially important implications for x-ray
Thomson scattering applications [123].

IV. SUMMARY AND DISCUSSION

In summary, we have presented an extensive study of the
impact of spin effects on the momentum distribution func-
tion n(k) and related properties. This has been achieved on
the basis of extensive direct PIMC simulations for different
densities rs, temperatures θ , and degrees of the spin polariza-
tion ξ . Our central findings can be concisely summarized as
follows: (i) the correlation-induced increase in the occupation
of the zero-momentum state n(0) substantially depends on
the spin-polarization ξ , which is mainly a consequence of the
spin dependence of the ideal Fermi function n0; (ii) previous
RPIMC data for n(k) by Militzer et al. [86] are afflicted with a
systematic error, which is a consequence of the determination
of the normalization and not a consequence of the employed
fixed-node approximation; (iii) finite-size effects in our PIMC
data only manifest for small k and hardly exceed 1% for both
n↑(k) and n↓(k); (iv) the interaction-induced increase in n(0)
is mainly facilitated by the spin-up electrons (majority elec-
trons), which can be explained in terms of the spin-resolved
reduced parameters r↓

s and θ↓; and, finally, (v) both the shift in
the occupation of the zero-momentum state and the exchange–
correlation part of the kinetic energy strongly depend on the
spin-polarization even in the limit of the strongly correlated
electron liquid (rs = 50), which can again be traced back to
the ξ dependence of the noninteracting reference system.

Let us conclude this discussion by outlining a few di-
rections for future investigations. First, we mention that our
extensive set of direct PIMC data are freely available online
[124] and can be used as an accurate benchmark for the

development of methods and approximations or as input for
parametrizations. Furthermore, we reiterate the high impor-
tance of the momentum distribution function of electrons for
the description of transport properties of WDM in an exter-
nal magnetic field [90]. With respect to the UEG itself, the
numerical investigation of the large-momentum tail of n(k)
[cf. Eq. (15)] in the fully polarized case will further advance
or current understanding of this fundamental model system,
but remains out of reach for PIMC methods operating in
coordinate space. In contrast, Hunger et al. [87] have recently
demonstrated that the configuration PIMC method (which
directly operates in k space) is capable to resolve the required
8–10 orders of magnitude in n(k), and its application to the
spin-polarized case, thus, constitutes an enticing possibility.
Finally, the substantially negative values of Kxc for large ξ

that have been reported in this paper potentially indicate a
pronounced negative tail for large wave numbers in the static
local field correction of the ferromagnetic UEG. Yet previous
PIMC studies of such linear-response properties have been
limited to ξ = 0, and an extension of these efforts to other
values of ξ is highly desirable.

A repository containing all PIMC raw data will be
made available upon publication, see Supplemental Material
Ref. [124].
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