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Fully kinetic simulations of strong steady-state collisional planar plasma shocks
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We report on simulations of strong, steady-state collisional planar plasma shocks with fully kinetic ions
and electrons, independently confirmed by two fully kinetic codes (an Eulerian continuum and a Lagrangian
particle-in-cell). While kinetic electrons do not fundamentally change the shock structure as compared with
fluid electrons, we find an appreciable rearrangement of the preheat layer, associated with nonlocal electron heat
transport effects. The electron heat-flux profile qualitatively agrees between kinetic- and fluid-electron models,
suggesting a certain level of “stiffness,” though substantial nonlocality is observed in the kinetic heat flux. We
also find good agreement with nonlocal electron heat-flux closures proposed in the literature. Finally, in contrast
to the classical hydrodynamic picture, we find a significant collapse in the “precursor” electric-field shock at the
preheat layer leading edge, which correlates with the electron-temperature gradient relaxation.
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I. INTRODUCTION

.Strong shocks are present in a variety of high-energy-
density (HED) environments, including inertial confinement
fusion (ICF) capsule implosions [1–3]. Given the role of
shocks in ICF compression and yield, it is important to
understand the impact that kinetic effects may have in the
shock structure, and its imprint on the imploding capsule
(e.g., Ref. [4]). This is relevant, as the state-of-the-art for
simulating ICF capsule implosions is radiation hydrodynam-
ics (rad-hydro), which is only strictly valid in systems with
small Knudsen numbers (defined later)—which are highly
collisional—and therefore only accurate for weak shocks with
M ∼ 1 [5]. The impact of kinetic ions on shock structure
relative to rad-hydro simulations has been studied by Keenan
et al. [6,7], and manifests itself in significant changes of
the ion species concentration and temperature separation.
The presence of kinetic electrons may impact HED plasma
systems by potentially changing the shock structure through
nonlocal heat transport (which may affect ion shock dy-
namics [7]), or, in the case of ICF implosions, introducing
hot-electron preheat (which may, e.g., alter the implosion
adiabat). Here, we focus on the former.

Rad-hydro has been used extensively to investigate strong
plasma shocks [8–13]. The classical structure of a strong
collisional plasma shock exhibits, from upstream to down-
stream (see, e.g., Ref. [13]) (1) a prominent preheat layer
wherein the electron temperature Te exceeds that of the ions
Ti, (2) an embedded ion compression shock, where the density
jump occurs and Ti increases rapidly and surpasses that of
the electrons, and (3) a region of ion-electron temperature
equilibration. The preheat and relaxation regions [(1) and (3)]
are approximately of width ≈Z2

i (mi/me)1/2λDS
ii (where mi, me,

Zi, and λDS
ii are the ion and electron masses, the ion charge, and
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the ion-ion downstream mean free path, respectively), while
the embedded compression shock is of order several λDS

ii .
To date, kinetic studies of strong plasma shocks have

focused on ions, and have thus been performed almost exclu-
sively with “hybrid” kinetic codes employing a fluid-electron
model coupled with a kinetic-ion Vlasov-Fokker-Planck
(VFP) description [6,7,14–16]. In these codes, the fluid elec-
trons are quasineutral and ambipolar, with Te determined
from the electron energy equation and with the electron heat
flux modeled as the Braginskii/Spitzer-Härm expression (i.e.,
QBrag.,e = −κe∇Te, κe ∝ T 5/2

e [17]), usually with some va-
riety of heat-flux limiter, |Qe| = min( flimQFS,e, |QBrag.,e|),
where flim is effectively a “tuning knob” to prevent faster-
than-streaming diffusion, and QFS,e = neTevth,e is the free-
streaming thermal flux. However, it is known that local fluid
models of the electron heat flux are only valid for sufficiently
small electron Knudsen numbers (defined as the particle
mean free path λ over a characteristic gradient length scale
L∇ , Kn = λ/L∇), Kne � 10−3. For Kne � 10−3, we expect
to begin observing deviations from the fluid results (see
Refs. [18,19]).

We note that sophisticated models for nonlocal electron
heat flux have been proposed [e.g., the Luciani-Mora-Virmont
(LMV) model [20–23]]. Several of these models were inves-
tigated in Ref. [24] with strong planar plasma shocks, using
the kinetic ion code FPION [14–16], and were compared with
a kinetic-electron code in Ref. [25]. However, the kinetic-
electron solver was not self-consistently coupled to the kinetic
ions. This approach also utilized a low-order expansion in
spherical harmonics and neglected anisotropy in the colli-
sion operators, which limited the degree to which effects of
non-Maxwellian distributions (including nonlocal transport)
could be captured [26]. Thus, a comparison of these nonlocal
electron heat-flux models with fully kinetic self-consistent
simulations is still needed.

Recently, Zhang et al. published results of fully ki-
netic particle-in-cell simulations for an M ≈ 3 piston-driven
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planar plasma shock [27]. Unfortunately, the approach pos-
sesses some significant limitations. First, their simulations
were terminated before the shock detached from the piston;
second, the total simulation time was less than the ion-electron
thermal equilibration time [28]; third, the simulation domain
was of order the shock width. Thus, their solution is transient
and not yet relaxed to steady state. This is confirmed by
the fact that Te is nonmonotonic and concave upward in the
preheat layer [see their Fig. 4(b)], in a significant contrast
to what is expected for a steady-state planar shock (see, e.g.,
Ref. [10]).

In this article, we present self-consistent simulations of
strong steady-state collisional planar plasma shocks. We per-
formed these simulations with two different fully kinetic
codes (an Eulerian continuum and a Lagrangian particle-
in-cell) with the goal of cross-code verification, and found
excellent agreement. The simulations employed a realistic
electron-ion mass ratio. We find that, while kinetic elec-
trons do not fundamentally change the structure of the shock
as compared with fluid electrons, they do modify appre-
ciably the preheat layer structure. In particular, the sharp
electron-temperature gradient at the front of the preheat
layer disappears, and average ion-electron temperature sep-
aration there decreases by about 20%. The rearrangement
of the electron-temperature profile in the preheat layer can
be traced to nonlocal electron heat transport effects due to
the kinetic behavior of electrons. Moreover, we find that
the electron heat-flux profile displays “stiffness” in that
it qualitatively agrees remarkably well between fluid- and
kinetic-electron models, demanding adjustments in the cor-
responding electron-temperature profile. We also verify the
LMV nonlocal electron heat-flux closures proposed in the lit-
erature against self-consistent full VFP simulations, and find
them to provide a reasonable agreement with the high-fidelity
simulations.

II. PROBLEM SETUP

To study this problem, we employ the Eulerian VFP code
iFP [29–32], and the Lagrangian code VPIC [33–35]. The
iFP code solves the coupled VFP equations for each of the
plasma species in a one-dimensional (1D) planar electrostatic
approximation, with the electric field given by the 1D Ampère
equation

∂t fα + ∂x(v‖ fα ) + Zαe

mα

E‖∂v‖ fα =
Ns∑

β=1

Cαβ, (1)

ε0∂t E‖ +
Ns∑

α=1

Zαenu‖,α = 0, (2)

where α, β denote the species index, fα is the particle distribu-
tion function for species α, the symbols Zα and mα indicate the
species α particle charge and mass, and e is the proton charge.
The electric field and α-species bulk velocity in the shock
propagation direction are denoted by E‖ and u‖,α , respectively.
We denote vector components along the spatial direction of
the shock propagation (x) with the subscript ‖, while perpen-
dicular components are denoted with the subscript ⊥. We note
that, in the 1D electrostatic approximation, we may without

loss of generality consider a cylindrically symmetric velocity
space (v‖, v⊥). The VPIC code is a fully 3D electromagnetic
particle-in-cell code. However, for the simulations presented
here, the computational domain is 1D in configuration space,
and no electromagnetic phenomena are observed to develop.
We note that in a “real” (i.e., 3D and electromagnetic) system,
there may be a variety of rich behavior, including instabil-
ities such as the Richtmyer-Meshkov (hydrodynamic) [36]
or Weibel (kinetic) [37]. However, 3D and electromagnetic
effects will be driven by and appear as a modification of the
underlying 1D structure, which it is vital to understand.

We consider an M = 6 planar collisional shock in a pro-
tium plasma with the realistic mass ratio mp/me = 1836. The
computations are performed in the frame of the shock, and
are initialized with the Rankine-Hugoniot (RH) relations as
upstream and downstream (Maxwellian) boundary conditions,
with a hyperbolic tangent transition in between. Note that as
the simulation is performed in the frame of the shock, and run
to a steady state, the details of the hyperbolic transition in the
initial condition do not affect the final (steady-state) solution.
The initial distribution functions are Maxwellian. To allow
room for the downstream equilibration zone, the shock po-
sition is located at x/L = 0.4, with L the total domain length.
Unless otherwise specified, the simulation domain spans 250
downstream ion-ion mean free paths, i.e., L = 250λDS

ii . In the
regime considered here, the Debye length λD is much smaller
than collisional mean free paths, λD � λii.

The VPIC simulations were initialized by sampling from
steady-state iFP ion and electron distribution functions over
a truncated spatial domain (L = 130λDS

ii ) and run to steady
state. The boundaries are Maxwellian, based on the RH re-
lations. To mitigate the noise inherent in the particle-in-cell
simulations, we have applied a Savitzky-Golay filter [38]
(polynomial order p = 3, filter window width ∼2λDS

ii ) to
smooth the VPIC moment profiles. The spatial profiles pre-
sented here are truncated to a span of 130λDS

ii to match the
VPIC simulation domain. In the following results, all quan-
tities are normalized with respect to the downstream values.
Normalization constants may be found in the Appendix.

“Bulk” plasma quantities (such as the temperature, ve-
locity, etc.) are defined for kinetic species from appropriate
velocity-space moments of the kinetic distribution functions.
For a species α, the number densitynα , bulk velocity uα ,
and total energy density εα are defined from the distribution
function fα by

nα =
∫

v

fαdv, (3)

nαuα =
∫

v

v fαdv, (4)

εα = 3

2
nαTα + 1

2
mαnαu2

α =
∫

v

1

2
mαv2 fαdv. (5)

The temperature Tα is then obtained by rearranging Eq. (5),
utilizing Eqs. (3) and (4).

III. RESULTS

In Fig. 1 (left and center), we see the spatial profiles of
temperature and temperature difference (Te − Ti) for ions and
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FIG. 1. Left: Spatial profiles of Ti and Te normalized to the downstream limit for hybrid iFP (fluid electrons and kinetic ions, Hyb., red
lines), fully kinetic iFP (Kin., blue lines), and VPIC (symbols). Center: Spatial profiles of the temperature difference Te − Ti clearly showing
a kinetic suppression of the temperature separation in the preheat layer. Right: Spatial profiles of Kne,∇T for hybrid (Hyb.) and fully kinetic
(Kin.) iFP simulations. Vertical dotted lines indicate (from left to right) the approximate locations of the upstream edge of the preheat layer,
the compression shock, and the downstream edge of the relaxation layer.

electrons in the shock comparing hybrid (kinetic ions and
fluid electrons) to fully kinetic simulations. Profiles of the
bulk velocity and density moments do not change appreciably
between hybrid and fully kinetic simulations. Here, the main
difference between hybrid and fully kinetic results is the sup-
pression of the δT = Te − Ti in the preheat layer (x ∼ 15–55)
by approximately 20%, with Te relaxing towards Ti (see
Fig. 1 center). The temperature profiles through the compres-
sion shock and into the downstream equilibration layer are
essentially unchanged between the fluid- and kinetic-electron
treatments.

In Fig. 1 (right), we compare the electron Knudsen number
based upon the temperature-gradient length scale [Kne,∇T ≡
λe|∇(ln Te)|] for fully kinetic and hybrid iFP simulations.
We use the temperature-gradient length scale in particular
because of its relevance in fluid-electron transport models
(see, e.g., Refs. [18,19]). We see that Kne,∇T is approxi-
mately 5 × 10−2 throughout the preheat layer (well above the
Kne ∼ 10−3 threshold), which corresponds exactly to where
the electron-temperature profile has been adjusted in Fig. 1,
and is much smaller elsewhere. Notably, the sharp peak in
the fluid-electron Kne,∇T profile at the preheat layer upstream
edge (where ∂xTe is largest) is smoothed significantly in the
kinetic-electron case. In all the results that follow, unless
otherwise specified, the “kinetic” results are from the iFP
(Eulerian VFP) code.

To look deeper into differences between hybrid and fully
kinetic simulations, we examine the terms in the electron
energy equation [see Eq. (A3) of Ref. [39]]. Upon rearranging,
we find the energy equation may be expressed as

∂xQ‖,e
Te

≈ neu‖,e

[
∂x(ln ne) − 3

2
∂x(ln Te)

]
. (6)

Here, we neglect the temporal derivatives, as we are in the
frame of the shock and the simulations are allowed to reach a
steady state. Further, we utilize the facts that (1) with u‖,e =
u‖,i, frictional energy exchange may be neglected and (2) the
momentum neu‖,e is constant. The viscous stress and thermal
relaxation terms may be neglected essentially by assuming
that the electron-ion mass ratio is smaller than the electron
Knudsen number, me

mi
� Kne,∇ , and that δT̂e < 1, where δT̂e ≡

|Ti − Te|/Te. As the particle flux density neu‖,e is constant

through the shock, Eq. (6) clearly expresses that the ratio
of the divergence of the electron heat flux to the electron
temperature is dependent only on the two inverse length
scales, L−1

Te
≡ |∂x(ln Te)| and L−1

ne
≡ |∂x(ln ne)|. This is

demonstrated in Fig. 2, which shows the left-hand side of
Eq. (6) (top) and the inverse gradient length scales for the
electron-temperature and electron-density profiles (bottom).
From this, we can clearly conclude that the primary effect
of the kinetic electrons is to smooth the steep electron-
temperature gradient at the leading preheat layer edge where
the Knudsen number (based on Te) is the largest.

FIG. 2. Top: Spatial profiles within the preheat region for the
∂xQ‖,e/Te term in Eq. (6) for hybrid (Hyb.) and fully kinetic (Kin.)
simulations. Bottom: Spatial profiles of the inverse gradient length
scales based on Te (solid) and ne (dashed) for hybrid (Hyb.) and fully
kinetic (Kin.) simulations. Vertical dotted lines indicate (from left to
right) the approximate locations of the upstream edge of the preheat
layer and the compression shock.
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FIG. 3. Left: Spatial profiles of the electron heat fluxes QHyb.

‖,e (Hyb.), QKin.
‖,e (Kin.), QKin.

‖,e,Brag. (Brag.), and QKin.
‖,e,LMV (LMV). The latter two

heat fluxes employ the fully kinetic-electron moments. Note the similarity of QHyb.

‖,e and QKin.
‖,e . Center: Spatial profiles of the ion heat fluxes

QKin.
‖,i (Kin.) and QKin.

‖,i,Brag. (Brag.). Note QKin.
‖,i is comparable in magnitude to QKin.

‖,e . Right: Phase-space plot of the electron heat flux comparing

QKin.
‖,e (Kin.), QHyb.

‖,e (Brag.), and QKin.
‖,e,LMV (LMV). The heat-flux curves for QKin.

‖,e and QKin.
‖,e,LMV have symbols colored by local Knudsen numbers.

It follows from Fig. 1 (right) and Fig. 2 that, in the preheat
layer, T Kin.

e ∼ T Hyb.
e and LKin.

Te
∼ 2LHyb.

Te
. Then, Eq. (6) predicts

in this region QKin.
‖,e ≈ QHyb.

‖,e . Figure 3 (left) demonstrates this
quite clearly by showing spatial profiles of the kinetic-electron
parallel heat flux QKin.

‖,e and the heat flux in the hybrid sim-

ulation QHyb.

‖,e based upon the Braginskii expression. Here,
we compute the kinetic heat flux for a species α from its
distribution function fα using

QKin.
‖,α =

∫
v

1

2
mα (v − uα )2(v‖ − u‖,α ) fαdv, (7)

where uα is the α-species bulk velocity. For comparison, we
also compute from the kinetic-electron moments the Bragin-
skii heat flux QKin.

‖,e,Brag. and a heat flux from the LMV model
QKin.

‖,e,LMV. In doing so, we aim to assess the consistency of a
given model with respect to the kinetic solution. If a given
heat-flux model is postprocessed from the kinetic moments
and agrees well with the self-consistent kinetic heat flux, we
surmise that it is a good closure. That is, we hypothesize that
if it were run self-consistently with the fluid-electron model in
a hybrid simulation, it would produce similar moment profiles
to the kinetic ones (e.g., for the temperature). The LMV model
is a nonlocal closure of the form

Q‖,LMV =
∫ +∞

−∞
W (x, x′)Q‖,Brag.(x

′)
dx′

aλe(x′)
, (8)

where W (x, x′) is a phenomenologically chosen delocaliza-
tion kernel for the Braginskii heat flux, λe(x′) is an appropriate
delocalization length scale (related to the mean free path
and containing a correction accounting for the electric poten-
tial [21,22]), and a is a heuristically chosen parameter. We
refer the reader to Ref. [22] for details of the model and the
parameters chosen. Physically, Eq. (8) may be understood as a
convolution of the local Braginskii heat flux into the surround-
ing space. We note that, as we expected from the analysis of
Eq. (6) and Fig. 2, the kinetic and hybrid heat fluxes QKin.

‖,e
and QHyb.

‖,e are very similar in overall magnitude and shape.
The difference in the profile is essentially in a “smoothing”
of the gradients at the upstream edge of the preheat layer
(the same modification as seen in the electron-temperature
profile). For the postprocessed heat-flux models based on the

kinetic-electron-moment profiles, we see that the LMV heat
flux QKin.

‖,e,LMV does very well, while QKin.
‖,e,Brag. is quite different.

For reference, the kinetic ion heat flux QKin.
‖,i and the corre-

sponding Braginskii heat flux QKin.
‖,i,Brag. are also included in

Fig. 3 (center). There, we observe that QKin.
‖,i is actually of the

same order of magnitude as QKin.
‖,e and is substantially larger

than QKin.
‖,i,Brag., in significant contrast to the usual ordering of

|Q‖,i| ∼
√

me
mi

|Q‖,e| [18].

Despite the similarity between hybrid and kinetic-electron
heat fluxes, a detailed analysis reveals deeper physical dif-
ferences. In particular, we find clear evidence of nonlocal
transport effects in the kinetic-electron simulation, as ex-
pected from weakly collisional conditions. This is evidenced
in Fig. 3 (right), where we show a phase-space plot of
Q‖,e/T 5/2

e from iFP simulations versus ∂xTe, with symbols
colored according to the local Knudsen number. We see that
the kinetic heat flux demonstrates a significant departure from
the Braginskii model, with the nonlocal kinetic heat flux pos-
sessing a distinct multivalued dependence on the temperature
gradient. Notably, the LMV heat-flux model also demon-
strates a very similar nonlocal behavior, though it appears to
overpredict slightly the nonlocality relative to the true kinetic
heat flux. We note the LMV without an electric-field correc-
tion (i.e., the original model of Luciani et al. [20], not shown
here) overpredicts the heat flux by as much as a factor of 2 [the
peak in Fig. 3 (right) would be nearer to −Q‖,e/T 5/2

e = 30],
though with a similar qualitative shape. Thus, since the LMV
heat-flux model is largely consistent with both the heat flux
and moments from the kinetic simulations, we conclude that
it is a promising nonlocal heat-flux closure (at least for similar
problems). This will be tested in future work.

The electric field E‖ shows further differences between
hybrid and fully kinetic simulations. In the fully kinetic sim-
ulation, E‖ is evaluated self-consistently from Eq. (2), while
in the hybrid simulation it is obtained from the electron mo-
mentum equation by neglecting electron inertia and viscosity,

E‖ = 1

qene

[
∂x(neTe) −

∑
i

F‖,ei

]
, (9)
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FIG. 4. Top: Spatial profiles of E‖ from hybrid (Hyb.) and fully
kinetic iFP (Kin.) simulations. Also included is the estimated electric
field from the semianalytic solution of Ref. [10] (J&P). Bottom:
Spatial profiles of the charge separation quantity δE , again com-
paring hybrid and fully kinetic iFP and the semianalytic estimate
of Ref. [10]. Vertical dotted lines indicate (from left to right) the
approximate locations of the upstream edge of the preheat layer and
the compression shock.

where F‖,ei is the electron-ion friction force (for details, see
Appendix A of Ref. [39]). Note that in this problem the
bulk velocity of both species is identical, so F‖,ei ∝ −∂xTe.
In Fig. 4 (top), we see the spatial profiles of E‖ for hybrid and
fully kinetic iFP simulations. As expected, the most noticeable
difference is in the preheat layer, where the Knudsen number
is large and thus the electron-temperature gradient in the fully
kinetic case has been significantly reduced, and the fully ki-
netic frictional relaxation term essentially vanishes. This leads
to a significant suppression of the E‖ “spike” in the preheat
layer in the fully kinetic case.

This preheat layer electric-field spike corresponds to the
“precursor” electric shock layer described by Jaffrin and
Probstein [10]. For comparison, a profile based on their semi-
analytic shock solution is also included in Fig. 4 (top). We
note that the derivation of Ref. [10] is based on a Navier-
Stokes model, and thus does not correctly represent the
transport for a fluid plasma model (e.g., Braginskii). In order
to make a more fair quantitative comparison we have altered
their solution by making the transformations ε → ε/2 in their
Eq. (3.4a) and ε → 2ε in their Eq. (3.5a) (which brings the
ratio of electron and ion transport coefficients more into line
with the estimates of Braginskii [18]). The result shows re-
markably good agreement with the hybrid iFP solution in the
precursor shock layer at the upstream preheat layer edge, but
agrees only qualitatively elsewhere.

We include an analysis of the charge separation δE =
ε0∂xE‖ [13] in Fig. 4 (bottom). Given that λD/λii � 1, we
see that, unsurprisingly, the charge separation for this problem
is quite small. We also again see the precursor shock col-
lapse in the fully kinetic case. However, the charge separation
predicted by the semianalytic solution in the preheat layer

is within an order of magnitude of that shown by the hy-
brid simulation. Reference [10] estimates the precursor shock
thickness to be l/λUS

ii ∼ M/
√

me/mi (here, l/λUS
ii ∼ 6), which

is about a factor of 2 smaller than the width estimated from
the hybrid and fully kinetic simulations.

IV. CONCLUSIONS

We have performed converged fully kinetic simulations
of strong steady-state planar plasma shocks. We have found
that the differences between hybrid and fully kinetic simula-
tions are limited to the electron preheat region of the shock
and, specifically, to the electron-temperature profile therein;
the differences are focused at the upstream edge, where the
temperature gradient length scale is smallest and the electron-
temperature Knudsen number is largest. We find the electron
heat flux exhibits stiffness across various models, with only
small adjustments to the heat-flux slope near the upstream
edge of the preheat layer. However, while its spatial profile is
qualitatively unchanged, the heat flux exhibits significant non-
locality in the fully kinetic case. Further, in other parametric
regimes, such as ICF implosions with much stronger spher-
ically converging shocks, or multi-ion systems, this cannot
necessarily be assumed to be the case and will be a subject of
future work. We find that a heat flux computed using the LMV
model [20–22] using kinetic-electron moments is reasonably
consistent with the kinetic-electron heat flux (including the
nonlocal phase-space behavior), while the corresponding Bra-
ginskii heat flux is not, which provides a level of confidence in
the capability of the LMV model to recapture the kinetic mo-
ment profiles if used in a hybrid simulation. The electric field
E‖ at the preheat layer leading edge is found to be very similar
to that predicted by a semianalytic fluid solution [10], but
with minimal charge separation due to the gradient smoothing
effect of the kinetic electrons.
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APPENDIX: NORMALIZATION

In our simulations we use the following normalizing con-
stants for the downstream quantities:

n∗ = 1 × 1022 (cm−3), T ∗ = 1 × 104 (eV),

q∗ = 6.022 × 10−19 (C), m∗ = 1.6726 × 10−24 (g).

From these, the normalizing speed u∗, time τ ∗, and length
L∗ may be defined as the ion thermal speed, inverse ion-ion
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collision frequency, and ion-ion mean free path, respectively:

u∗ = 9.787 × 107 (cm s−1), τ ∗ = 2.085 × 10−10 (s),

L∗ = 2.041 × 10−2 (cm).

We estimate the Debye length in the downstream as ap-
proximately λ∗

D = 7.43 × 10−7 (cm), such that λ∗
D/L∗ ≈ 3 ×

10−5, firmly in the quasineutral regime. We further note
that in the quasineutral limit (λ∗

D/L∗ � 1), the normal-
ized profiles of the moment quantities (temperature, etc.)
through the shock will be self-similar for a given Mach
number, and will not depend on the specific normalizing
constants.
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