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Kinetic analysis of the plasma sheath around an electron-emitting object with elliptic cross section
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The structure of the sheath and the current exchange of two-dimensional electron-emitting objects with
elliptic cross section immersed at rest in Maxwellian plasmas are investigated with an energy-conserving
stationary Vlasov-Poisson solver free of statistical noise. The parameter domains for current collection within
the orbital-motion-limited (OML) regime and current emission in space-charge-limited (SCL) conditions were
studied by varying the characteristic dimension of the ellipse, its eccentricity, and the emission level. The analysis
reveals the correlations between the onset of the non-OML and SCL regimes and the local curvature of the
ellipse. As compared to nonemitting ellipses, electron emission broadens the parameter domain for OML current
collection for ions and reduces considerably the current drop for non-OML conditions. Under identical plasma
environments, elliptic bodies are more prone to operate under non-OML and SCL conditions than cylinders.
Their emitted current in SCL conditions can be computed accurately from well-known results for cylinders if
appropriate dimensionless variables and an equivalent radius are used. The role of the eccentricity, which acts as
an integrability-breaking parameter, on the filamentation of the distribution function of the attracted species is

studied.
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I. INTRODUCTION

Sheath structures arising from the self-organization of
a plasma surrounding an object are ubiquitous in plasma
physics [1]. Langmuir probes (LPs) and emissive probes
(EPs) [2-8], charging of grains in complex plasmas [9-12],
spacecraft charging [13—16], and current collection and emis-
sion by electrodynamic tethers (EDTs) [17-20] are some
interesting examples. Kinetic descriptions, involving complex
analytical analysis and significant computational resources
in numerical simulations, are typically required to correctly
capture essential features of the sheaths. An example is the
appearance of an electrostatic potential well close to electron-
emitting objects, resulting in space-charge-limited (SCL)
emission. Important theoretical efforts were made in the past
to study configurations with simple geometries (e.g., planes,
cylinders, and spheres). Their symmetries yield conserved
quantities, like momentum or angular momentum of charged
particles, that can be exploited to reduce the dimensions of
the problem and obtain relatively simple models [21-24].
Nonetheless, for many interesting scenarios such conservation
laws do not hold. Relevant examples include objects with less
regular geometries, such as nonspherical dust grains [25] and
EDTs with tapelike cross sections [26,27], plasma probes with
finite lengths [28], plasma-sheath lenses [29-31], and objects
with simple shapes but immersed in flowing plasmas [32-34].

Several works have dealt with geometries that do not
yield conserved quantities for particle orbits. Laframboise
and Parker showed that orbital-motion-limited (OML) current
holds for sufficiently convex objects [35]. Assessment of OML
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validity for a thin, taped cross section in the limit of high
bias was carried out by Sanmartin and Estes in [22], who
generalized their results to prisms of infinite length and arbi-
trary cross section in [36]. Though useful, such analytical and
semianalytical models are subject to the fulfillment of several
assumptions (high bias, infinite length, etc). Their relaxation
requires numerical simulations, thus leading to the devel-
opment of different codes for investigating plasma sheaths
and current collection and emission. For instance, a Vlasov-
Poisson solver based on a backward Liouville method [37]
was used to investigate Langmuir probes with tapelike cross
section in a wide range of biases [38]. The sheath around
elongated dust grains in flowing plasmas was studied with a
particle-in-cell (PIC) code in [39]. More recently, results on
the charging of nonspherical dust grain were obtained with
a treecode [40] and benchmarked against recent analytical
models [41] that extend the work of [35] to spheroids of higher
aspect ratios.

This work presents quantitative results of the steady-state
sheath around an infinitely long electron-emitting object with
an elliptic cross section immersed at rest in Maxwellian
plasmas. This is a particularly interesting case due to its
connection with several applications in plasma physics and
aerospace engineering. For instance, the proposed scenario
may be a convenient approximation of nonspherical dust
grains. Additionally, when the eccentricity e, is close to 1, the
results of this work can be applied to tapelike EDTs, which are
deemed to outperform cylindrical ones [26,27,42]. In particu-
lar, the so-called low-work-function tether (LWT) [18,20] has
a cathodic segment whose physical configuration is similar
to the one discussed in this work. Besides these applications,
the sheath around an electron-emitting ellipse is a rele-
vant theoretical problem. Unlike cylinders, ellipses have no
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axial symmetry, and the angular momentum is not conserved
along particle trajectories. This feature opens the possibility
of having chaotic dynamics for the trapped particles and fil-
amentation of the distribution function, which can affect the
convergence of stationary Vlasov-Poisson solvers [43]. There-
fore the eccentricity (e,) acts as an integrability-breaking
parameter, i.e., the orbits are regular for e, = 0, and chaos
can appear for e, # 0. Finally, the analysis fills the theoretical
gap between the orbital motion theory (OMT) for probes with
cylindrical [21,24] and tapelike cross sections [22,38] and
studies the transition from regular to filamented distribution
functions. The boundaries that separate OML /non-OML and
SCL/non-SCL operation conditions in parameter space are
investigated too.

Such novel analysis has been eased by the use of a re-
cently developed code based on a backward Liouville method
to solve the Vlasov-Poisson system self-consistently [43].
Unlike particle-in-cell codes and stationary Vlasov-Poisson
solvers used in the past to study nonintegrable configura-
tions [28,38], the code is free of statistical noise and conserves
the energy along particle trajectories. Consequently, the fil-
amentation of the distribution functions and the transition
between different current collection and emission regimes
can be studied accurately. In Sec. II the main equations of
the model and the structure of the numerical algorithm are
described. Section III investigates the macroscopic quantities
of the plasma sheath for elliptic configurations. In Sec. 1V,
the operational regimes of (electron-emitting) elliptic bodies
are investigated, with particular focus on the impact of the
eccentricity, the semiminor axis-to-Debye length ratio, and the
emission level. Comparisons with available results regarding
cylinders and tapes without emission are provided. Section V
discusses interesting kinetic features induced by elliptic ge-
ometries. The main conclusions and application of the results
are presented in Sec. VI.

II. A KINETIC MODEL FOR ELECTRON-EMITTING AND
ELLIPTIC OBJECTS

The model considers a two-dimensional ellipse of ec-
centricity e, and semiminor axis B, immersed at rest in
a collisionless, unmagnetized, Maxwellian plasma made of
electrons and ions with unperturbed density Ny and tempera-
tures T, and Tjy, respectively. The object is biased at ®p with
respect to the unperturbed plasma, and it emits electrons fol-
lowing a half-Maxwellian distribution function with density
Nemo and temperature 7. For convenience, we introduce the
following normalized quantities:

R V Ne,i Nem

r=—, V= ) ne,i =, Nem = ) (1)
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fulr, vy = 20Tele g P @
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with R and V the position and velocity vectors, F, the
distribution function, & the electrostatic potential, Ap, =
VeokpT,/e*N, the electron Debye length, v, = /2kgT, /My
the thermal velocities, kg the Boltzmann constant, € the vac-
uum permittivity, e the elementary charge, and m,, the mass of
the species. In Eq. (1) and hereafter, the subscript « identifies
plasma electrons (¢ = ¢), plasma ions (¢ = i), and emitted

electrons (o« = em). In stationary conditions, the dimension-
less distribution functions and electrostatic potential obey the
stationary Vlasov-Poisson system,

v~Vfa—2€TaV¢-vaa=O, (3a)
AP = —p = ne + Bhem — ein;. (3b)
Its solutions depend on the dimensionless parameters
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where g, is the charge of the species. The dimensionless
densities at the right-hand side of Eq. (3b) are obtained by

+00

ne(r) = Ja(r, v)dv. (6)

—00
Regarding the boundary conditions, at the contour of the ob-
ject

F={@yI(l-e)x’+y =b}, (7

we have

¢(T) =op ®)

2
Jem (T, v-uy, > 0) =fuy = P exp{—(v - v)}, )

with u,, the outward unit vector normal to I". Far away from
the object, the conditions are

¢(r — 00) = 0, (10)

1
Jei(r = 00,v) >fiu = —exp{—(v-v)}, (11

with r = /x2 + y2.

For e, # 0, the solutions of system Eqgs. (3a) and (3b) are
found with the algorithm of Ref. [43] referred to as FDM-CN,
which is the one with the best performances and accuracy. Its
computational domain is defined by the inner boundary I" and
an outer boundary I'y,,x identifying an ellipse confocal to I"
and normalized semiminor axis bp,x large enough to recover
quasineutrality. Such a domain is discretized on a uniform
mesh in (curvilinear) elliptical coordinates. The unknowns of
the algorithm are the N values of the space-charge vector p €
RY at the nodes of the mesh, which is found by implementing
a Newton-Raphson method that solves

G(p)=p—VIP(p)] =0. (12)

The iterative procedure stops when || G ||»< Tol, with Tol
a given tolerance. The operator P is a Poisson solver based
on a finite-difference method (FDM) that receives the space
charge and finds the electrostatic potential. Since the spatial
domain is truncated, the boundary condition ¢ &~ 1/r was set
at ['nax [38,43].

Operator V is a Vlasov solver based on a backward Liou-
ville scheme [37]. Receiving the electrostatic potential ¢ (x, y)
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as input, it computes the distribution function f;, by the back-
ward integration of the characteristics of the Vlasov equation:

dr

Gy, 13
dt v (132)
v _ g, (13b)
dt 28,

with t parametrizing the integral curves. Being the distribu-
tion function conserved along the characteristics (collisionless
plasma), the value of f, (x,o) is found by integrating Eqs. (13a)
and (13b) numerically with initial conditions x, = (rg, vo)
until the trajectory ends up at a boundary of the computational
domain where the distribution function is known. We assign
Jei(xs50) = fur and fo,(x50) =0 [fei(xs0) =0 and fon(x50) =
fum] if the orbit hits 'y (I'). For brevity, we will refer
to these orbits as ['nyax-originated and I'-originated. If the
orbit performs N;, loops around the ellipse, then the code sets
fa(xs0) = 0 with o = e, i, em, and the particle is classified as
trapped.

Since the energy is conserved along the orbits, we substi-
tute (vy, vy) by (€q, ¢), with

€ =0} + 0] + S [B0nY) — authy ) (14)
—an! (20
¢ =tan <v -n>’ (15)

the (dimensionless) energy of the charged particle and an
angle in velocity space, and ¢ and n the tangential and
normal (outward) unit vectors to the ellipse confocal with
I' passing through (x,y), a.; =0, and a,, = 1. For each
point (x,y), the Vlasov solver defines a grid of N. x N;
nodes discretizing the domain (¢,, ¢) € [e;“i“ €] x [0 2],
with 6;"“‘ = max{0, [¢(x,y) — apppl(es/ds)} and € a high
enough numerical parameter. Each point zo = [x', y/, €k, ¢]
provides the initial conditions for the numerical integration
of Egs. (13a) and (13b), which is carried out with a hybrid,
implicit Crank-Nicolson (CN) scheme that exactly conserves
the energy originally proposed for the particle-in-cell codes
of [44-46]. Its implementation in the framework of stationary
conditions with nonperiodic boundary conditions is described
in [43]. Unlike PIC algorithms, simulations based on a back-
ward Liouville scheme are free of statistical noise and suitable
to investigate fine kinetic features (e.g., filamentation) of the
plasma sheath [37]. More details about the implementation of
solvers P and V are in Ref. [43] and references therein.

For e, = 0 (cylinders), the system of Eqgs. (3a) and (3b)
requires solving Eq. (12) as well. Due to the azimuthal sym-
metry, both the Vlasov and Poisson solvers simplify notably.
Reference [24] contains the details of the numerical code,
which has recently been used to create a broad database of
current-voltage characteristics for emissive cylinders [47].

Once the space-charge vector satisfying Eq. (12) is found,
the distribution functions f;, and any other macroscopic quan-
tities of interest can be computed. For instance, the particle
densities are given by Eq. (6), and the electric current col-
lected or emitted by the object per unit length is

kgT,

Ia = eN()

X P X Ja, (16)
Tm,

where p is the perimeter of the ellipse and

Sa 4

joz =€y _ﬁ js(S)dS (17)
Ma Pp Jo

with

+00  p400
jils) = / f (@ ) fu(Ts vy v)dvedyy,  (18)

Wy = Mgy /My, js(s) the local normalized current per unit area,
and s the arc length along I [see Eq. (A3)] measured from the
point (x,y) = (a,, 0) = (b,/vV1 — ef,, 0), with a, the (nor-
malized) semimajor axis of the ellipse. Typical numerical
values used in this work are

N~10°, N.=150, N,=360, N,=2 (19

boax ~ 10", €M™ =M 16, Tol =5x 107, (20)

o

As shown below, we explored a broad space of physical
parameters by varying geometrical, background plasma, and
electron emission properties. Nonetheless, the parameter do-
main was mainly targeted to ionospheric plasmas, where the
hypotheses of the orbital motion theory (like the collisionless
character of the plasma) hold reasonably. As a reference,
we consider here typical values in the ionosphere for the
plasma density (Ny = 10" m~3) and temperatures (T, ~ T; &
0.15 eV) that give a Debye length of Ap ~ 1 cm and §; = 1.
For a typical tapelike tether of width 3 cm at temperature 7, =
550 K, one obtains a, = 1.5, which corresponds to b, ~ 1 for
e, = 0.75, and 4, = 0.32. Moderate values of ¢, and a broad
range of B were considered in order to explore the transition
from SCL to non-SCL conditions. These parameters, which
cover space plasmas and tether applications, are close to those
used in Ref. [24] for cylinders.

III. SHEATH STRUCTURE

This section characterizes the plasma sheath around el-
lipses of different properties. The effect of the eccentricity is
studied by considering the parameters

0<e, <099, ¢,=—-40, b,=10,
5 =10, 8u=0, B=0. 1)

Panels (a) and (b) in Fig. 1 show the charge density [see
Eq. (3b)] at the horizontal and vertical axes of the compu-
tational domain, respectively. Taking the round case (e, = 0)
as baseline [dark grey lines with circles], we observe that the
charge grows up to a maximum and then decreases mono-
tonically with the distance. Due to the azimuthal symmetry,
the two lines are identical. For e, > 0, axial symmetry does
not hold and the profiles differ in the neighborhood of T.
Such an effect is enhanced for higher values of e,, which
yield more extended sheaths as well. Since both symmetry
and quasineutrality are recovered as r — oo, larger compu-
tational boxes (i.e., bigger by,.x) are used for higher values
of e,.

The eccentricity affects the position and intensity of the
maximum of p too. The former approaches the object as e,
increases. Such effect is stronger at the semiminor axis where,
for e, — 1, the maximum is practically at the object and p
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e, =0.75 ——-— e, =0.90 e, =0.95 — — —e, =0.99]

FIG. 1. Space charge at the y = 0 [panel (a)] and x = 0 [panel
(b)] axes for several eccentricities.

decays almost monotonically. Regarding its value, at y =0
[panel (a)] the maximum is barely constant up to ¢, = 0.95,
while it decreases as ¢, — 1 following a growth in the num-
ber of I'-originated ion orbits. More details and quantitative
results supporting this statement are given in Sec. V. Atx = 0
[panel (b)], the maximum of the density decreases monotoni-
cally with e,,.

The roles of the characteristic size of the object to the
Debye length (b)) and the emission level (8) were analyzed
by running four simulations with the parameters

e, =075 ¢,=-50, 1<b,<3,
8 =10, 8,=032, B=1{0, 1.72}. (22

The four quadrants of Fig. 2 show the density of the attracted
ions in the neighborhood of I". Since e, = 0.75, the ion den-
sity is not axisymmetric. A comparison of the two top and
bottom panels reveals that the electron emission enhances the
dependence of the density with the azimuthal angle. This is

y/bp 0

-5
-5 0 5

x /b,

FIG. 2. Detail of the density of attracted ions inside the sheath
fore, =0.75,6; = 1, ¢, = =5.

ST

—Vé-

x/b,

FIG. 3. Normal component of the electric field for e, = 0.75,
8 =1,8,=-5.

particularly evident close to the x axis. An inspection of the
left and right panels unveils that increasing b, has the opposite
effect. For larger b,, the local curvature [see Eq. (A4)] of
the ellipse decreases and the sheath is less sensitive to the
particular shape of I". When moving away from I', the ion
density grows much slower for b, = 3 than for b, = 1. In
particular, the top-right panel (8 = 0) exhibits a broad region
with ion density below 0.6 surrounding the ellipse. Conse-
quently, we conclude that the size of the sheath increases
with b,, a result consistent with previous works on infinite
cylinders [17,21,38].

Understanding this effect requires analyzing the electric
field component normal to the ellipse confocal to I" at each
point. As shown in Fig. 3, an inward (negative) electric force
exists for the attracted ions. Stronger electric fields and larger
objects yield more I'-originated orbits that result in a lower
density of the attracted species. A comparison of the left and
right panels in Fig. 3 shows that the normal component of
the electric field is stronger for larger b,. Electron emission
(bottom panels) mitigates the electric field, yielding a higher
ion density close to I".

IV. OPERATIONAL REGIMES

This section discusses different operational regimes for
electron collection and emission when varying (i) the eccen-
tricity ep, (ii) the characteristic dimension b,, and (iii) the
emission level 8.

A. Transition between OML and non-OML operational regimes

The OML regime occurs when no barriers of effective
potential that could prevent some particles from reaching I'
occur [35]. Current collection is maximum for OML con-
ditions, and important and very general results hold. For
instance, for a two-dimensional object of arbitrary shape
and negatively polarized with respect to the ambient plasma
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ep=0 ep =0.75 ——— e, =0.90 e, =0.95 ep =0.99]
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FIG. 4. Electrostatic potential at the y = O [panel (a)] and x = 0
[panel (b)] axes for several eccentricities. Collected current-to-OML
current ratio vs the eccentricity [panel (c)].

operating in OML conditions, the ions (attracted species)
satisfy

1
M) = -, (23)
2
-OML Si Xo
Ji @y = [ =12 =T FexpC) - erfel/xi) | (24)
with x; = —¢,/8; [35]. Therefore the determination of the

parameter domain yielding OML conditions is a very relevant
theoretical problem. Important efforts were made in the past
to address it. Theoretical results were obtained for nonemit-
ting cylinders, thin tapes, and infinite prisms with convex
and concave cross sections in the high-bias limit [22,36],
and spheroids in the Laplace limit [35]. For electron-emitting
cylinders, the OML parameter domain has been found re-
cently [47]. The VP solver allows one to revisit previous
results, typically based on asymptotic analysis and sensible
approximations, and to explore deeper the role of the electron
emission.

1. Slenderness of the object

To understand the role of the slenderness of the object,
panels (a) and (b) in Fig. 4 show the electrostatic potential
at x =0 and y =0 for several eccentricities and the pa-
rameters of Eq. (21). Since for e, = 0 the OML condition
reads R2P » < R?>®(R), i.e., the OML current collection [see
Eq. (24)] holds if the electrostatic potential profiles does not
cross the diagonal [22], we display the bias versus afj /r? and

b2 /r?, respectively. Results show that increasing e, pushes
the electrostatic potential profile into the non-OML region
for cylinders [see panel (a) and its inset]. However, such a
region is not the non-OML domain for ellipses. As shown in
panel (c), displaying the ratio j;/j°M" versus e, ellipses with
eccentricities up to ¢, = 0.90 collect the OML current (at least
up to the precision of our numerical calculations), although
their profiles penetrate the filled region in the top panels. The
OML/non-OML transition lies between 0.90 < e, < 0.95, an

e, =0.90 e, =0.95 e, =0.97 — — —e, =0.99]
L LOf— 1
= Vo )
Q. \
2 R N
Z =T Ney (a)
=084 ! |
8F ‘
- (b)
N A€p
2 4 ¢ /Z\ 1
0k Tz 7‘_7;’,’;*,*_’:: R
0* ﬁ(ﬁfATifiiL_‘Lma.—_——————f74—
D \ 7
T 20} , |
= VoSN
40| ' | (c) 1
0 /4 ™/2
0

FIG. 5. Ratio j,(8)/j°M' (a), curvature k (b), and dk/d6 (c) vs
the azimuthal angle 6 for several eccentricities.

outcome aligned with the analysis in the Laplace limit of
Ref. [35], which predicted such transition to happen for oblate
spheroids of aspect ratio 2.537 (e, ~ 0.92). As e, further
increases, the object resembles a tape and the current ratio
reaches j;/jOMY A 0.88. Such a value is lower than the ~1%
drop predicted for a thin tape at very high bias [22]. Thus
high-bias conditions mitigate the effect of the shape of I" on
current collection. For a given b, the reduction in j; is largely
counterbalanced by the increase in the perimeter with e, [see
Eq. (16)]. For instance, one has p |,,—0.99= 4.9 X p |¢,=0 and
P le,=099=2.71 X p l¢,=09-

Panel (a) in Fig. 5, which shows the ratio j,(6)/j%M:
versus the azimuthal angle 6 [see Egs. (18), (Al) and (A2)],
provides useful information about the spatial distribution of
the current collection along I'. Due to the symmetry, only a
quarter of the ellipse is considered. Up to around e, = 0.90
(black solid line), ions are captured uniformly along the con-
tour because OML conditions hold. For ¢, > 0.9, the current
is OML at 6 =0 [(x,y) = (ap, 0)]. The current ratio then
decreases to a minimum and grows back monotonically up
to a value lower than 1 and is barely constant for 6 > 7 /8.
Points collecting OML and non-OML current coexist along
I". Being the density of the repelled species practically zero,
such a result is consistent with the values of the charge density
at the ellipse shown in panels (a) and (b) of Fig. 1. The charge
density is equal to 0.5 at the horizontal axis and below 0.5 at
the vertical axis [see Eq. (24)].

The behavior of j (6)/jOM versus 6 is strongly correlated
with the local curvature of the ellipse [see Eq. (A4)] displayed
in panel (b). Around 6 = 7 /2, the curvature is low, and the
ellipse is not convex enough to reach OML current collec-
tion. However, this does not imply (x, y) = (0, b,) being the
point of minimum current collection. As shown in panel (c),
such a minimum occurs where the curvature k undergoes the
highest change in magnitude and moves closer to 8 = 0 as
e, grows. Such a result highlights the impact of the geome-
try of the plasma-surface interface on the current collection,
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FIG. 6. Ion distribution functions for e, =0.99 (a) and 0.95
(c) evaluated at I' and the value of # where a minimum is reached
for panel (a) in Fig. 4. Panel (b) shows two orbits for the initial
conditions labeled with A and B in panel (a). Panel (d) displays the
ion distribution function at I' for a cylinder (e, = 0) of perimeter
equal to the ellipse of panel (a).

which is relevant in the plasma-sheath lens-related applica-
tions [29-31].

Understanding the j;(0)/jOM" minimum requires a kinetic
analysis of the distribution function in velocity space or, for
convenience, in the €, — ¢, plane [38,48], with

€1 = €y - COSC, (25)
€ = €4 - SIN¢. (26)

Panels (a) and (c) in Fig. 6 display the ion distribution function
for e, =0.99 and e, = 0.95 at I" and the value of 6 yield-
ing the minimum for j;(6)/;jM". For €, > 0, both diagrams
are empty because the probe does not emit ions. Interest-
ingly, as e, increases, an unpopulated region with ¢, < 0 and
€, < 0 develops and grows, explaining the lower value of
the j,(0)/j°M" minimum for e, = 0.99 than for ¢, = 0.95.
Owing to the elliptic geometry, trajectories with 7 < ¢ <
31 /2 travel across a vast area surrounding I', where they are
deflected towards it. For a given energy, a value of ¢ close
enough to 37 /2 [see panel (a)] yields I'-originated orbits [see
orbit B in panel (b)]. The higher the eccentricity, the larger
the number of such orbits, while panel (c) displays how the
span of ¢ angles yielding B-like trajectories decreases with
the energy.

A comparison between the current collected by an ellipse
of e, = 0.99 and a cylinder of the same perimeter closes this
section. The latter, which operates in non-OML conditions
as well, presents two unpopulated regions symmetric with
respect the €, axis [see panel (d) of Fig. 6]. However, their
impact on the current collection is smaller as one obtains
Ji le,=0= 1.08j; ¢,=0.99-

1eeerce,,
A
~A]
(a)
2.0 2.5 30
b,
L 100(pee0.05.00002000020ees.0q
§
S
095 |
(b)
0.90 | | | ‘
L - 20 25 3.0

by

FIG. 7. Collected-to-OML current vs b, for several eccentrici-
ties. Panels (a) and (b) correspond to 8 = §,,, = 0 and B = 1.72 and
8.m = 0.32, respectively.

2. Characteristic dimension

Convex enough objects collects OML current if their char-
acteristic dimension is small enough as compared with the
Debye length [35]. Quantitative results are here presented for
ellipses by finding the solutions of the VP system for §; = 1.0,
¢, =-5,8=0,and

e, =1{0, 0.5, 0.75} 1< b, <3.

As expected, the ratio j;/joMY =1 in panel (a) of Fig. 7

when b, is small for the three eccentricities. However, as
b, increases, the attracted ions must cover longer paths in
presence of a stronger electric field near I" (see Fig. 3) without
hitting it in order to contribute to the current collection [see
panel (b) of Fig. 6].

For a cylinder (e, = 0), the transition happens for radius
around 1.5Apg [47], but even larger radii do not produce
a significant reduction of the ratio. The current ratio drops
weakly with b, for low-bias conditions (¢, = —5 in our case)
as well as for high-bias ones [49].

Non-OML current collection occurs for lower values of
b, for ellipses with higher eccentricities, though the current
decreases smoothly. For instance, doubling and tripling b, for
e, =0.75 yield a drop of about 2% and 5%, respectively.
Such results resemble previous analyses for tapes [38] and
two-dimensional prisms of any shape in the limit of high
bias [36]. Therefore a good agreement exists between the out-
comes of the analysis and those obtained in previous works,
as well as between the collected currents predicted by the two
independent Vlasov-Poisson solvers for cylinders and ellipses
shown in Fig. 7 (computed with two independent solvers).
Overall, the results show that the shape of I' (eccentricity)
affects the current collection more significantly than its size.

3. Electron emission

The role of the electron emission on the OML /non-OML
transition was investigated by solving the VP system with the
same parameters of the previous section but setting § = 1.72
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FIG. 8. Panel (a): normalized electrostatic potential profile vs
(b,,/r)2 for several emission levels at x = 0 (dashed) and y =0
(solid). Panel (b): fraction of the perimeter under SCL conditions
vs emission level B.

and §,,, = 0.32. As shown in panel (b) of Fig. 7, the emission
of electrons delays the transition into the non-OML regime
to higher b,. Such a result, which was previously found for
cylinders [24,47], is a consequence of the reduction of the
electric field in the proximity of I' due to the higher den-
sity of electrons (see Fig. 3), yielding in turn a reduction of
I"-originated ions. Even when b,, is such that non-OML condi-
tions hold, the ratio is j;/jOME = 1 for the three eccentricities
considered. Therefore, in the presence of electron emission,
the OML current law holds for a broader range of physical
parameters (eccentricities and sizes). This is an important
result for applications involving modeling of object-plasma
current exchange such as probes, dusty plasmas, and space
tethers.

B. Transition between non-SCL and SCL operational regimes

For fixed values of §;, e, b,, and ¢, < 0, a potential dip
can develop close to the plasma-body interface as the emis-
sion level (B and &.,,) increases. Under such SCL conditions,
the electric field reverses and some of the emitted electrons
are reflected back to I'. This interesting physical scenario is
studied by finding solutions for

e, =075 ¢, =—40,
8 =10, 8.y =032,

b, = 1.0,
0 < B <30. Q7

The non-SCL/SCL transition for electron-emitting ellipses is
characterized by analyzing the potential profile and the frac-
tion of the perimeter of the ellipse under SCL conditions to the
total perimeter (rsc. = pscr/p) (Fig. 8), the normal compo-
nent of the electric field (Fig. 9), and the distribution function
of emitted electrons at particular points of I'" (Fig. 10). For
convenience, the potential profile will be plotted again versus
(bp/ r)?. In that diagram, a normalized potential profile above
the horizontal line ¢ /¢, = 1 [panel (a) in Fig. 8] corresponds
to a potential well in the ¢ /¢, versus r plane (not shown).
For B < 6.2, electron emission is non-SCL. As shown in
panel (a) of Fig. 8 and the top panels of Fig. 9, there is no

—Vo- 1
5
B=0 B=6
rscr =0 rscr =0
0
y/bp 0 ‘
\/
2
B=1 B=10
rscr ~ 0.69 rscrL = 1
5 4
-5 0 5

z/b,

FIG. 9. Normal component of the electric field for e, = 0.75,
8 =1,¢,=—4,8,, =032

potential dip (monotonic potential profile) and the electric
field points inward everywhere. The distribution functions of
the emitted electrons are filled with outgoing (i.e., €, > 0)
particles only, as all the emitted electrons are driven away by
the electric field [panels (a) and (d) in Fig. 10]. However, as
shown in panel (a) of Fig. 8, the electric field at I" for x = 0,
where the curvature is minimum, is almost zero.

Within the range 6.2 < 8 < 9, non-SCL and SCL condi-
tions coexist. For 8§ = 7.00 (solid and dashed red lines in
Fig. 8), the electrostatic potential at x = 0 enters the SCL
regime (yellow area), while it is still monotonic for y = 0. The
bottom left panel of Fig. 9 shows the reversion of the electric
field in the proximity of (x, y) = (0, b,). At that point, emitted
electrons appear for €, < 0 (incoming particles), whereas the
same region is left unpopulated at (x,y) = (a,, 0) [panels
(b) and (e) in Fig. 10, respectively]. For 8 > 9, the whole

5 5 5
€ € €
0 $ 0 ; 0 "
-5 {(a) -5 1(b) -5 1(c)
-5 0 5 -5 0 5 -5 0 5
FIl 6” FI!
5 5 5
€ €t €t
0 b 0 D 0 ’
-5 1(d) -5 t(e) -5 1(f)
-5 0 5 -5 0 5 -5 0 5
6” 6” 6)7

FIG. 10. Normalized distribution functions for emitted electrons
(fem) at (x,y) = (0, b,) [panels (a), (b) and (¢)] and (x, y) = (a, = 0)
[panels (d), (e), and (f)] for B = 6 [panels (a) and (d)], B8 = 7 [panels
(b) and (e)], and B = 10 [panels (c) and (f)], respectively.
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FIG. 11. Emitted-to-half-Maxwellian current vs B.

perimeter is SCL (rsc. = 1) and the electrostatic potential is
nonmonotonic at both x = 0 and y = 0 (Fig. 8). The potential
dip covers a wider region of the sheath as well (bottom right
panel of Fig. 9). Accordingly, the spans of energies filled up
by incoming particles in panels (c) and (f) of Fig. 10 are
bigger.

The impact of the SCL regime on the emitted current is
shown in Fig. 11, which presents the variation of j.,/ jemo for
a wide range of emission levels for the three bodies shown in
the inset. Here

Jomo = —2Bv/8em (28)

is the current emitted by a half-Maxwellian, i.e., the current
emitted under non-SCL conditions.

The red line with squares corresponds to an ellipse with
e, = 0.75, while the black (green) line with diamond (stars)
was obtained for a cylinder with radius equal to the semimi-
nor (-major) axis of the ellipse. At low B, jen/Jjemo = 1 for
the three objects. As B increases, each body enters the SCL
regime and the emitted current decreases. Such a transition
occurs at B ~ 6.5 for both the ellipse and the cylinder of
highest radius. The two curves follow a similar trend, de-
spite the transition occurring gradually along I" for e, = 0.75.
Unlike the impact of b, on j;/joML, which is weak, the
1atio jem/jemo 1S much more sensitive to B for the three
cases, and drops in the current emission of about 50% are
achieved for 8 ~ 15. The numerical results show that the cur-
rent emitted by ellipses at moderate bias can be approximated
with good accuracy by that emitted by cylinders of radius
equal to the semimajor axis, if appropriate dimensionless
variables are used. A broad, recently built database of solu-
tions for electron-emitting cylinders [47] can thus be used for
ellipses.

V. FILAMENTATION

The characteristic Eqs. (13a) and (13b) are a four-
dimensional Hamiltonian system. Since the Hamiltonian is
T independent, the energy €, in Eq. (14) is conserved along
the orbits. When e, = 0, the electrostatic potential profile
is axisymmetric and the angular momentum is also con-
served. Provided there are two invariants, the phase space has

2(/m
1.1

1.0

0.9

0.0 0.0 0.1
€i € €;
2/ :
ep = 0.95 i r
11 e
1.0 “1!!Ei::] ; -
0.9 Tr
(d) (e)
0.0 0.1

€;

FIG. 12. Domains in the €; — ¢ plane of the ion distribution
function at (x, y) ~ (3.4,0) for e, = 0 (a), ¢, = 0.75 (b), ¢, = 0.9
(c), and e, = 0.95 (d). Panel (e) shows a detail of the region marked
with a rectangle in panel (d). Orange, yellow, and blue colors identify
I-originated, I';,-originated, and trapped orbits, respectively.

effective dimension 4 — 2 = 2, the system is integrable, and
its solutions regular. Two consequences are (i) a numerical
integration of the orbits is not necessary to compute the dis-
tribution function [24], and (ii) the boundaries in velocity
space separating empty and filled regions of the distribution
function are smooth curves, as shown in panel (a) of Fig. 12.
For e, = 0, and the parameters values

¢, =—40, b,=10, &=10, 8,=0 B=0,

(29)

the boundary between regions of ['y.c-originated (f; = fu)
and trapped (f; = 0) orbits is smooth. The diagram was ob-
tained by using a high-resolution grid (Ne x N, = 300 x 300)
in velocity space and the self-consistent numerical potential
profile.

For e, # 0, the angular momentum is not conserved and
the effective dimension of Egs. (13a) and (13b) is 4 — 1 = 3.
Consequently, chaotic orbits can appear and the distribution
function can be very complex in velocity space [43]. As
shown in panels (b), (c), and (d) in Fig. 12, obtained for
N;, = 100 and the parameters of Eq. (29), the structure of f;
becomes more complex as e, increases. For e, = 0.75, the
boundaries separating trapped from nontrapped particles are
jagged, and for e, = 0.9, a population of I'-originating ions
with f; = 0 appears due to the larger perimeter of the ellipse
(see Sec. IV A). The different types of orbits are deeply mixed
in velocity space and the distribution function is filamented as
a consequence of the nonintegrable character of the system for
e, # 0. For e, = 0.95 [panel (d)] and the detail in panel (e),
such mixing is even deeper. The boundaries have a complex
geometry, and the distribution function is highly discontin-
uous, jumping between O (trapped, I'-originated orbits) and
finite positive values (I'jx-originated orbits). A proper selec-
tion of the grid resolution in velocity space and an appropriate
choice of N,, help filtering such discontinuities [43], which
can affect the convergence of the solution.
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VI. CONCLUSIONS

A stationary Vlasov-Poisson solver was used to investigate
the sheath around electron-emitting bodies with an elliptic
cross section I'. Although common hypotheses in orbital mo-
tion theory (OMT) analysis were taken, like the absence of
trapped particles, magnetic field, and collisions, the solver is
free of statistical noise and conserves the energy exactly. A
broad range of physical parameters was explored but focused
on typical conditions for dusty plasma, spacecraft charging,
and space tethers orbiting in ionospheric plasmas, where OMT
hypotheses hold reasonably. Quantitative results on the cur-
rent collection and emission and their domains of operation
were obtained as a function of the geometry of the object, the
plasma properties, and the emission level.

It was shown that the characteristic dimension-to-Debye
length ratio (b,) shields the dependence of the macroscopic
quantities with the azimuthal angle, while both the emission
level (B) and the eccentricity (e,) of the ellipse enhance
such features. Eccentricity was also shown to have a major
effect on current collection. For a given b,, the population
of I'-originated particles, i.e., orbits that hit the object when
integrated backwards in time, increases with e,. If the slen-
derness is above a certain threshold, the collected current
falls below the OML limit. The critical eccentricity value
for OML/non-OML transition is in agreement with previous
analytical works for oblate spheroids in the Laplace limit.
Reasonably, the current drop given by the Vlasov-Poisson
solver for moderate bias is larger than that predicted for a thin
tape in the high-bias limit. In fact, a high bias may mitigate
the effect of the particular shape of I' on the collected current.
As compared with cylinders, and for a given perimeter, the
reduction in the collected current is more severe (*8%) for el-
lipses. An interesting correlation between the local curvature
of I" and the current collected was also found. Unexpectedly,
not only is the minimum current collected close to the point
where the derivative of the curvature with the azimuthal angle
is minimum rather than at the flattest portion of the ellipse,
but it also approaches the semimajor axis (the point where
the curvature is maximum) of I as e, increases. On the other
hand, the current collection drop in non-OML conditions and
its dependence with the eccentricity decreases when I' emits
electrons. Therefore, regardless of the shape of the cross sec-
tion, the OML current collection law can be safely used for
a broader range of parameters in applications involving elec-
tron emission, such as dusty plasmas and low-work-function
tethers.

Regarding current emission, the numerical analysis showed
that as B increases from zero, the point of I' of minimum
curvature is the first to be SCL. For the considered parameters,

the ellipse is partially SCL when the density of the emitted
electrons is between six and nine times the ambient plasma
density. Interestingly, the current emitted by ellipses in SCL
conditions can be modeled as that emitted by cylinders with
an equivalent radius equal to the semimajor axis. Since a
broad database of current-voltage characteristics for electron-
emitting cylinders is currently available, this result enables its
application to more complex geometries upon using adequate
dimensionless variables. This is an important result because,
in view of the need for explicit integration of particle orbits
in the Vlasov solver, the construction of a broad database
for nonintegrable configurations is beyond actual numerical
capabilities. The equivalent radius found in this work allows
us to estimate the emitted current of ellipses by using the
already available database for cylinders.

The filamentation of the distribution function of the at-
tracted species as the eccentricity is increased is an interesting
theoretical problem in plasma physics that also generates con-
vergence issues of stationary Vlasov-Poisson solvers. This is
a physical feature that affects any two-dimensional Langmuir
and emissive probes without azimuthal symmetry. An open
topic, which is beyond the scope of this work, is the analysis of
such filamentation under the presence of collisions. Trapped
particles due to collisional and nonstationary effects, both
ignored in the present work, require structural modifications
of the Vlasov-Poisson solver and will be addressed in a future
work.
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APPENDIX: BASIC FORMULAS FOR ELLIPSES

Let us consider the parametrization

b
x(0) =——2— cos¥, (A1)
/1—e
y(6) = b,siné. (A2)
The arc length measured from the x axis is
0 2
t
s0) = b, / M cos?rdr (A3)
0 1-— 6127
and the curvature
1—e 1
k() = (A4)

by [sin?6 + (1 — e%) cos? 9]3/2.
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