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Resonances with electromagnetic whistler-mode waves are the primary driver for the formation and dynamics
of energetic electron fluxes in various space plasma systems, including shock waves and planetary radiation belts.
The basic and most elaborated theoretical framework for the description of the integral effect of multiple resonant
interactions is the quasilinear theory, which operates through electron diffusion in velocity space. The quasilinear
diffusion rate scales linearly with the wave intensity, DQL ∼ B2

w , which should be small enough to satisfy
the applicability criteria of this theory. Spacecraft measurements, however, often detect whistle-mode waves
sufficiently intense to resonate with electrons nonlinearly. Such nonlinear resonant interactions imply effects of
phase trapping and phase bunching, which may quickly change the electron fluxes in a nondiffusive manner.
Both regimes of electron resonant interactions (diffusive and nonlinear) are well studied, but there is no theory
quantifying the transition between these two regimes. In this paper we describe the integral effect of nonlinear
electron interactions with whistler-mode waves in terms of the timescale of electron distribution relaxation,
∼1/DNL. We determine the scaling of DNL with wave intensity B2

w and other main wave characteristics, such as
wave-packet size. The comparison of DQL and DNL provides the range of wave intensity and wave-packet sizes
where the electron distribution evolves at the same rates for the diffusive and nonlinear resonant regimes. The
obtained results are discussed in the context of energetic electron dynamics in the Earth’s radiation belt.
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I. INTRODUCTION

Wave-particle resonant interactions in space plasma play
a crucial role in momentum and energy exchange between
different charged particle populations in absence of parti-
cle collisions. Two main regimes of such interactions are
quasilinear diffusion [1,2] and nonlinear resonant interactions
[3,4]. The most advanced theoretical approaches for these two
regimes [5,6] have been developed to model the dynamics
of energetic electron populations in the Earth magnetosphere,
where electrons interact resonantly with whistler-mode waves.
Electron interactions with low-amplitude broadband whistler-
mode waves are well described by the diffusion model
proposed in Ref. [7], whereas the model of resonant in-
teractions with intense coherent waves describes such fast
nondiffusive effects as phase trapping [8,9]. Many aspects
of these two models have been confirmed and verified with
spacecraft observations of long-term (diffusive) electron flux
evolution (e.g., Refs. [10,11]) or rapid (nondiffusive) electron
acceleration (e.g., Refs. [12–14]) and losses (e.g., Ref. [15]).
The same two model approaches (quasilinear diffusion and
nonlinear resonances) can describe various wave-particle in-
teractions in the solar wind (e.g., Refs. [16–18]), planetary and
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interplanetary shock waves (e.g., Refs. [19,20]), and aurora
acceleration region (e.g., Refs. [21,22]).

The basic equations for the quasilinear diffusion model
have been initially derived for a homogeneous plasma [5,23],
and then generalized for inhomogeneous magnetic traps, like
the Earth dipole field [24,25]. An interesting and important
aspect of such a generalization is the significant relaxation
of the broad wave spectrum requirement (see Refs. [6,26]).
Indeed, for coherent waves the resonance width, a crucial
parameter for the diffusive model, can be determined by
the magnetic field inhomogeneity [27–29] and/or the wave
frequency drift [30–32]. Electron resonant interactions with
coherent whistler-mode waves in the Earth’s magnetosphere
can be described by a quasilinear diffusion model [33] if
wave intensity is sufficiently small. Therefore, both regimes of
wave-particle interaction (quasilinear diffusion and nonlinear
resonances) can operate for the same coherent monochromatic
wave, and only wave intensity determines the relevant regime.
Thus, the question arises of the transition between these two
regimes (see, e.g., discussion in Refs. [34–36]).

The probabilistic distribution of whistler-mode wave inten-
sities in the Earth’s magnetosphere contains a large population
of low-intensity waves (presumably interacting with elec-
trons diffusively), but this distribution is not Gaussian and
there is a significant population of whistler-mode waves suffi-
ciently intense to resonate with electrons nonlinearly [37–39].
The quasilinear diffusion model relies on the average wave
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intensity presumably dominated by low-intensity waves,
whereas the nonlinear interaction model invokes the much
more rarely observed intense waves. How do such rare non-
linear resonances alter the generally diffusive electron flux
evolution? And can the contribution of intense waves be
described by a simple increase of diffusion rates of the quasi-
linear model? To address these questions, we should describe
the transition between these two regimes of wave-particle
interactions. This topic is the focus of our study. We start with
basic equations of wave-particle resonant interactions for the
most widespread case of field-aligned whistler-mode waves.
Then we derive the main characteristics of resonant electron
dynamics for both regimes of resonant interactions. We use
the mapping technique for such interactions [40,41] to derive
the main scaling laws of the transition between quasilinear and
nonlinear interactions. Then we discuss the obtained results
and summarize them.

II. FIELD-ALIGNED WHISTLER-MODE WAVES

We start with the Hamiltonian of a relativistic electron
[the charge is −e, the rest mass is me, and energy is E =
mec2(γ − 1), where c is the speed of light and γ is the
Lorentz factor] moving in the inhomogeneous background
magnetic field B0(s) (where s is the field-aligned coordinate)
and whistler-mode wave field [29,42]:

H = mec2γ +
√

2Ix�0

mec2

eBw

kγ
sin (φ + ψ )

γ =
√

1 +
( p‖

mec

)2
+ 2Ix�0

mec2
, (1)

where p‖ is the field-aligned momentum (conjugate to s);
�0 = eB0(s)/mec is the electron gyrofrequency; Ix and ψ are
magnetic moment (normalized in such a way that 2Ix�0 is the
perpendicular energy) and the conjugate gyrophase; Bw(s) is
the wave magnetic field amplitude; φ is the wave phase, with
∂φ/∂s = k(s) the wave number; and −∂φ/∂t = ω = const
the wave frequency. We use the cold plasma dispersion rela-
tion for kc/ωpe = [�0(s)/ω − 1]−1/2 with a constant plasma
frequency ωpe. The spatial scale of the background magnetic
field inhomogeneity R is much larger than the wavelength
(Rk � 1), whereas the wave amplitude is much smaller than
the background magnetic field (Bw/B0 � 1).

Hamiltonian equations for (1) are

ṗ‖ = − Ix

γ

∂�0

∂s
−

√
2Ix�0

mec2

eBw

γ
cos (φ + ψ ),

ṡ = p‖
meγ

, ψ̇ = �0

γ
+

√
2Ix�0

mec2

eBw

2Ixkγ
sin (φ + ψ ),

İx = −
√

2Ix�0

mec2

eBw

kγ
cos (φ + ψ ), (2)

where the rates of variation of Ix and p‖ are much smaller than
the rate of variation of ψ , because �0 � c/R and B0 � Bw.
Therefore, p‖, s, and Ix are slow variables, and both the wave
phase φ and gyrophase ψ are fast variables.

In the absence of a wave (Bw = 0) the electron moves
with constant energy γ and magnetic moment Ix [because
the Hamiltonian does not depend on ψ and wave phase
φ(s, t )]. Therefore, each trajectory can be characterized
by a pair of initial (γ , Ix ). Instead of Ix, it is often
more convenient to use the electron pitch angle α0

determined at the B0 minimum (at the equator, s = 0):
2Ix�0(0)/mec2 = (γ 2 − 1) sin2 α0. The classical magnetic
field configuration of the Earth magnetosphere includes
B0(s) growing away from the equator s = 0 [e.g., the dipole
field is B0 = B0(0)

√
1 + 3 sin2 λ/ cos6 λ with magnetic

latitude λ defined as ds/R =
√

1 + 3 sin2 λ cos λdλ]. In
such a field, electrons are moving within a magnetic
trap: p‖ = ±

√
1 − γ 2 − 2Ix�0(s)/mec2 is oscillating

between ±
√

1 − γ 2 − 2Ix�0(0)/mec2 values and reaches
zeros at the mirror coordinates smax,min defined as
�0(smax,min) sin2 α0/�0(0) = 1.

In the presence of a wave (Bw �= 0), the first-order
cyclotron resonance condition φ̇ + ψ̇ = kpz/meγ − ω +
�0/γ = 0 determines the position of resonance sR for given
electron energy and pitch angle α0 with the resonant momen-
tum pz = −

√
1 − γ 2 − �0(sR) sin2 α0/�0(0).

The equation for p‖ in system (2) contains two terms: the
mirror force and the wave force. For the diffusive regime of
resonant interactions the mirror force is much larger than the
wave force, and thus wave effects can be calculated using the
integration of wave field over unperturbed electron trajectory.
For nonlinear resonant interactions, these two terms should
be of the same order, i.e., the wave force should be able
to compete with the mirror force and change the electron
trajectory substantially. The ratio of the magnitudes of these
two forces is (Bw/B0)R�0/c. Thus, the regime of nonlin-
ear resonant interaction requires Bw/B0 ∼ c/R�0, whereas
if Bw/B0 � c/R�0, then the resonant interaction should be
diffusive. Figure 1 shows electron trajectories for these two
regimes: Figure 1(a) shows the energy scattering with a mean
zero for Bw/B0 � c/R�0, whereas Fig. 1(b) shows a sig-
nificant energy change for Bw/B0 ∼ c/R�. The nonlinear
regime is characterized by two processes: A small number
of particles experience phase trapping with a large energy
increase, whereas most of the particles experience nonlinear
scattering (phase bunching) with a small energy decrease.
The long-term dynamics (multiple resonances) for a single
electron would resemble the random fluctuations of a diffusive
regime [see Fig. 1(c)] with some sort of cycle for the nonlinear
regime [see Fig. 1(d)]. This cycle consists in multiple drifts to
smaller energy due to the nonlinear scattering and rare trap-
pings with energy increase. We aim to describe the transition
between these two regimes for an ensemble of electrons. For
this reason we shall start with the quantification of the main
characteristics of electron dynamics in both regimes.

III. EQUATIONS OF PARTICLE MOTION
AROUND THE RESONANCE

The diffusive regime of resonant interaction can be
described by the diffusion coefficient DQL, whereas the non-
linear regime is characterized by energy changes due to the
nonlinear scattering 
γscat, energy changes due to trapping
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(a)

(b)

(c)

(d)

FIG. 1. Trajectories of electrons resonantly interacting with a parallel whistler-mode wave (one resonant interaction is shown): Wave
amplitude is sufficiently low and electrons are diffusively scattered (a) and wave amplitude is high and electrons experience phase bunching and
phase trapping (b). Long-term dynamics of electron trajectories (∼100 resonances) for low (c) and high (d) wave amplitudes. All electrons have
the same initial energy of 150 keV and pitch angle 45◦. The background magnetic field is the Earth’s dipole field with an equatorial magnitude
corresponding to 6 Earth radii away from the planet (the outer radiation belt). Wave characteristics are typical for parallel whistler-mode waves:
ω/�0(0) = 0.25, Bw = 20 pT for (a) and (c) and Bw = 200 pT for (b) and (d) [43,44]. The background plasma density is given by an empirical
model [45].


γtrap, and the probability � of trapping [46–48]. In this
section we demonstrate the relations between these differ-
ent characteristics. First, we should consider Hamiltonian (1)
around the resonance. We follow the procedure described in
Refs. [49,50] and introduce the new phase ζ = φ + ψ through
the generating function W = (φ + ψ )I + P‖s. In the new vari-
ables, the Hamiltonian takes the form:

HI = mec2γ − ωI +
√

2I�0

mec2

eBw

kγ
sin ζ

γ =
√

1 +
(

P‖ + kI

mec

)2

+ 2I�0

mec2
, (3)

where we keep the same notation for s conjugate to P‖ =
p‖ − kI and take into account that new Hamiltonian HI =
H + ∂W/∂t . New momentum I conjugate to ζ equals Ix.

Although the most intense whistler-mode waves in the
Earth’s radiation belts are chorus waves with ∂ω/∂t �= 0
[51–53], for simplicity of the system description we consider
here ω = const. This assumption excludes several potentially
important effects of nonlinear resonant interactions [30,54]
but allows a reduction of the system dimension. For ω =
const Hamiltonian (3) does not depend on time, and thus
γ − ωI/mec2 = h is the integral of motion. This relation
between energy and I for a given frequency ω makes the res-
onant interaction effectively 1D, i.e., any electron energy and
pitch-angle change obeys γ − [ω/2�0(0)](γ 2 − 1) sin2 α0 =
h = const. Figures 2(a) and 2(b) shows such 1D motion in the

(γ , α0) plane for diffusive and nonlinear resonant interactions
of electrons from Figs. 1(c) and 1(d). Note although the clas-
sical quasilinear theory was developed for a broadband wave
spectrum (i.e., for ω �= const) [1,2], in the inhomogeneous
plasma (with ∂�0/∂s �= 0) this theory can be generalized for
a narrow-band wave [27,33]. Therefore, we may compare
diffusive scattering of electrons by a coherent whistler-mode
wave with ω = const and compare efficiency of such diffusive
scattering with the nonlinear resonant effects.

Therefore, we can introduce the 1D electron distribution
f (γ ) for h = const and follow the evolution of this dis-
tribution in these two different regimes. Figure 2(c) shows
that the initially localized f (γ ) is diffusively spread for low
wave intensity. Phase trapping and nonlinear scattering mod-
ify the initially localized f (γ ) distribution in a nondiffusive
manner: There is a drift of the entire distribution due to
nonlinear scattering and the appearance of a high-energy
electron population due to trappings [see Fig. 2(d)]. An in-
teresting and important property of the wave-particle resonant
interaction is that both regimes (diffusion and nonlinear res-
onances) ultimately result in f (γ ) relaxation to a plateau
with ∂ f /∂γ |h=const → 0 (see Ref. [55]). The energy ranges
are different for the two regimes, and the diffusive relaxation
would work over a wider energy range because Bw/B0 ∼
c/R�0 can be satisfied only in a certain range of magnetic
latitudes corresponding to a certain range of resonant ener-
gies γ ∈ [γmax, γmin], where γmax,min are determined by B0(s)
and Bw(s) profiles. On the other hand, due to a resonance
broadening effect (i.e., the finite width of the resonance in
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FIG. 2. Two trajectories from Figs. 1(c) and 1(d) are shown in the (energy, pitch angle) plane for diffusive (a) and nonlinear (b) resonant
interactions (color shows time). Evolution of an initially localized peak of distribution f (γ ) for the same h = γ − [ω/2�0(0)](γ 2 − 1) sin2 α0

as from panels (a) and (b): diffusive (c) and nonlinear (d) resonant interactions. Note that timescales are different for (c) and (d) panels.

the velocity space ∼√
Bw/B0, see Refs. [9,56]) the nonlinear

resonant interaction may affect energies formally nonresonant
in the diffusive regime (e.g., [57,58]. The timescales of f (γ )
relaxation are also different for the two regimes: The diffusive
relaxation requires more time and Fig. 2(d) shows how f (γ )
continues spreading outside the energy range of nonlinear
resonances where the plateau forms first.

The resonance condition for Hamiltonian (3) is given by
equation ζ̇ = 0 and this equation determines the resonant
momentum IR:

kIR

mec
= − P‖

mec
− �0

kc
+

[(
kc

ω

)2

− 1

]−1/2

×
[

1 −
(

�0

kc

)2

− 2
�0

kc

P‖
mec

]1/2

. (4)

We substitute IR into the γ expression and obtain the resonant
energy

γR = kc/ω√
(kc/ω)2 − 1

[
1 −

(
�0

kc

)2

− 2
�0

kc

P‖
mec

]1/2

. (5)

Substituting P‖ from h = γR − ωIR/mec2 into Eq. (5) we can
obtain γR(s). This function determines the resonant energy
γR at each value of s coordinate. Therefore, we can use γR

instead of s (instead of resonant sR) and for h = const we can
rewrite s profiles of all system parameters (wave amplitude,
background magnetic field) as γR profiles.

To determine the electron dynamics (energy change)
around the resonance, we expand Hamiltonian (3) as

HI = mec2γR − ωIR + 1

2
mec2g(I − IR)2

+
√

2IR�0

mec2

eBw

kγR
sin ζ

g = ∂2γ

∂I2

∣∣∣∣
I=IR

= k2

m2
ec2

. (6)

Such expansion can be done for 2�0I/mec2 � Bw/B0,
whereas for smaller I an alternative consideration would be
required (see Refs. [59,60]).

We use the generating function Q = (I − IR)ζ + P‖s to
introduce Pζ = I − IR. The new Hamiltonian consists of two
parts  = mec2γR − ωIR and Hζ :

Hζ = 1

2
mec2gP2

ζ + {, IR}ζ +
√

2IR�0

mec2

eBw

kγR
sin ζ , (7)

where  depends on new variables p = P‖ + ζ∂IR/∂s, q =
s − ζ∂IR/∂P‖, and we expand HI over ζ∂IR/∂s, −ζ∂IR/∂P‖ to
get the Poisson brackets {·, ·} (see, e.g., Refs. [42,61]). Hamil-
tonian Hζ describes the electron dynamics on the (ζ , Pζ )
plane (around the resonance Pζ = 0), and coefficients of this
Hamiltonian depend on slowly changing (p, q). Note that the
dependence on (p, q) can be rewritten as a dependence on γR,
because (p, q) ≈ (P‖, s) where s = sR and P‖ = P‖(sR) due to
γR − ωIR/mec2 = h conservation.

Hamiltonian (7) describes the classical system of a pendu-
lum with a torque (e.g., Ref. [62]), and the phase portraits of
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FIG. 3. The profile of u/r ratio (a). Phase portraits of Hamiltonian (8) for different u/r ratios (b). Profiles of γR and S̄ = S[R�0(0)/c]1/2

along s coordinate [note R�0(0)/c is of the order of 1/ε for the system parameters] (a). System parameters correspond to the trajectory shown
in Fig. 1(b).

this system with different values of coefficients are shown in
Fig. 3(a). To describe the main properties of this Hamiltonian,
let us rewrite it in a dimensionless form H = H/mec2:

H = 1
2wP2 + ε(rζ + u sin ζ ), (8)

where P = Pζ /P0, w = gP2
0 (P0 is the Pζ magnitude), max

Bw/B0(0) = ε, u =
√

2IR�0/mec2[�0(0)/ckγR](Bw/ max Bw ),
and r = {, IR}/mec2ε and time renormalized to 1/P0 to keep
Hamiltonian form of equations. Note {, IR} ∝ c/R�0 and
we assume that c/R�0 � Bw/B0.

For a typical wave field distribution along magnetic field
lines (in statistical satellite observations, Bw is generally
small close to the equator s = 0 and at high magnetic lati-
tudes s → 1, with a Bw maximum at medium latitudes) (see
Refs. [63,64]), there are three spatial regions with different
phase portraits of Hamiltonian (8). The wave is generated
near the equator s = 0 and moves to higher s (i.e., wave
number k > 0), whereas the resonant electron moves from
high s to the equator because the resonant momentum p‖ =
(γω − �0)/k is negative for not-too-high γ . Thus, we con-
sider the phase portrait evolution moving from large s to the
equator. At high s-wave amplitude is small and |r| > u. Thus,
the phase portrait totally consists of trajectories crossing the
resonance P = 0 once (open trajectories). As s decreases,
we obtain u > |r|. The corresponding phase portrait con-
tains closed trajectories and particles on these trajectories are
trapped around the resonance (i.e., cross P = 0 many times).
The growth of the area S filled by such trapped trajectories
in (ζ , P) plane implies that particles from the region with
open trajectories can be trapped into the resonance. The area
S reaches its maximum at a value of s where |u/r| is maximal;
as s further decreases, this area starts decreasing. Such area

S decrease corresponds to particles detrapping (escape) from
the resonance. Close to the equator s = 0 all particles will
be detrapped and only open trajectories remain in the phase
portrait (see Fig. 3). This assumption of S = 0 at the equator
simplifies the model description of the trapped electron dy-
namics. Although in more realistic simulations with a finite
size of the wave generation region [65–70] trapped electrons
may cross the equator without detrapping, in general this
effect should not significantly alter the trapped electron energy
and pitch-angle changes.

The evolution of the area S with closed trajectories along s
is much slower than trapped particles rotation around P = 0,
and thus this periodic rotation has an adiabatic invariant Iζ =
(2π )−1

∮
Pdζ . At the moment of trapping Iζ equals S/2π

(and S increases), and due to Iζ conservation the detrapping
should appear when S decreases and comes back to the value
2π Iζ . However, during this S evolution the resonant energy
would change (see the example of γR profile along s in Fig. 3).
Thus, between trapping and detrapping electrons gain energy

γtrap, and this energy gain is determined by S(γR) curve
S = ∮

Pζ dζ :

S = 2

√
2ε

w

∫ ζ+

ζ−

√
(rζ+ + u sin ζ+) − (rζ + u sin ζ )dζ , (9)

where ζ± are shown in Fig. 3. The amount of particles that
will be trapped during a single resonant interaction (i.e., the
probability of trapping, �) is determined by the gradient of S
(see Refs. [28,49,71]): � = (ω/2πmec2)(∂S/∂γ ).

All particles that are not trapped cross the resonance
P = 0 once, moving along open trajectories. These particles
are scattered with the energy change 
γ = ω
I/mec2, which
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depends on the phase ζR at the resonance:


γ = −
∫ ζR

−∞

2
√

2ω2

mec2g

√
2IR�0
mec2

eBw

kγRmec2 cos ζ√
Hζ − {, IR}ζ −

√
2IR�0
mec2

eBw

kγR
sin ζ

dζ

= −2

√
2εω2

m2
ec4g

∫ ζR

−∞

u cos ζ√
2πθr − rζ − u sin ζ

dζ , (10)

where 2πθ = ζR + (u/r) sin ζR (mod 2π ). The function

γ (θ ) is periodic; its mean value over θ ∈ [0, 1] is equal to

γscat = 〈
γ (θ )〉θ = −(ω/2πmec2)S (see Refs. [48,72]).
Thus, for the phase portrait with S �= 0 the energy change
due to scattering is also determined by the S(γR) profile.
This relation has been verified many times with numerical
simulations for electron interactions with whistler-mode
waves (see Refs. [42,46,61]). For the phase portrait with
S = 0 we get 〈
γ (θ )〉θ = 0 (i.e., no energy drift due to
the resonance), but 〈(
γ (θ ))2〉θ �= 0 and there is an energy
diffusion. Equation (10) shows that for |u/r| � 1 we get


γ ≈ −2ε

√
2ω2

mec2g

∫ ζR

−∞

u cos ζdζ√
2πθ − {, IR}ζ/mec2

(11)

and DQL = 〈(
γ (θ ))2〉θ ∼ ε2, as it should be for quasilinear
diffusion coefficients proportional to the wave intensity (see
detailed comparison of DQL calculated with Eq. (11) and
quasilinear diffusion rates in Refs. [6,33]).

As electron energy changes only at resonances and remains
constant between resonances, its evolution for any trajectory
can be described by the mapping technique (e.g., Ref. [73]).
For the nonlinear resonances such a map takes the form (see
Ref. [41]):

γn+1 = γn +
{

γtrap, θ ∈ [0,�]

γscat, θ ∈ (�, 1], (12)

where n is the number of resonance crossings (the number of
map iterations). Equation (12) shows that new energy (after
n + 1 resonant interaction) γn+1 is the sum of energy γn after
previous resonance and energy change due to scattering or
trapping. Variable θ is the rescaled effective energy at the
resonance [see Eq. (10)], and the variation of θ between
two resonance crossings is determined by the normalized
phase gain 
ζ ∼ ε−1 � 1 (see the equations in Appendix
of Ref. [41]). This energy θ can be treated as a random
variable with uniform distribution on [0,1] (see discussion of
possible limitations of such a consideration in Ref. [74]). Map
(12) shows that for fixed h the entire dynamics of electron
energy due to nonlinear resonant interactions is described
by a single curve S(γ ): The energy change due to scatter-
ing is 
γscat = −(ω/2πmec2)S, the probability of trapping
is � = (ω/2πmec2)(dS/dγ ), and energy change due to trap-
ping 
γtrap is defined as the difference of γR between two S(γ )
values [see scheme in Fig. 4(b)].

To verify the mapping technique described by Eq. (12) we
calculate S(γ ) for h from Fig. 1(b) and iterate a large ensemble
of trajectories. Figure 4(a) shows S(γ ), �(γ ) profiles, several
individual trajectories, and dynamics of f (γ ) relaxation. Note
that to transform iterations n into time, one should use tn+1 =
tn + τb(γ ), where τb is the electron bounce period, i.e., the

(a)

(b)

(c)

(d)

FIG. 4. Panel (a) shows profiles of S(γ ), �(γ ) for the trajectory
from Fig. 1(b). Schematic view of electron motion along γ for
given S̄(γ ) = S(R�0(0)/c)1/2 (b) [note R�0(0)/c is of the order of
1/ε for the system parameters]. An example of trajectory γ (n) for
n = 0..100 resonant iterations (c). The relaxation of the distribution
function f (γ ) (d). Plots in panels (c) and (d) are obtained with
map (12).

time interval between two resonant interactions (we consider
waves only in the s > 0 hemisphere): For the dipole field τb ≈
4(1 − γ −2)−1/2(1.3802 − 0.6397 sin3/4 α0) [75]. Comparison
of Figs. 2 and 4 demonstrates the applicability of the mapping
technique for the description of electron resonant dynamics
(see more examples with this approach in Refs. [41,76]).

To summarize, the nonlinear resonances provide trapping
and nonlinear scattering with energy changes described by
S(γ ) curve. In this regime of resonant interaction S ∼ √

ε

[see Eq. (9)]. As |u/r| decreases, the magnitude of S tends
to zero, and for sufficiently small |u/r| there is only diffusion
of electrons with the diffusion rate DQL = 〈(
γ )2〉 ∼ ε2 (see
Eq. (11) and Ref. [33]). We aim to investigate the transition
between these two regimes and to obtain estimates of the
corresponding different timescales of f (γ ) relaxation.

IV. MAIN SYSTEM SCALINGS

To consider the transition between nonlinear resonant in-
teraction and quasilinear diffusion, we need to consider a
S → 0 limit for a fixed ε. We start with the evaluation of
Hamiltonian (8) with small S. Next, we investigate timescales
of f (γ ) relaxation for S → 0. Then we explain the relation
of these timescales and the timescale of electron acceleration
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FIG. 5. The phase portrait of Hamiltonian (13) for r/u around 1
(a). Set of trajectories obtained by numerical integration of Eq. (17)
with δ0 = ε2/3. Color codes the time interval required to cross the
shown dξ/dτ range.

within the trapping. Finally, all obtained equations are com-
bined together to provide the relation between timescales of
f (γ ) relaxation due to nonlinear resonances and quasilinear
diffusion.

A. Threshold S values

Let us consider Hamiltonian (8) for |r/u| around one, i.e.,
when |r| becomes smaller than u (condition required for ex-
istence of S �= 0) only within a short γR range. Then the ζ

range of the area filled with closed trajectories [ζ ∈ [ζ−, ζ+]
in Fig. 3(b)] is small and Hamiltonian (8) can be expanded
as:

H = 1

2
wP2 + εu

(
r

u
ζ + sin ζ

)

≈ 1

2
wP2 + εu

[(
r

u
− 1

)
ζ + 1

6
ζ 3

]
, (13)

where r/u slowly changes along the trajectory from >1 (no
closed trajectories in the phase portrait) to min r/u < 1 (max-
imum area filled by closed trajectories) and then to >1 again.
Figure 5(a) shows the phase portrait of Hamiltonian (13) for
such r/u < 1. To model this evolution we can write r/u =

1 − δ0 + (εt )2 where the small parameter δ0 > 0 determines
how far |r/u| is from 1 and (εt )2 models the slow evolution of
r/u along the trajectory (i.e., we change the slow coordinate s
to a slow time here):

H ≈ 1
2wP2 − εu

{
[δ0 − (εt )2]ζ − 1

6ζ 3
}

(14)

and w, u can be considered as constant along a short interval
of εt ∈ [−√

δ0,
√

δ0]. The equation for S for Hamiltonian (14)
can be written as

S =
√

8uε

w

∫ ζ−

ζ+

{
[δ0 − (εt )2](ζ − ζ+) − ζ 3 − ζ 3

+
6

}1/2

dζ

=
√

8uε

w
δ

5/4
0

(
1 − t2

t2
0

)5/4

×
∫ ζ̄−

ζ̄+

[
(ζ̄ − ζ̄+) − ζ̄ 3 − ζ̄ 3

+
6

]1/2

d ζ̄

=
√

8uε

w
δ

5/4
0 [1 − (t/t0)2]5/4 (12)23/4

5
, (15)

where ζ̄+ = −√
2, ζ̄− = √

8, t0 = √
δ0/ε and t/t0 is equiva-

lent to γR, the energy at resonance, because different slow time
values imply here different values of slow s, i.e., different val-
ues of resonant sR related to γR through Eq. (5) and h = const.
Equation (15) demonstrates that the δ0 parameter controls the
magnitude of S, and effects of nonlinear interactions should
disappear as δ0 → 0. In the nonlinear regime, there are well
separated populations of trapped particles (a small number of
particles gaining a large energy) and nonlinearly scattered par-
ticles (a large number of particles losing energy). In contrast,
in the diffusive regime the numbers of particles gaining and
losing energy are (approximately) equal. Therefore, there is
a threshold δ0 value (or S value) such that for δ0 below this
threshold, we cannot separate trapping and nonlinear scatter-
ing. Let us obtain this threshold δ0 (or S) value.

Hamiltonian equations for Hamiltonian (14) can be com-
bined to get the second-order equation for ζ :

d2ζ

dt̃2
= ε

[
δ0 − (εt̃ )2 − 1

2
ζ 2

]
, (16)

where t̃ = t
√

uw and u, w are constants of the order of one
(not dependent on ε). Equation (16) can be rewritten in nor-
malized variables τ = t̃ε1/2δ

1/4
0 , ξ = ζ/

√
δ0,

d2ξ

dτ 2
=

(
1 − ε

δ
3/2
0

τ 2

)
− 1

2
ξ 2. (17)

Equation (17) shows that for δ0 = ε2/3 there is no separation
of timescales, i.e., the equation describing the electron motion
around the resonance does not contain a slow time. Thus,
both trapped and nonlinearly scattered particles should stay
in the resonance approximately the same time, and there is no
separation between these two types of trajectories. Figure 5(b)
confirms this conclusion: We solve equation Eq. (17) with
δ0 = ε2/3 for set of trajectories and plot these trajectories in
the phase plane (ξ, dξ/dτ ). There are still some trajectories
similar to trapped trajectories of the original system, but par-
ticles on these trajectories do not fulfill a single oscillation
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FIG. 6. Examples of yn trajectories described by map (18) [(a) and (b)] and evolution of f (y) distribution [(c) and (d)] for two κ values.
Profiles of M1(n) and M2(n) for two κ values (e). Dependence of DNL on κ for three ε values (f).

across the resonance dξ/dτ = 0, i.e., we cannot separate par-
ticles on trapped and scattered trajectories.

B. Timescales of f (γ ) evolution

To investigate how the rate of f (γ ) evolution scales with δ0

we use the mapping technique. Equation (15) shows that the
area S can be set as ε1/2δ

5/4
0 (1 − y2)5/4 where y is the effective

particle energy at the resonance (shifted relative to the energy
where S reaches maximum), i.e., different values of slow
time ∼εt in Eq. (15) correspond to different sR values of the
original system and to different resonant energies. Therefore,
we can rewrite mapping (12) as

yn+1 = yn +
{−2yn, θ ∈ [0,�]
−S (yn), θ ∈ (�, 1]

(18)

and

S = ε1/2+κ (1 − y2)5/4

� = dS
dy

= −5

2
yε1/2+κ (1 − y2)1/4,

where we introduce κ as δ0 = ε4κ/5 and take into ac-
count S (−y) = S (y) to calculate y change due to trapping.
Figure 6(a) shows an example of yn trajectory described by
map (18). This trajectory repeats all features seen in the origi-
nal system trajectories [see Figs. 1(d) and 4(c)]. The relaxation

of the initially localized f (y) distribution also repeats well
the relaxation of the f (γ ) distribution: Compare Fig. 6(b) and
Figs. 2(d) and 4(d).

To characterize the timescale of f (y) evolution as a
function of κ , we numerically integrate a large ensemble
of trajectories described by map (18) for various values
of κ . The initial y0,i values for i = 0 · · · N trajectories are
uniformly distributed within [−1, 1] range, and we calculate
two characteristics: M1(n) = N−1 ∑

i=0..N (yn,i − y0,i ) and
M2(n) = N−1 ∑

i=0..N (yn,i − y0,i )2 − M2
1(n). Figure 6(e)

shows M1(n), M2(n) profiles for two κ values: κ = 0
corresponds to the system with well-distinguished populations
of trapped and scattered particles (i.e., the system is far from
the diffusive regime), whereas κ = 1/3 corresponds to
δ0 = ε4κ/5 = ε4/15 and this is a case with much closer
timescales of the dynamics of trapped and scattered particle
populations. For both values of κ M2 grows with n and M1

oscillates around the zero.
To derive the timescale of f (y) relaxation we fit the

growing fragment of M2(n) profile by the linear function
DNLn with the coefficient DNL playing the role of a diffusion
coefficient in systems with diffusive resonant interactions.
Figure 6(f) shows the DNL dependence on κ for three ε values.
There is a clear scaling DNL ≈ ε1/2+κ , i.e., DNL varies as
ε1/2 for κ = 0 and as ε4/3 for κ = 5/6. This scaling may
be explained by the dominating role of trappings in the M2

increase. Most of nonlinearly scattered particles change their
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energy only slightly, and the first-order contribution of this
energy change goes into M1, whereas the contribution of
these particles to the growth of M2 is about ∼S2 ∼ ε1+2κ .
However, even a small population of trapped particles would
contribute to N−1 ∑

i=0..N (yn,i − y0,i )2 as ∼� ∼ ε1/2+κ [the
number of trapped particles is about the probability of trap-
ping, whereas these particles have yn,i − y0,i ∼ O(1)]; on the
other hand, their contribution to M2

1 is much smaller. Thus,
M2 ∼ � and this confirms the scaling from Fig. 6(f).

C. Timescale of trapping acceleration

The scaling from Fig. 6(d) shows that DNL not only de-
pends on ε but also scales with δ0 ∼ ε4κ/5. This parameter, δ0,
controls the effective range of energy change due to trapping
and should be related to the number of complete rotations
around the resonance of trapped particles, Ntrap. Thus, we can
derive the δ0(Ntrap) dependence and rewrite DNL as a function
of ε and Ntrap. We define Ntrap as the maximum number of
periods of a trapped particle’s rotation in the phase space [see
phase portrait in Fig. 3(b)]. This parameter is quite universal:
It can be determined for any particular wave-field model (see,
e.g., Ref. [44] for a discussion of Ntrap values typical for
whistler-mode waves observed in the Earth’s radiation belts).
The trapped period for Hamiltonian (14) can be written as

Ttrap(εt ) = 2
∫ ζ+

ζ−

dζ

ζ̇
= C

ε1/2(δ0 − ε2t2)1/4 , (19)

where constant C ∼ O(1) is determined by the distance from
the separatrix in the phase portrait. The maximum time of
trapped particle motion is of the order of ∼2δ

1/2
0 /ε. Therefore

we can write for Ntrap

Ntrap = 2

ε

∫ √
δ0/ε

0

dεt

Ttrap(εt )
= δ

3/4
0√
ε

C̃ ∼ ε3κ/5−1/2, (20)

where constant C̃ ∼ O(1). Equation (20) shows that Ntrap ∼
ε3κ/5−1/2. For the threshold value κ = 5/6, we get Ntrap ∼
O(1), i.e., indeed for κ = 5/6 (δ0 ∼ ε2/3) the number of trap-
ping periods does not depend on ε and there is no separation
between trapped and scattered particles anymore.

Combining Eq. (20) and the DNL scaling, we obtain the
final scaling of the coefficient DNL,

DNL ∼ ε1/2+κ ∼ ε4/3N5/3
trap ∼ DQLε−2/3N5/3

trap , (21)

where we take into account that DQL ∼ ε2. Therefore,
DNL/DQL = Qε−2/3N5/3

trap where the factor Q ∼ O(1) is deter-
mined by the system parameters. According to this scaling,
the transition between the diffusive regime (Ntrap → 0)
and the nonlinear resonant regime (Ntrap � 1) occurs when
Ntrap ∼ ε2/5 � 1, whereas for κ = 5/6 (Ntrap ∼ 1) we get
DNL/DQL ∼ ε−2/3 � 1.

However, the scaling in Eq. (21) is obtained for systems
where ε and Ntrap (or more precisely κ , which determines δ0)
are assumed to be independent parameters that can be varied
separately. But ε and Ntrap are not always independent. This is
especially the case in realistic systems, where whistler-mode
waves often propagate in the form of short wave packets
(see examples of such wave packets in observations [44] and

in numerical simulations [77,78]). We consider this realistic
situation in the next subsection.

D. Systems with short wave packets: Shrinking
of the resonant energy range

In the Earth’s magnetosphere, intense whistler-mode waves
contain a fine structure of packets or subpackets, where pack-
ets and subpackets are formed by strong wave amplitude
modulations (by at least a factor of ∼2) accompanied by large
and random wave phase jumps between successive packets
and subpackets, allowing us to treat electron interactions with
different packets and subpackets independently [34,36,79,80].
In particular, most long wave envelopes, characterized by
an amplitude continuously remaining above 50 pT, actually
consist of many shorter packets and subpackets when internal
strong amplitude modulations and wave frequency and phase
jumps are taken into account [36,53,80]. The overwhelming
majority of such intense parallel propagating whistler-mode
wave packets and subpackets observed in the magnetosphere
have a short length of β < 10 wave periods, with much more
rare long packets and subpackets reaching β ∼ 100–300 pe-
riods [36,44,81]. Short packets of length β < 10 are likely
often produced by wave superposition [53,77,81] and their
length β is mostly independent of their amplitude ε. Packets
of intermediate length β ∼ 10–30 are probably partly formed
by trapping-induced amplitude modulation that depends on
ε−1/2, but statistical observations show that all packets are
distributed over a wide range of β values for any given ε

[34,53,77], allowing to treat β and ε as independent param-
eters to leading order.

Taking into account that first-order cyclotron resonance be-
tween whistler-mode waves and <1 MeV electrons occurs for
waves and electrons moving in opposite directions, the time
interval of trapped particle motion is limited to ∼2πβ/�0

(this is a simplified estimate of ∼2πβ/k|∂ω/∂k − vR| with
vR = (ω − �0/γ )/k and ∂ω/∂k ∼ ω/k for not-too-high elec-
tron energy γ ∼ 1; see details in Ref. [44]), whereas one
period of trapped electron oscillation is Ttrap ∼ 2πε−1/2/�0

for typical resonant energies [6]. Therefore, Ntrap can be ex-
pressed as a function of the independent parameters β and ε of
short wave packets, giving Ntrap ∼ βε1/2 (see also Ref. [44]).

In the case of short wave packets, although the magni-
tude of S remains ∼ε1/2, the limited packet size can lead
to important changes as compared with the scaling obtained
in Eq. (21) of the preceding subsection in the ideal case of
infinitely long wave packets or waves. Indeed, a given short
wave packet occupies only a limited latitudinal extent along
a magnetic field line. Equation (5) and the conservation of h,
which relate latitude of resonance to electron energy imply
that this limited latitudinal extent directly corresponds to a
limited energy range for electron resonance with this packet
during one bounce period. This limited energy range of ac-
tually resonant electrons represents a fraction � < 1 of the
total energy range of particles potentially reaching resonance
with a wave packet over the full length of the magnetic field
line. Electron trapping by a short packet leads to a smaller
energy change than trapping by an ideal infinitely long wave
packet, because the electron is released from trapping faster,
corresponding to a reduction of its energy change by a factor
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∼�. Besides, if the infinitely long wave packet resonates with
all electrons arriving to the latitude of resonance, then a short
wave packet occupies only a fraction � of the magnetic field
line and many electrons arriving to their latitude of resonance
would not meet this wave packet. Therefore, if short wave
packets are rare (not appearing in close succession) and oc-
cur only approximately once every bounce period, then this
corresponds to an additional reduction of the occurrence rate
of resonant interaction by a factor ∼� < 1 as compared with
both the case of a close succession of short packets and the
ideal case of infinitely long packets assumed in the preceding
subsection.

Accordingly, let us consider a realistic situation where
the magnitude of S ∼ √

ε remains the same, but the range
of nonlinear resonant interactions [formally the εt range in
Eq. (14)] shrinks. There are two kinds of systems with an
entire resonant range y ∈ [−1, 1], but where S is not equal
to zero only for y ∈ [−�, �], with � = √

δ0. In systems of the
first kind, we center S around a ȳn randomly generated at each
map iteration around yn, i.e., for each iteration there is a finite
change of yn. This type of mapping mimics electron resonant
interactions with a set of short wave packets that would fill
the entire magnetic field lines but which cannot trap electrons
for a long time because of the limited packet duration. In the
system of the second kind, we center S around a randomly
generated ȳn, but we do not control the position of ȳn rel-
ative to yn and some map iterations can occur without any
change of yn because yn is outside the S �= 0 range. This type
of mapping mimics electron resonant interaction with rare
short wave-packets propagating with some time separation. It
corresponds to a situation where, during each bounce period,
only one wave packet is present and many electrons reach
the latitude of cyclotron resonance without encountering this
intense packet there. For both systems, the mapping (18) can
be rewritten as

yn+1 = yn +
{

ȳn − 2yn, θ ∈ [0,�]
−Sn(yn), θ ∈ (�, 1]

(22)

and

Sn = ε1/2[�2 − (y − ȳn)2]5/4

� = dSn

dy
= −5

2
(y − ȳn)ε1/2[�2 − (y − ȳn)2]1/4,

where ȳn = yn + �R for the system of the first kind and ȳn =
−1 + � + 2(1 − �)R for the system of the second kind; here R
is a random number with a uniform distribution within [−1, 1]
(note for ȳn = yn + �R we also control that S �= 0 range does
not cross y ± 1 boundaries). An important property of both
systems is that for small � trappings are possible for any yn

values, whereas for � = 1 [the initial map given by Eq. (18)]
trapping is possible only for yn < 0. Figures 7(a) and 7(b)
shows a set of sample trajectories for each of the two kinds of
systems. The rate of change of y is going down as � decreases,
and this effect is stronger for the system of the second kind
[Fig. 7(b)].

For these two kinds of systems we set the range of � and for
each � value calculate M2(n). Figures 7(c) and 7(d) shows ex-
amples of M2 profiles. We fit the growing fragment of M2(n)
by DNLn, and Figs. 7(e) and 7(f) shows the DNL dependence

on �. For both systems, DNL scales with � as DNL ∼ ε1/2�η.
But η ≈ 7/2 for the system of the first kind where resonances
occur at each iteration, whereas η ≈ 9/2 for the system of
the second kind, where resonance occurrence is decreased
by a factor � � 1. Taking into account that � = √

δ0, we
can rewrite Eq. (20) as Ntrap ∼ �3/2/

√
ε. Therefore, for DNL

scaling with Ntrap we have DNL ∼ ε1/2�η ∼ ε1/2+η/3N2η/3
trap and

DNL ∼
{
ε5/3N7/3

trap , η = 7/2
ε2N3

trap, η = 9/2
(23)

for the two kinds of systems.
A general scaling, including both the results in Eq. (23) and

in Eq. (21), is

DNL ∼ ε1/2+η/3N2η/3
trap ∼ ε1/2+2η/3β2η/3. (24)

For η = 5/2, Eq. (24) allows us to recover the initial scal-
ing from Eq. (21), which corresponds to the ideal case of
electron interactions with infinitely long wave packets and
waves present all the time along magnetic field lines. In
the more realistic situation of short wave packets, two dif-
ferent kinds of systems are possible, corresponding to η =
7/2 and η = 9/2. For the system of the first kind, we get
DNL/DQL ∼ ε−1/3N7/3

trap ∼ ε5/6β7/3. In this case, DNL/DQL ∼
O(1) requires that Ntrap ∼ ε1/7 and β ∼ ε−5/14. For realistic
whistler-mode wave amplitudes ε ∈ [3 × 10−4, 3 × 10−3] in
the Earth’s radiation belts [53], the transition between the
regimes of quasilinear diffusion and nonlinear resonant inter-
action should therefore occur approximately for Ntrap > 0.35
and β > 10. In the system of the second kind, we have
DNL/DQL ∼ N3

trap ∼ β3ε3/2. In this case, DNL/DQL ∼ O(1)
corresponds to Ntrap ∼ 1 and β ∼ ε−1/2. Thus, for this system
of very rare short packets, the transition between the regimes
of quasilinear diffusion and nonlinear resonant interaction
should occur around Ntrap ∼ 1 and approximately for β > 20
– i.e., near the κ = 5/6 threshold value when δ0 ∼ ε2/3 and
� ∼ ε1/3.

Note that the DNL scaling in Eq. (24) for the first kind of
system with short wave packets, corresponding to η = 7/2,
is valid only when cyclotron resonance with wave packets is
always available, i.e., when electrons with any energy within
the resonant range interact with the wave once (or more
frequently) per bounce period. In practice, however, intense
wave packets are not always present [36,44]. Nevertheless,
the overwhelming majority of wave packets interact with elec-
trons independently of the other packets [80], and their very
large population is mostly randomly distributed in time. Con-
sequently, over a sufficiently long time period, all latitudes
of resonance with all electron energies should be uniformly
reached by packets in each (β, ε) range. In this limit, the
time-averaged 〈DNL〉 can be simply obtained by a double inte-
gration over the full measured distribution of (β > 0, ε > 0)
packets of DNL, weighted by the measured temporal occur-
rence rate (taking into account packet duration β) of (β, ε)
packets [36,44,81]. Finally, 〈DNL〉/〈DQL〉 can be obtained by
dividing 〈DNL〉 by the integral over ε of DQL ∼ ε2 weighted
by the measured temporal occurrence rate of ε packets. In
addition, DNL/DQL should be considered as �= 1 in the above
integration only for ε values above the threshold for nonlinear
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FIG. 7. Three trajectories for different � values [see color codes in panels (c) and (d)] for systems of two different kinds [(a) and (b)].
Examples of M2 profiles for these two systems [(c) and (d)]. Dependencies of DNL on � for the two systems and different ε [(d) and (f)]. Left
column [(a), (c), and (e)] shows results for the system of the first kind: the entire resonant range y ∈ [−1, 1], but S is not equal to zero only for
[−�, �] appearing always around the particle location, i.e., there is a resonant interaction at each iteration. The right column [(b), (d), and (f)]
shows results for the system of the second kind: the entire resonant range y ∈ [−1, 1], but S is not equal to zero only over [−�, �] appearing at
random locations, not necessarily near the particle location, i.e., there are iterations without change of particle y.

effects [81,82]. For lower amplitudes, one can simply assume
DNL/DQL ≈ 1.

V. DISCUSSION AND CONCLUSION

In this study, we investigate the transition between two
regimes of resonant electron interactions with whistler-mode
waves: quasilinear diffusion and nonlinear resonant inter-
action. The typical effects of these two regimes are very
different: Diffusive scattering results in small energy changes
with zero mean value, whereas nonlinear resonant interac-
tions result in energy drifts (due to phase bunching) or large
jumps (due to phase trapping). This difference makes it im-
possible to directly compare energy changes for these two
regimes, i.e., energy drifts and jumps cannot be compared
with the diffusion rates. Therefore, a more general (nonlocal,
i.e., independent on the initial energy value) characteristic
should be determined to compare these two regimes. For
such characteristic, we choose the typical timescale of re-
laxation of the energy distribution function f (γ ), which is
determined along a single resonant curve h = const. This
characteristic describes the entire energy, pitch-angle range
for a given h = γ − [ω/2�(0)](γ 2 − 1) sin2 α0 and wave fre-
quency, i.e., it is an integral characteristic that simplifies the

system description. The relaxation of the f (γ ) distribution
depends on the initial f (γ ) and contains many elements that
are different for these two regimes (e.g., formation of local
maxima due to the phase trapping acceleration). Therefore,
to further simplify the description of this evolution and re-
duce it to a single parameter, we restrict our consideration
to the dynamics of f (γ ) dispersion M2 that increases with
the number of resonance crossings and finally saturates. This
parameter M2(n) is the unique characteristic for the diffusive
resonant regime, but for nonlinear resonant interactions there
are also M1(n) and higher-order moments. Thus, some jus-
tification for taking only M2 into account should be given.
The first moment M1(n) = V n scales with ε as V ∼ S ∼
ε1/2+κ , and the same scaling can be obtained for M2(n) =
DNLn with DNL ∼ S ∼ ε1/2+κ . The beginning of the evolu-
tion (relaxation) of the distribution f (γ ) is dominated by
trapping effects contributing to M2, because δγ 2 ∼ DNLn
is larger than δγ 2 ∼ V 2n2 for small n. The threshold value
of n such that drifts become more important than trappings
is n∗ ∼ DNL/V 2 ∼ ε−1/2−κ . During this number of resonant
interactions the first trapped particles would be drifted back to
their initial energies, because 
γtrap/
γscat ∼ 1/S ∼ ε−1/2−κ

and n∗(
γtrap/
γscat ) ∼ O(1). The drift effects may con-
trol the relaxation of f (γ ) only after the main relaxation
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stage is finished [when the initially trapped particles reach
back their initial energies, the first large cycle of trapping-
scattering would be finished; see, e.g., example of such cycles
in Figs. 1(d)]. Thus, we indeed can use M2(n) to characterize
the main stage of f (γ ) relaxation. Note that for the regime of
nonlinear resonant interaction M2(n) does not really describe
a diffusion (because such nonlinear interactions may result
in formation of transient local gradients of f (γ ) absent in a
diffusive evolution), but it shows how quickly the dispersion
of f (γ ) grows due to trapping and nonlinear scattering effects.
However, the rate DNL = dM2(n)/dn can still be considered
as an approximation of the diffusion rate corresponding to a
diffusive f (γ ) relaxation with the same final result as nonlin-
ear interactions and with the same timescale.

In the Earth’s magnetosphere, whistler-mode waves mainly
propagate in the form of wave packets, and most of the ob-
served parallel propagating intense wave packets are short,
containing β < 10–30 wave periods [36,44]. The relations
obtained here, connecting DNL/DQL with wave-packet ampli-
tude ε and number of trapped electron oscillations Ntrap or
packet length β, can be considered as inverse scaling laws
for the timescale of f (γ ) relaxation—although such a con-
sideration simplifies the details of f (γ ) evolution. The main
potential application of these scaling laws is to allow includ-
ing the leading-order effect of nonlinear resonant interactions
into global models of radiation belt dynamics relying on the
Fokker-Planck diffusion equation. This equation describes the
evolution of f (γ ) driven by diffusion on a typical timescale
∼1/DQL. This timescale is close to the observed timescales
of electron flux dynamics in the Earth’s radiation belts during
quiet time periods characterized by not-to-high wave intensity
(e.g., Refs. [83–85]). However, during more disturbed periods
with a high occurrence rate of intense wave packets [10],
the observed electron flux evolution could be faster than the
evolution predicted by a diffusion model (see discussions in,
e.g., Refs. [14,36,86]). Our scaling laws of DNL/DQL allow
for a simple renormalization of the quasilinear diffusion rates
based on the observed occurrence rate of intense waves res-
onantly interacting with electrons in the nonlinear regime.
An important ingredient of such a renormalization is to take
into account not only the wave intensity (∼ε2) but also the
actual fine structure of intense wave packets [34,53,79,80].
We can take into account these fine structure effects via the
parameter Ntrap, the number of periods of trapped particle
motion. Although Ntrap is not a directly measured wave char-
acteristic, this parameter can include effects of wave-packet
shortness [36,44,54,80] and effects of wave coherence de-
struction [34,80,87]. Alternatively, we can take into account
the fine structure of whistler-mode waves via the parameter
β, the wave-packet length in number of wave periods, which
can be directly measured together with ε [44]. For reso-
nant interactions with <1-MeV electrons, we get DNL/DQL ∼
ε−3/2+2η/3β2η/3 with a value of η ∈ [5/2, 9/2] that depends on
assumptions concerning the wave-packet distribution in the
system. For the rare very long wave packets with β ∼ 102

and high wave amplitude ε ∼ 10−3 we obtain DNL/DQL ∼
650 for η = 5/2 and DNL/DQL ∼ 150 for η = 7/2, but the
time-weighted occurrence rate of such long and intense wave
packets varies between ∼0.5 × 10−3 and ∼2 × 10−3 from

mildly to strongly active geomagnetic conditions [36,44].
The most realistic case is a long succession of short wave
packets (corresponding to η = 7/2) and for wave amplitudes
above an approximate threshold ε � 10−3 for nonlinear in-
teraction [81,82]. In this case, integrating over β ∼ 2–200
and ε ∼ 10−3–10−2 expression (24) for DNL, weighted by
the measured occurrence rate of a large statistics of such
packets [81] (with average packet power roughly equal to half
its peak power, as in Ref. [78]), gives 〈DNL〉β,ε/〈DQL〉β,ε ∼
3. For smaller amplitudes ε < 10−3, representing ≈15% of
the wave power [81], we should have DNL ∼ DQL, giving a
final approximate time-averaged ratio 〈DNL〉β,ε/〈DQL〉β,ε ∼
2.5. These estimates suggest that over relatively long time
periods (∼days), nonlinear interactions should only slightly
speed up the evolution of electron fluxes in comparison with
the diffusive evolution for the same time-averaged wave inten-
sity. However, a more accurate parametrical study would be
needed to determine for what energies, pitch angles, and geo-
magnetic conditions the contribution of nonlinear interactions
maximizes. It is also worth noting that the present comparison
of relatively long timescales of electron distribution relaxation
does not contradict the fact that only the regime of nonlinear
resonant interaction can explain various short-lived events of
rapid electron acceleration or loss, which occur much faster
than the diffusive evolution (e.g., Refs. [12,14]).

To conclude, we have investigated the transition be-
tween two regimes of resonant interaction of electrons and
whistler-mode waves in the Earth’s radiation belts: quasilinear
diffusion and nonlinear resonant interaction (including effects
of phase trapping and phase bunching). To characterize both
regimes within the same framework, we have introduced the
typical timescale 1/D of evolution of the electron energy
distribution on the resonance curve. This timescale charac-
terizes the increase of the distribution dispersion for both
diffusive (1/DQL) and nonlinear (1/DNL) relaxations of the
electron distribution. For the diffusive relaxation DQL ∼ ε2

where ε = Bw/B0 is the normalized wave amplitude. Thus, we
investigated how DNL depends on ε and on the characteristics
of intense wave packets, which are described by Ntrap, the
number of periods in trapped motion, or β, the wave-packet
size (Ntrap ∼ βε1/2 when β < 1/ε) and/or to the closeness
of the wave-packet amplitude to its threshold value required
for nonlinear resonances (Ntrap ∼ δ

3/4
0 ε−1/2 with δ0 → 1 for

large amplitude packets). The obtained scaling is DNL/DQL ∼
ε−3/2(εβ )2η/3 with η varying from 5/2 (when we compare
electron distribution relaxation due to diffusion and nonlin-
ear interactions over the same energy range) to 9/2 (when
diffusion acts over a wide energy range, whereas nonlinear in-
teractions are very rare and occur in a narrower energy range).
These scalings can be used for generalizing the existing ra-
diation belt models and for an evaluation of the importance
of nonlinear interactions for realistic distributions of wave
characteristics.
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