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Quantitative model for predicting the imbibition dynamics of viscoelastic fluids
in nonuniform microfluidic assays

Yashwant Rawat, Sachit Kalia, and Pranab Kumar Mondal*

Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India

(Received 31 May 2021; accepted 2 November 2021; published 29 November 2021)

We develop a mathematical model to quantitatively describe the imbibition dynamics of an elastic non-
Newtonian fluid in a conical (nonuniform cross section) microfluidic assay. We consider the simplified
Phan-Thien-Tanner viscoelastic model to represent the rheology of the elastic non-Newtonian fluid. Our model
accounts for the geometrical features of the fluidic assay, the key parameters affecting the rheological behavior
of the fluid, and predicts the imbibition dynamics effectively. By demonstrating the temporal advancement of the
filling length in the conical capillary graphically, obtained for pertinent parametric values belonging to their
physically permissible range, we report an underlying balance between capillary and viscous forces during
imbibition resulting in three distinct regimes of filling. Nonuniformity in the capillary cross section gives rise
to an alteration in the viscous force being applied at the contact line (manifested through the alteration in shear
rate) during the imbibition process, which upon maintaining a balance with the dominant capillary force results in
three different regimes of filling. We believe that the present analysis has a twofold significance. First, this work
will enhance the understanding of underlying imbibition dynamics of viscoelastic fluids (most of the biofluids
exhibit viscoelastic rheology) in nonuniform fluidic pathways. Second, the developed model is of significant
practical relevance for the optimum design of microfluidic assays, primarily used for sample diagnostics in
biochemical and biomedical applications.
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I. INTRODUCTION

The beneficial interests in the phenomenon of capillary
imbibition are overwhelming, and this paradigm of fluid dy-
namics finds many biomicrofluidics based applications [1–5].
The underlying dynamics of the imbibition phenomenon is
strongly modulated by the geometrical configuration of the
flow path, wetting characteristics of the confining surfaces,
and most importantly, by the interfacial dynamics of the
contact line formed at the liquid-liquid-solid surface [2,3,6–
13]. Probing into the fundamental understanding of the un-
derlying imbibition dynamics in narrow fluidic confinements
alongside the ubiquitous imbibition phenomenon in capillary-
driven flow configuration in several relevant applications has
motivated researchers to interrogate many problematic issues
of the capillarity induced flow physics from experimental in-
vestigations as well as theoretical analysis [4,6,14,15]. Albeit
scientific analysis and investigation on the subject of capillary
filling dynamics started way back in the 1920s, research en-
deavor in this paradigm is continuing essentially to explore
several intricate issues governing the capillary-driven imbibi-
tion nontrivially [16,17].

A large variety of biological fluids such as blood, synovial
fluid, saliva, nasal fluid, DNA solution, which are commonly
taken in microfluidic flow assays (MFAs) for their quick
transportation, rapid testing, and efficient diagnostics, exhibit
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non-Newtonian fluid rheology and precisely show viscoelas-
tic behavior [18–21]. It is worth mentioning here that the
phenomenon of the capillary-driven imbibition, which mainly
occurs in MFAs, results in an underlying balance between
the viscous and surface tension forces [6]. Thus, a com-
plex interplay between the viscous force, which is nontrivial
pertaining to the flow of rheological fluids in narrow flu-
idic confinements, and the surface tension force seems to
have controllability in manipulating the filling rate of the im-
bibed fluid in the pathways. To this end, several aspects, like
surface wettability, surface structuring or heterogeneity (artifi-
cially textured ridges or posts), surface roughness-wettability
coupling, and grafting the soft polymeric layer on the in-
ner surfaces of the fluidic pathways, application of external
fields are ventured to alter the balance between the afore-
mentioned two forces, leading to a precise alteration in the
filling dynamics [3,9,22–26]. Despite the controllability on
the filling rate of both Newtonian as well as inelastic non-
Newtonian fluids [4,9,14,23], achieved through maneuvering
the imbibition dynamics by using the aforementioned existing
techniques, quantitative description of how the conical capil-
lary (capillary with nonuniform cross section) influences the
imbibition dynamics of viscoelastic fluid and, consequently,
affects the underlying filling phenomenon is sparsely available
in the literature [27]. Although understanding of such a phe-
nomenon through experimental investigations is of significant
relevance, developing a mathematical model in describing
the underlying capillary-driven imbibition of viscoelastic
fluid in a conical capillary would benefit the microfluidics
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FIG. 1. Schematic diagram depicting the geometric configuration of the fluidic pathway considered in this study for the analysis. The
dimensions of the fluidic channel are shown in the schematic. Coordinate system is attached at the center of the channel inlet. Taper angle of
conical channel ϕ is shown at the right.

research community as well as the microfluidic flow assay
developers.

Here, we propose a mathematical model to describe the
imbibition dynamics of the viscoelastic fluid in a capillary
having a nonuniform cross section. Our model considers the
nonuniformity of the capillary cross section and takes the
critical parameters of flow configuration (slight variation in
capillary radius) as well as fluid properties into account. The
present work is based on the assumption that the inner surface
of the capillary is chemically as well as physically homo-
geneous and has a flat surface locally. We first scrutinize
the effect of taper angle, characterizing the nonuniformity
of the capillary on the imbibition dynamics and, subsequently,
the focus is given to investigate the effect of fluid properties on
the underlying filling process. Finally, we discuss the scaling
laws to demarcate different regimes of filling and quantita-
tively describe the temporal variation of filling length in the
capillary.

II. PROBLEM FORMULATION

As schematically depicted in Fig. 1, the problem consid-
ered in this study is the steady, unidirectional flow of an elastic
non-Newtonian fluid through a narrow conical microfluidic
channel. Here, the viscoelastic fluid is being filled under the
influence of surface tension force only. We consider here the
sPTT (simplified Phan-Thien-Tanner) model to represent the
rheology of viscoelastic fluid [28,29]. For the present analysis,
we consider the geometry of the fluidic channel with inlet
radius RI and outlet radius R0. We denote the taper angle
by ϕ. The coordinate system (cylindrical) for the analysis is
also shown in the figure. The viscoelastic fluid being filled
in this channel is considered to be free from any electrolytic
behavior. Therefore, only the effect of surface tension force is
acting as the driving force for the filling. Also, the Reynolds
number is assumed to be small Re (�1), ensuring the flow
dynamics is analyzed in the laminar flow regime, which is
typical to microscale transport [30,31].

The constitutive equation following the sPTT model is
written as [28,32]

f (trτ)τ+λ

[
∂τ

∂t
+u · ∇τ − ∣∣(∇u)T · τ+ τ · ∇u

∣∣] = 2ηD

(1)

The terms appearing in Eq. (1) are described as follows:
f (trτ) is a function of the trace tensor, τ is the stress tensor, η
is the dynamic viscosity, λ is the relaxation time, and D is the
deformation rate tensor.

Consistent with the assumptions as considered in this
study, i.e., steady, unidirectional flow of viscoelastic fluid in
the creeping flow regime, we obtain the simplified governing
transport equation as given next. Pertaining to the present
study, the elongational flow of viscoelastic fluid due to a
divergent channel gives rise to the normal component of the
stress in both r and x directions. However, on account of
a small taper angle (ϕ < 10◦), the elongational flow due to
normal stress in the r direction, i.e., τrr , can be neglected and
the underlying flow is considered to be singularly dependent
on the normal stress in the x direction, i.e., τxx. Thus, the
flow in the divergent channel having a very small taper angle
(ϕ < 10◦) can be considered essentially a unidirectional flow.
The normal stress τxx depends on the shear stress τxr , and a
relation between these two (τxx and τxr) can be constituted by
simplifying the sPTT model as given in Eq. (1).

The function f (trτ) for the linear sPTT model can be given
as [33]

f (τkk ) = 1 + ελτkk

η
. (2)

Note that in Eq. (2), ε is the extensibility parameter. On
simplification of Eq. (1) for steady and unidirectional flow,
we arrive at the following equations [33]:

f (τkk )τxx = 2λ
du

dr
τxr, (3)

f (τkk )τrr = 0, (4)

f (τkk )τxr = η
du

dr
+ λ

du

dr
τrr . (5)

From Eq. (4), we can set τxx = 0 as f (τkk ) = 0 gives a triv-
ial solution [33]. Therefore, Eqs. (3) and (5) can be modified
to the following form and given as [33]

τxx = 2
λ

η
τ 2

xr, (6)

f (τxx )τxr = η
du

dr
. (7)
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Equation (6) gives the relation between the normal stress
component τxx and the shear stress τxr . Now by making use of
Eqs. (2), (6), and (7), we obtain the final differential form of
the constitutive equation as [33]

τrx

(
1 + 2ελ2τrx

2

η2

)
= η

∂u

∂r
. (8)

Here ε is the extensibility parameter and u is the velocity
of the fluid in the axial direction. This consideration of the
small taper angle (ϕ < 10◦) of the capillary, alongside the
assumption of unidirectional flow, leads us to obtain the fluid
velocity only in the x direction.

The shear stress τrx in Eq. (8) is obtained from the Cauchy
momentum equation, which for the assumptions considered
pertaining to the present problem takes the following form:

−∂P

∂x
+ 1

r

(
∂ (rτrx )

∂r

)
= 0. (9)

Here, the pressure gradient −d p/dx accounts for the cu-
mulative effect of the forces participating in the actuation
of the flow in the channel. In the present flow scenario, we
consider two different forces to be present, viz., the surface
tension force and viscous force at the walls.

Also, the radius R is a function of x, and we denote it as
R(x) = RI + αx. Note that in this relation, α = (RO − RI )/L
where RI and RO are the inlet and outlet radius of the coni-
cal channel respectively, and L is the length of the channel.
Therefore the taper angle ϕ can be given as ϕ = tan−1α.

A. Hydrodynamics

For this problem, it is essential to establish the influence
of the forces mentioned above on the flow velocity. In all our
calculations, R is a function of x and their functional relation-
ship is mentioned above. Using the symmetry condition at the
center of the channel, i.e., at r = 0, we simplify Eq. (9) to
obtain τrx as a function of r as given below:

τrx = dP

dx

( r

2

)
. (10)

Now, on employing the no-slip condition at the capillary
walls (u |r=R = 0), we solve Eq. (8) using Eq. (10) to obtain
the velocity distribution. Below we write the velocity distribu-
tion as

u = dP

dx

(
r2 − R2

4η

)
+ 2ελ2

η3

(
dP

dx

)3( r4 − R4

32

)
. (11)

Note that in the above equation, R is a function of x and
varies as R(x) = RI + αx.

On nondimensionalizing Eq. (11), we obtain a closed-form
expression of velocity as given below:

ū = ur ((1 + αx̄)2 − r̄2) + δur
3((1 + αx̄)4 − r̄4). (12)

Note that the parameters used for nondimensionalizing the
above equation are

ur = − ( RI
2

4η
) ∂P

∂x , tref =
√

3RI
3

γs
, δ = β2σ , where β =

√
γs

ρRI
,

σ = 4ελ2

RI
2 , and γs is the surface tension of the fluid.

Now, from Eq. (12), we obtain the expression of average
velocity (ua) as

ua = −α

6
ur {3 + 2ur

2δ − 6(1 + αx̄)2[1 + δur
2(1 + αx̄)2]}.

(13)
The average velocity mentioned in Eq. (13) takes into ac-

count the effect of all the pertinent forces mentioned before.
Now, we solve the cubic equation in ur [Eq. (13)] to obtain
the expression for ur . It is worthwhile to mention here that
the expression of ur is convoluted, and it is not given here for
conciseness in the presentation. However, we here confirm to
make this expression available upon request from the reader.
It is worth mentioning here that we discard the complex roots
of ur while solving Eq. (13).

B. Capillary imbibition dynamics

In order to investigate the imbibition dynamics in the coni-
cal microfluidic assay, we use Newton’s second law. Here, we
assume a lump of fluid mass (control volume) in the fluidic
channel being accelerated in the channel under the combined
influences of surface tension and viscous forces. The lump
is considered to have varying mass due to the continuous
addition of mass in the lump. The amount of varying mass
solely depends on the instantaneous rate at which the fluid is
imbibed into the conical fluidic channel. So, we need to find
the volume of a frustum of a cone at any temporal instant.

The volume of the lump can be calculated as

V = 1
3π

(
3RI

2 + 3αRI x + αx2 )
x, (14)

where V is the instantaneous volume of the lump, RI is inlet
radii of capillary, and α = tanϕ. Therefore, the momentum of
the fluid mass can be written as

ρV ua = 1
3π

(
3RI

2 + 3αRI x + αx2
)
xρua. (15)

Here ρ is the density of the viscoelastic fluid and ua is the
instantaneous average velocity of the fluid. Below we write
the dimensional expression of the equation governing the fluid
dynamics, to be precise imbibition dynamics of the present
problem:

d

dt

(
1

3
π

(
3RI

2 + 3αRI x + αx2
)
xρua

)
= FST − Fv. (16)

In Eq. (16), FST is the surface tension force and Fv is the
viscous force. The expression for surface tension at a distance
x from the inlet is given as

FST = 2πγsR(x) cos θs, (17)

where θs is the contact angle of the fluid with the surface of
capillary and γs is the surface tension coefficient of the fluid.

For calculating the viscous force Fv , we first calculate the
expression of shear stress using Eq. (10) as

τrx|r=R = 2η

R
ur . (18)

In Eq. (18) R is a function of x. Therefore, viscous force
takes the following form as

Fv =
∫ x

0
2πR(x)τrx|r=R dx = 4πηurx. (19)
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(a) (b)

et al. [27]
et al. [27]

FIG. 2. (a) Plot showing the temporal variation of length of the liquid in the capillary. The solid line represents the results obtained from
the present analysis while the markers are used to denote the reported results of Bandopadhyay et al. [27]. The other parameters considered
are λ = 0.1 and ε = 0.1. A qualitative match between the present and published results is observed from the depicted plot in 2(a). (b) Plot
showing the temporal variation of length of the liquid in the straight capillary. The results obtained from the present analysis pertaining to
straight capillary are shown by solid line, and the markers are used to denote the reported results of Bandopadhyay et al. [27]. The other
parameters considered are λ = 0.01 and ε = 0.1. A fairly accurate match between the present and published results is observed from the
depicted plot in 2(b).

Substituting the values of FST and Fv , and using ua = dx
dt ,

Eq. (16) can be simplified in the following form:

d

dt

[(
3RI

2x + 3αRI x
2 + α2x3

)dx

dt

]

=
(

6αγs cos θs − 12ηur

ρ

)
x + 6RIγs cos θs

ρ
. (20)

We now take an effort to write Eq. (20) into its di-
mensionless counterpart form using the following reference

parameters: x̄ = x
RI

, ζ̄ = RI
L , t̄ = t

tref
, and β =

√
γs

ρRI
. The

dimensionless form of Eq. (20) reads as

d

dt̄

[(
3ζ̄ 2x̄ + 3αζ̄ x̄2 + α2x̄3

)dx̄

dt̄

]

=
(

6αcosθs − 12ηβur

γs

)
x̄ + 6ζ̄ cos θs. (21)

One can observe that Eq. (21) is a second-order nonlinear
differential equation and does not have an exact solution.
Hence, we solve Eq. (21) numerically by using the shooting
method with accuracy up to the order 10−7, subjected to the
initial condition x = 0.0001 and dx /dt̄ = 0 at t̄ = 0. The
solutions obtained are in the form of a Lagrange interpolation
function that are further used to obtain the variation between
x̄ and t̄ . The variation is plotted for different pertinent cases,
as discussed in detail, in the forthcoming sections.

III. MODEL VALIDATION

We here discuss the credibility of the present model in
predicting the imbibition dynamics of viscoelastic fluid in the
chosen fluidic configuration. In doing so, we stick to the dual
benchmarking strategy discussed as follows. Since no work
is available in the literature on the imbibition dynamics of
viscoelastic fluid in the conical microfluidic pathway, we stick
to validating our model for a limiting case. Pertaining to this

task, we consider the imbibition dynamics of a viscoelastic
fluid having its characteristic parameters λ = 0.1 and ε = 0.1,
as reported in the literature [27], in a straight fluidic channel
(which can be mimicked by tuning the taper angle in our
model). Figure 2(a), which compares the temporal evolution
of the filling length obtained from our model vis-à-vis the
reported results [27], justifies our model’s capability in cal-
culating the filling length following the imbibition dynamics
into the capillary.

It may be mentioned here that the difference, although not
very significant, as observed from the depicted plots (between
present and published results), is attributed to the variance
in the geometrical configuration of the fluidic channel. Since
the results reported in the literature [27] are obtained for a
rectangular cross-section channel, for this validation as shown
in Fig. 2(a), we consider the diameter of the tube in our
analysis as the total height of the rectangular cross-section
channel, considered in the referred study [27]. It is because
of this reason that we observe a small difference in the results
as witnessed in Fig. 2(a). Accounting for only the qualitative
match between the present and published results, as seen in
Fig. 2(a), we also take an effort in Fig. 2(b) to compare the
filling length of the viscoelastic fluid, characterized by λ =
0.01 and ε = 0.1, in a straight capillary having a rectangular
cross section as that considered in the reported analysis [27].
A fairly accurate match between the results of this analysis
and the reported ones, as seen in Fig. 2(b) both qualitatively
as well as quantitatively, justifies the credibility of the present
modeling framework in predicting the filling length of the
viscoelastic fluid being imbibed in the conical capillary.

IV. DISCUSSION OF THE IMBIBITION DYNAMICS

In this section, we shall discuss the imbibition dynam-
ics of viscoelastic fluids in a conical microfluidic channel,
as schematically shown in Fig. 1. To obtain the results, we
consider several aspects, which encompass the fluid prop-
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(a) (b)

FIG. 3. (a) Plot showing the temporal variation of length of the liquid in the capillary, obtained for three different values of taper angle
ϕ corresponding to α(= 0.01), 2α(= 0.02), and 3α(= 0.03); (b) temporal variation of the velocity, obtained for taper angle ϕ corresponding
to α. The other parameters considered for plotting are λ = 0.01 s, η = 0.01 Pa s, θs = 45◦. The different regimes of imbibition are observed
from the depicted variation. Inset shows the zoomed-in view of regime I.

erties, geometrical parameter of the flow configuration, and
flow properties, and discuss their impact on the underlying
fluid motion systematically in the forthcoming sections. Also,
unless stated otherwise, we consider the following set of pa-
rameters in investigating the flow physics of our interest in this
endeavor: α = 0.01; ϵ = 1.0; λ = 0.01 s; γs = 0.1 N/m; η =
0.01 Pa s; ρ = 1000 kg/m3; θs = 45◦; σ = 0.01 S2/m2; RI =
100 μm; [4]. It is worth mentioning here that a similar set of
dimensional values is typical to the chosen fluidic setup and is
used in the referred study as well [4,27].

A. Geometry of the flow configuration: Effect of taper angle

We begin our discussion with the temporal variation of
filling length (x̄ vs t̄), as shown in Fig. 3(a), obtained for
a change in the taper angle ϕ(= tan−1α). We compare our
results for three different values of taper angle, corresponding
to α, 2α, and 3α, where α is given as α = 0.01. From the
geometry of the chosen fluidic confinement (shown in Fig. 1),
it is apparent that the outlet radius will increase with increas-
ing the value of α. In the conical fluidic confinements, the
filling time (which is defined as the time taken by the meniscus
to reach a certain length of capillary) varies inversely with
the tube radius at the position of the meniscus. However, we
observe three distinct regimes of filling in Fig. 3(a). In this
study, we consider different values of α by varying RO. Now
as RO increases, signifying an increase in the magnitude of
ϕ (as α becomes higher), the filling becomes much faster on
account of higher surface tension force, which increases with
increase in the radius, acting on the fluid mass being imbibed.
This observation is apparent from regime I of Fig. 3(a).

We would like to add here that the present analysis focuses
on the temporal variation of the filling length of a viscoelastic
fluid following the imbibition dynamics. In the paradigm of
spontaneous imbibition, a balance between the capillary and
viscous forces is always retained [6,14]. At the beginning of
imbibition, the fluid gets into the capillary from rest and under
the influence of surface tension force only. This sudden impact
leads to attain higher velocity of the fluid being imbibed

as can be verified from the inset of Fig. 3(b). It is worth
mentioning here that during this early stage, a very high shear
rate developed due to a sudden rise in velocity resulting in an
infinite effective viscosity in the process. This higher effective
viscosity, which is induced during the early stage of the im-
bibition, increases the viscous resistance and, consequently,
leads to a reduction in the velocity of the advancing fluid
meniscus [cf. inset of Fig. 3(b)]. However, as time progresses,
the meniscus of the advancing fluid (the fluid being imbibed)
moves further down along the axial direction in the capillary
making a balance between the capillary and viscous forces as
supported by the increase in velocity in Fig. 3(b). Since, in the
conical capillaries, as is the case for this analysis, the radius
increases in the flow direction, the filling rate gets slowed
down, attributed primarily to the mass conservation constraint
(velocity will decrease) in the flow field. The phenomenon
of reduction in flow velocity at a later stage of the process
is witnessed in Fig. 3(b). Next, we discuss the three distinct
regimes of filling as seen in Fig. 3(a) in greater detail.

In the present case, as already discussed, we keep RI fixed
(RO is varied). Thus, an increase in RO (signifying a higher α)
will increase the degree of divergence of the fluidic channel
chosen in this analysis. At the initial stages, since the fluid
is being imbibed to the capillary from rest, the only driving
force is the surface tension force. And since we have varied the
outlet radius keeping the inlet radius constant, the force due to
surface tension increases with increase in the radius and fluid
in the capillary with greater α (equivalently, higher ϕ) attains
higher velocity. Due to higher velocity, the underlying filling
becomes faster for higher α(= 2α, 3α) in regime I as seen
in Fig. 3(a). Because of the relatively higher fluid velocity
for higher values α, the imbibing fluid for these cases invites
greater viscous resistance and due to the dominance of viscous
forces over surface tension force at later stages (in regimes II
and III), filling slows down. Also, for the higher values of α,
at a later stage of filling, when the advancing fluid column
starts occupying the divergent part of the conical capillary, the
fluid velocity reduces upon satisfying the mass conservation
constraint and culminating in a slow-down stage of the filling
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FIG. 4. The temporal variation of length of the liquid in the cap-
illary, obtained for different values of contact (static) angle θs = 15◦,
30◦, 45◦, and 60◦. The other parameters considered for this plot are
λ = 0.01 s, η = 0.01 Pa s, ϕ = tan−1α. Inset shows the imbibition
rate during initial stage. With increasing the magnitude of the static
contact angle, the imbibition rate slows down.

process. These two effects altogether result in a slow-down of
the filling process for higher values of α during late stages
as observed in Fig. 3(a). On the other hand, to maintain a
balance between capillary and viscous forces in the paradigm
of spontaneous imbibition as is the case for this analysis, at
later stages of the underlying process, the fluid in the capillary
with smaller α fills at a faster rate. This can be explained using
the fact that viscous force to act as a resistive force on the
imbibing fluid column becomes least for smaller α due to the
lesser velocity attained from a relatively lesser surface tension
force during the initial regime (regime I). Also, on account
of a lesser degree of divergence for a lesser value of α, at a
later stage of filling, when the advancing fluid column starts
occupying the divergent part of the conical capillary, the fluid
velocity does not reduce appreciably and favors the filing. As
such, it is because of these two effects that the filling time for
smaller α is seen to be less than that of higher values of α.
This phenomenon is observed in regime III of Fig. 3(a).

B. Effect of surface wettability

In Fig. 4, we demonstrate the filling length versus time
obtained for different values of static contact angle θs =
15◦, 30◦, 45◦, and 60◦. As already mentioned, the filling
length here refers to the temporal advancement of the invading
fluid column along the axial direction of the channel. Induc-
tion of artificial effective viscosity due to the large shear rate at
a very early instance of the imbibition phenomenon gives rise
to an augmented viscous resistance to the flow of invading
fluid (precisely at the contact line). It is because of this that
the underlying filling process gets slowed down during the
initial stage (0 < t̄ < 1e3) of the imbibition. A very lesser
slope, i.e., nearly parallel nature of the curves depicting the
temporal variation of filling, as witnessed by the inset of
Fig. 4, underlines the slower rate of imbibition. On the other
hand, at a later stage, we observe a relatively faster filling,

FIG. 5. Plot of the temporal variation of filling length in the
capillary, obtained for different values of λ = 0.01 s, 0.10 s, and
1.0 s, respectively. The other parameters are η = 0.01 Pa s, ϕ =
tan−1α, θs = 45◦. Inset shows the imbibition rate during initial stage.
As the magnitude of relaxation time λ becomes less, the filling time
becomes larger.

attributed primarily to the balance between the prevailing
forces, viz., the viscous force and the capillarity effect, of
the imbibition dynamics [6]. Quite notably, a reduction in the
static contact angle θs leads to an accelerated filling process,
as is apparent from Fig. 4. With a reduction in θs (static contact
angle), the wetting condition of the confining surface becomes
progressively favorable towards the fluid being imbibed into
the channel. This higher affinity of the surface towards the
invading fluid triggers the imbibition phenomenon and quick-
ness of the filling process, as witnessed in Fig. 4.

C. Fluid properties: Effect of relaxation time

As already mentioned, the fluid which is imbibed into the
fluidic assay is viscoelastic. To explore the effect of viscoelas-
ticity on the underlying imbibition dynamics, we plot, in
Fig. 5, the temporal advancement of filling length in the fluidic
assay for different values of relaxation time λ (= 0.01 s, 0.10
s, and 1.0 s). We note that at any temporal instant, the filling
length in the channel increases with an increase in the relax-
ation time (λ) from 0.01 s to 1 s. This variation is attributed to
the enhancement of the shear-thinning nature of the viscoelas-
tic fluid with increasing the magnitude of λ. Here, λ, being the
fluid relaxation time is an indicative measure of the elastic
effect of the fluid. A relatively larger λ (higher relaxation
time) signifies highly viscoelasticity of the fluid, and at times
increases the fluid’s shear-thinning nature. It is because of
the increase in the shear-thinning nature with increasing the
value of λ that the viscosity of fluid and its eventual impact
in providing resistance to the imbibition process becomes
less. Notably, following this reason, albeit all other conditions
(boundary conditions, surface wettability, etc.) remain the
same, on account of a relatively lesser resistance as realized
at a higher relaxation time (λ), the invading fluid takes rela-
tively less time to penetrate along the length of the capillary
as witnessed by a smaller filling time in Fig. 5. Also, we
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FIG. 6. Variation of filling length in the capillary versus time.
The depicted plots are obtained for different values of η =
0.01 Pa s, 0.0125 Pa s, and 0.0150 Pa s, respectively. The other pa-
rameters considered for this plot are λ = 0.01 s, ϕ = tan−1α, θs =
45◦. With increasing the magnitude of the apparent viscosity, the
filling time becomes higher.

observe from Fig. 5 that at the early stage of the imbibition
phenomenon (0 < t̄ < 1e3), the curves for the relatively
lesser values of λ (= 0.01 s, 0.10 s) are nearly parallel to the
time axis, thus signifying a slow filling process. The slowing
down effect of the imbibition phenomenon during the earlier
stage of filling for the smaller values of λ(= 0.1 s, 0.01 s),
which is mainly due to the high shear rate induced artificial
viscosity effect, can be verified from the inset of Fig. 5.

D. Fluid properties: Effect of apparent viscosity

By depicting Fig. 6, we make an effort to bring about
the effect of the apparent viscosity of the fluid (η) on the
imbibition dynamics. It is worth mentioning here that the
chosen values of η, as considered in plotting Fig. 6, con-
form to the typical values of several biofluids [4,27]. With
increasing the magnitude of η from 0.01 Pa s (fluid rheology
starts deviating and exhibits more viscoelastic behavior), the
imbibition rate becomes slower as witnessed by a larger filling
time in Fig. 6. Pertinent to the imbibition phenomenon in a
capillary, an underlying balance between capillary pressure
gradient and viscous pressure gradient is always retained. In
the conical microfluidic channel, as time grows, the imbibition
rate decreases due to the velocity reduction. Since velocity
and its gradient decrease with time, the apparent viscosity
will decrease with increasing temporal instant. No matter how
the apparent viscosity decreases with time in the imbibition
process, the elastic effect of the fluid for λ = 0.01 s will make
the filling processes slow on account of slower response of
the fluid to the driving force being applied in the process.
However, this slow-down effect of the filling becomes more
effective for higher η in the paradigm of spontaneous imbibi-
tion as seen in Fig. 6, attributed primarily to the higher viscous
resistance to the process.

E. Imbibition dynamics: Scaling analysis

We show Fig. 7 to discuss the scaling estimation of the
temporal variation of the filling length of the fluid being im-
bibed into the conical fluidic channel. The other parameters
considered for the plot depicted in Fig. 7 are as follows:
λ = 0.01 s, α = 0.01, θs = 45◦. We observe from Fig. 7 three
distinct regimes in which the imbibition dynamics follows
different scaling laws.

In regimes I and III, the temporal variation of the filling
length follows the 2/3 law, while in the intermediate regime,
i.e., in regime II, the variation of the filling length (x̄) with
time (t̄) follows nearly x̄ ∼ t̄ proportionality. At the begin-
ning of the filling, the fluid imbibed into the channel upon
experiencing a balance between the inertia and surface tension
forces. From the fact that at initial stages, the only balancing
force available is inertia forces as represented by the left-hand
side in Eq. (15), we compare the scales of these two prominent
forces (inertia force and surface tension force). As the result
of the above comparison, we observe that variation of filing
length vs time follows x̄ ∼ t̄ 2/3 proportionally. It is worth
mentioning here that at the initial stage of process, the fluidic
channel builds up higher shear rates due to this force only. The
higher shear rates lead to the induction of artificial apparent
viscosity during this initial stage of imbibition and result in
higher viscous drag acting at the contact line. So, initially, due
to a more substantial effect due to viscous resistance applied at
the contact line, the channel experiences a nonlinear variation
of imbibition phenomenon as seen from regime I of Fig. 7. It
is worth mentioning here that induction of artificial apparent
viscosity during the earlier instant of imbibition, which leads
to a reduction in velocity in regime I (see inset of Fig. 7), has
already been discussed in one of the preceding sections.

After this initial regime (regime I), the underlying balance
between capillary pressure gradient and viscous pressure gra-
dient leads to a linear variation of the filling length (x̄) with
time (t̄) as witnessed by a nearly x̄ ∼ t̄ proportionality in
regime II of Fig. 7. As apparent from the inset of Fig. 7, the
velocity in regime II increases and results in a higher velocity
gradient as well. The higher velocity gradient will increase the
magnitude of the viscous force acting at the contact line, and
the balance between the dominant viscous and capillary forces
offers a relatively faster filling following the linear scaling law
in regime II. In regime III, on the other hand, we find the
variation of filling length versus time to follow the 2/3 law,
i.e., x̄ ∼ t̄ 2/3. The attributable physical reasoning behind this
variation is as follows: the variation in regime III refers to
the late stage (at later temporal instances) of the imbibition
dynamics. During later temporal instances, the imbibed fluid
mass occupies a relatively larger flow area pertaining to the
chosen fluidic assay and hence, the flow velocity decreases
[cf. insets of Fig. 7 and Fig. 3(b)]. With a reduction in the flow
velocity, the magnitude of the viscous force acting over the
contact line reduces, attributed primarily to reducing the shear
rate. Thus, the resulting balance between the dominant forces,
i.e., the capillary and viscous forces, condenses the new filling
regime wherein the variation of filling length (x̄) with time
(t̄) follows x̄ ∼ t̄ 2/3 proportionally. For the analysis of later
stages, we use the least square fitting method to find the best
fit straight line for the x̄ and t̄ data points on a log-log plot
separately for both regimes. On analyzing the slope of the
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FIG. 7. Plot of the scaling analysis of the imbibition dynamics. Filling behavior in three different regimes is shown through the scaling
estimate between the length of the liquid column imbibed into the capillary versus time. The depicted plots obtained for different parametric
values pertinent to this analysis are λ = 0.01 s, ϕ = tan−1α, θs = 45◦ and = 0.01 Pa s.

straight lines obtained using this method, we deduce the pro-
portionality relationship between filling length (x̄) and time (t̄)
for regime II and regime III.

V. CONCLUSIONS

In this study, we have developed a theoretical model
to describe imbibition dynamics of viscoelastic fluid in
microfluidic assays having a nonuniform cross section. The
analysis considers the sPTT model for describing the rhe-
ology of the viscoelastic fluid. The model accounts for the
geometrical aspects of the fluidic assay and the rheological
parameters characterizing the viscoelasticity of the fluid to
describe the temporal evolution of the fluid in the assay in the
capillary-driven regime. As verified by the satisfactory agree-
ment of our model predictions against the established results
reported in the literature, the developed theoretical framework
can capture the underlying imbibition phenomenon, which is
physically consistent with the operating regimes of chosen
fluidic assay as well, quite effectively. The reported results
of this study are nonintuitive and exciting as well. The signif-
icance of the results or inferences obtained from the present
model includes identification of three different filling regimes
in the conical microfluidic assay alongside the prediction of
the scaling law for the identified regimes. A change in the
shear rate as modulated by the nonuniformity of the cross

section of the fluidic assay leads to an alteration in the viscous
force in the flow process. And this spatiotemporal variation
of the viscous force by tuning a balance with the capillary
force in the paradigm of spontaneous imbibition results in
three distinct filling regimes.

On the other hand, the present model seems to be of enor-
mous relevance from the application viewpoint. Our model
can be considered an effective tool for designing and opti-
mizing the microfluidic assays, requiring a tradeoff between
geometrical aspects of the fluidic device and fluid proper-
ties (rheological behavior). Precise optimization of these two
aspects is essential for controlling the fluidic operation in bio-
chemical and biomedical analysis where optimum filling time
and the requirement of the minimal sample volume are neces-
sary to provide augmented functionalities of the microfluidic
assays, typically used for point-of-care diagnostics.
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