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Scaling law of mixing layer in cylindrical Rayleigh-Taylor turbulence
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The nonlinear evolution of mixing layer in cylindrical Rayleigh-Taylor (RT) turbulence is studied theoretically
and numerically. The scaling laws including the hyperbolic cosine growth for outward mixing layer and the
cosine growth for inward mixing layer of the cylindrical RT turbulence are proposed for the first time and
verified reliably by direct numerical simulation of the Navier-Stokes equations. It is identified that the scaling
laws for the cylindrical RT turbulence transcend the classical power law for the planar RT turbulence and can
be recovered to the quadratic growth as cylindrical geometry effect vanishes. Further, characteristic time- and
length scales are reasonably obtained based on the scaling laws to reveal the self-similar evolution features for
the cylindrical RT turbulence.
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I. INTRODUCTION

Rayleigh-Taylor (RT) instability and its induced turbulence
are of great interest in fundamentals [1,2] and applications
[3,4]. Because the growth of mixing layer plays important
roles in understanding the basic features of RT turbulence
and designing capsules for maintaining shell integrity in in-
ertial confinement fusion [5,6], the nonlinear evolution of the
mixing layer of RT turbulence is significantly desirable to be
studied in detail.

It is generally recognized that the mixing layer of planar
RT turbulence evolves self-similarly and presents a quadratic
growth, i.e., hi = αiAT gt2, where i = b, s, hb is the bubble
mixing width, hs is the spike mixing width, αi is a dimen-
sionless coefficient, AT ≡ (ρh − ρl )/(ρh + ρl ) (with ρh and
ρl being the. heavy and light fluid density, respectively) is the
Atwood number, g is the magnitude of external acceleration
g, and t is time. This self-similar modal growth was first
exploited by Youngs [7] to describe the RT turbulent mixing
layer growth. Then the quadratic growth was also obtained
by Ristorcelli and Clark [8] and Cook et al. [9] based on
the similarity assumption and mass flux argument, respec-
tively. Recently, as indicated in the review articles [5,6], the
quadratic scaling relation with time for the mixing layer of
planar RT turbulence was also supported by extensive experi-
ments [10–13] and simulations [14–20].

Convergence geometries occur usually in practical cases,
such as inertial confinement fusion [3,21] and supernova ex-
plosions [4,22]. Principal effects of convergence geometries
on the RT instability can be involved in a canonical cylindri-
cal system [23–25]. Also the cylindrical geometry has been
usually employed in experiments, as the perturbation growth
of the RT instability can be conveniently measured along the
axial direction [26,27]. Thus, a cylindrical system has been
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widely used as a natural choice to study the convergence
effects on the RT intability growth [23–32]. According to the
analytical model derived in our recent work [32], the cylin-
drical RT instability is indicated to have striking difference
from its planar counterpart, as it obtains the bubble acceler-
ation saturation behavior other than the velocity saturation
as found in planar geometry. However, there is still never
any work to investigate the nonlinear evolution of cylindri-
cal RT turbulent mixing layer under the general multimode
influence.

In the present study, the nonlinear evolution of mixing
layer in cylindrical RT turbulence is studied theoretically and
numerically. The scaling law of mixing layer in cylindrical
RT turbulence was proposed for the first time and verified
by direct numerical simulation (DNS) of the Navier-Stokes
equations. The remainder of this paper is organized as follows.
The DNS strategy for verifying the scaling law is described
in Sec. II. General features of the cylindrical RT turbulence
are investigated in Sec. III. The scaling law of turbulent
mixing layer growth is derived and the relevant results are
discussed in Sec. IV. Finally, the conclusions are addressed in
Sec. V.

II. NUMERICAL SIMULATIONS

A. Governing equations and numerical method

DNS has been performed on the RT turbulence in cylin-
drical geometry to study the nonlinear evolution behaviours
of turbulent mixing layer. Considering the cylindrical co-
ordinates (r, θ, z), the initial pressure pI , and density ρI =
(ρh + ρl )/2 at the heavy or light fluid interface are chosen
as the characteristic scales, where ρh and ρl are the heavy
and light fluid density. Then the characteristic velocity and
temperature are presented as UI = √

pI/ρI and TI = pI/(RρI )
with the perfect gas constant R, respectively. The radius
of the unperturbed interface r0 is used as the characteristic
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length. Then the nondimensionalized governing equations are
given as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + 1

Re
∇ · τ − ρ

Fr
êr, (2)

∂ (ρE )

∂t
+ ∇ · [(ρE + p)u]

= 1

Re
∇ · (τ · u) + 1

RePr
∇ · (∇T ) − ρ

Fr
u · êr, (3)

where t , u = [ur, uθ , uz], ρ, p, T , and E = T/(γ − 1) + u ·
u/2 denote the time, velocity, density, pressure, temperature,
and total energy, respectively, where γ = 1.4 is the specific
heat ratio and êr is the unit vector in the radial direction. The
stress tensor is obtained as

τ = 2μS − 2
3μ(∇ · u)δ, (4)

where S is the strain-rate tensor, δ is the unit tensor, and
μ = T 3/2(1 + c)/(T + c) is the viscosity calculated by the
Sutherland law with c = 110/Tr and the reference tempera-
ture Tr .

The nondimensional parameters in Eqs. (1)–(3), i.e., the
Reynolds, Froude, and Prandtl numbers, are defined as, re-
spectively,

Re = ρIUI r0

μI
, Fr = U 2

I

r0g
, and Pr = Cp

μI

κ
, (5)

where g is the external acceleration, Cp the constant-pressure
specific heat, and κ the thermal conductivity.

We have developed the in-house program code with
high-order accuracy schemes to solve the compressible
Navier-Stokes equations in cylindrical coordinate for the per-
formance of cylindrical RT turbulence. Our program code
has been successfully used to simulate the cylindrical RT
instability and RT turbulence in our recent work [20,32]. The
seventh-order finite difference WENO scheme is implemented
to discretize the convective terms and the eighth-order central
difference scheme to discretize the viscous terms of the gov-
erning Eqs. (1)–(3). The time derivatives are approximated by
the standard third-order Runge-Kutta method.

B. Flow-field initialization and numerical details

The cylindrical RT turbulence is driven by an external
acceleration imposed pointing from the heavy to the light
fluid as shown in Fig. 1. Because there are two classes of RT
unstable systems in cylindrical geometry, one comprises the
heavy fluid surrounding the light fluid and the other comprises
the light fluid surrounding the heavy fluid, and thus the cylin-
drical RT instability can be classified into a convergent case
[see Fig. 1(a)] and a divergent case [see Fig. 1(b)] based on
the direction of external acceleration [29], and for both cases
the flow fields are initialized as follows. To avoid the insta-
bility suppression due to background stratification, uniform
density field is initialized as ρh = 1 + AT and ρl = 1 − AT

on each side of the interface [32–34], where the Atwood
number AT ≡ (ρh − ρl )/(ρh + ρl ). The initial velocity field
is set to be zero. The hydrostatic equilibrium requires that

FIG. 1. The diagram of cylindrical RT instability for (a) conver-
gent case and (b) divergent case.

d p/dr = −ρi/Fr (i = l, h) away from the interface, thus the
pressure field can be determined by assuming p = 1 at the
interface.

To stimulate the fully developed cylindrical RT turbulence,
the interface at r0 = 1 is perturbed by introducing small
disturbance given as

∑
n,kz

Am cos(nθ + ϕn) cos(2πkzz/Lz +
ψz ), where the amplitude Am = 3 × 10−4 for the three-
dimensional (3D) cases and Am = 10−3 for the 2D cases, the
perturbation wave numbers n and kz in the circumferential and
axial direction are set in a range of 30 �

√
n2 + k2

z � 60, the
axial length Lz = 2π , ϕn, and ψz are random phases [20,35].
The velocity, pressure, and density at the far boundary are
fixed as their initial values to ensure hydrostatic equilibrium
[32,36]. The RT flow is considered to be homogeneous in the
z direction thus along which periodic boundary conditions are
used for the 3D simulations.

To verify the scaling law of RT turbulent mixing layer,
various simulation parameters as listed in Table I have been
selected for convergent (i.e., the external acceleration g acting
radially inward) and divergent (i.e., g acting radially outward)
cases in the present study. The Prandtl number of all cases
is selected as Pr = 0.72 for air. In the present simulations, to
avoid a pole singularity at the center of cylindrical coordinate,
the inner boundary at a small radius rmin = 0.05 has been
used with the zero gradient boundary conditions, following
the previous treatment [32,37,38]. The radial grids are set as
ri+1 = ri(1 + �θ ), where ri is the radial position of the ith
grid and the width of uniform circumferential girds �θ =

TABLE I. Simulation parameters for DNS. The outer scale
Reynolds number, based on the visual width H corresponding to a
layer where the mole fraction of heavy fluid averaged in θ -z plane
falls between 1% and 99%, is defined as ReH = ρI HḢ/μI [16].

Cases Direction of g AT Re Fr Dimension ReH

1 Convergent 0.3 40 000 10 2D 13 600
2 Convergent 0.6 40 000 10 2D 14 200
3 Convergent 0.6 20 000 20 2D 5800
4 Convergent 0.6 40 000 10 3D 13 000
5 Divergent 0.3 40 000 −10 2D 12 500
6 Divergent 0.6 40 000 −10 2D 14 500
7 Divergent 0.6 20 000 −20 2D 5300
8 Divergent 0.6 40 000 −10 3D 15 300
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FIG. 2. Snapshots of instantaneous density fields for 2D convergent (a)–(c) and divergent (e)–(g) cases at the rescaled time τ = 3.
Isosurfaces of the density (orange for ρ = 0.41, gray for ρ = 1, and purple for ρ = 1.59) for 3D convergent (d) and divergent (h) cases
at the rescaled time τ = 3.

2π/N , and the axial grids are uniform. The 2D cases in Table I
are calculated by use of 1000 and 1600 grids in the radial
and circumferential direction, and the 3D cases are calculated
by 500, 800, and 800 grids in the radial, circumferential,
and axial directions, respectively, which have been verified to
reliably resolve the flow scales [32].

III. PHYSICAL FEATURES

The multiscale feature, self-similarity, mixing width, and
fundamental measurements of mixing layer for cylindrical RT
turbulence are examined by means of DNS in this subsection.

A. Multiscale feature of turbulent mixing layer

The instantaneous density fields at turbulent stage are
shown in Fig. 2 for all the cases listed in Table I. It exhibits
fine-scale structures and large patches of mixed fluids. Specif-
ically, large-scale structures are well identified in the turbulent
mixing layer, which arise due to the merging of bubbles and
spikes. Small-scale structures are also fully visible along the
evolutional interface between heavy and light fluids. This
visualization indicates clearly the multiscale feature of RT
turbulence [8,16,39].

Moreover, the density spectra are defined by

Eρ (r, kθ , t ) = ρ̂ ′∗ρ̂ ′(r, kθ , t ), (6)

where kθ is the wave number in the circumferential direction,
ρ̂ ′ is the Fourier transformation of the density fluctuation,
and ρ̂ ′∗ is its complex conjugate. Here all the density spectra
are calculated at r0 = 1 and normalized by integrated density
spectra Etot = ∫

Eρ dkθ . The energy spectra of cases 4 and 8
are averaged in the axial direction. As shown in Fig. 3 for
the density spectra in the circumferential direction, where the
abscissas are scaled as kθ r0, not only the scales of initial

kθr0
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FIG. 3. The density energy spectra in the circumferential di-
rection at r0 = 1 for (a) convergent and (b) divergent cases at the
rescaled time τ = 3. The energy spectra of cases 4 and 8 are obtained
by an average in the axial direction.
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FIG. 4. Mean density distributions in the radial direction for the
typical cases at different moments: (a) case 2 and (b) case 6.

perturbation (i.e., 30 � kθ � 60) but also a wide range of
scales are excited in the flows due to the nonlinear interaction
of bubbles and spikes, and thus the flows reach turbulent stage.

Furthermore, to assure that the cylindrical RT flows sat-
isfy the mixing transition criterion (Reynolds number >1 ×
104) [40] and the minimum state criterion (Reynolds num-
ber >1.6 × 105) [41], the outer scale Reynolds number [16]
calculated at the end of simulation time have been listed in
Table I, demonstrating that ReH reaches the order of 104 for
the cases with Re = 40 000. Therefore, the cylindrical RT
flows do not meet the minimum state criterion of Zhou [41] to
reproduce the spectral range corresponding to an astrophysical
event. Nevertheless, the simulated flows satisfy the transition
criterion of Dimotakis [40] to reflect the beginning of the
formation of the inertial range, namely the turbulent states
have been achieved [16].

B. Self-similarity of turbulent mixing layer

The self-similarity is another feature of RT turbulence,
which can be analyzed by the mean density distribution across
the mixing layer. The mean density distributions in the ra-
dial direction for case 2 and case 6 have been shown in
Fig. 4. It is seen that the mean density distributions along
the radial direction become smoother as the time increases,
indicating an increase of mixing width. However, the mean
density distributions at different moments has the same radial
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FIG. 5. Mean density distributions versus similarity variable ξ

for typical cases at different moments: (a) case 2 and (b) case 6.

variation trend, indicating that cylindrical RT turbulence is
self-similar. To this end, the mean density distribution can be
represented as

〈ρ〉(r, t ) = ρ0Fρ (ξ ), ξ = r − r0

h(t )
, (7)

where ρ0 is the scaling coefficient, Fρ (ξ ) is the spatial sim-
ilarity function, and h is the width of mixing layer defined
as the sum of the mean widths of inward and outward mix-
ing layers [20,39], i.e., hin = 4

∫ r0

0 〈X 〉(1 − 〈X 〉) dr and hout =
4

∫ ∞
r0

〈X 〉(1 − 〈X 〉) dr, where X is the mole fraction of the
heavy fluid defined as X = (ρ − ρl )/(ρh − ρl ) and 〈 〉 denotes
the spatial average in the θ -z plane.

Figure 5 shows the mean density distributions versus the
similarity variable ξ for cases 2 and 6. It is clearly seen that the
mean density distributions at different instants nearly collapse
into a single curve. This behavior also means that the cylin-
drical RT flow achieves turbulent phase with self-similarity
[5] and a scaling law may exist to describe the mixing layer
growth.

C. Mixing width and mixed mass of turbulent mixing layer

The width of mixing layer h is a fundamental measurement
of RT turbulence and thus we examine the temporal evolution
of the mixing width in cylindrical RT turbulence, as shown
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FIG. 6. Temporal evolution of (a) the width of mixing layer h and
(b) the ratio of width of spike region to that of bubble region, hs/hb,
for the cases listed in Table I.

in Fig. 6(a). It is seen that the mixing layer growth of the
cylindrical RT turbulence, unlike its planar counterpart [8,9],
do not obviously scale as t2 at late times, which prompted us
to propose a novel scaling law of mixing layer in cylindrical
RT turbulence. Moreover, the ratio of width of spike region
to that of bubble region, hs/hb, has been shown in Fig. 6(b).
For the convergent cases that inward mixing layer is the spike
region (i.e., hs = hin), hs/hb reaches 1.6 at late times for the
cases AT = 0.6 (ρh/ρl = 4), which exceeds the counterpart
value of planar RT turbulence [6,18]. For the divergent cases
that inward mixing layer is the bubble region (i.e., hb = hin),
most interestingly, hs/hb is less than 1 at late times for all the
cases listed in Table I. The above observations demonstrate
clearly the effects of cylindrical geometry on mixing layer,
specifically, the inward growth of the mixing layer is enhanced
by the cylindrical effects.

The mixed mass and normalized mixed mass [42] are also
fundamental measurements that have been developed specifi-
cally for hydrodynamic instabilities mixing. The mixed mass
M is defined as follows [42]:

M = 4
∫

ρY1Y2dV, (8)

where ρ denotes the density of mixture, V denotes the volume
of mixing region, and Y1 (Y2) denotes the mass fraction of

τ
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1

(b)
τ

M

1 2 3
10-1

100

101
Case 1
Case 2
Case 3
Case 4

(a)
Case 5
Case 6
Case 7
Case 8 t 2

FIG. 7. Temporal evolution of (a) the mixed mass M and (b) the
normalized mixed mass � for the cases listed in Table I.

heavy (light) fluid. As shown in Fig. 7(a), the mixed mass
increases with time as the increase of mixing width, which is
the same as the results of the planar RT flows [42]. However,
different from the planar RT flows [42], the mixed mass curves
in cylindrical RT turbulence do not scale as t2. Because the RT
flow evolutions have a dependence on the direction of external
acceleration in cylindrical geometry, there exist differences
in the mixed mass between convergent cases (cases 1–4) and
divergent cases (cases 5–8), especially at late times.

Furthermore, the normalized mixed mass is defined as fol-
lows [42]:

� =
∫

ρY1Y2dV/

∫
〈ρ〉〈Y1〉〈Y2〉dV. (9)

It is plotted in Fig. 7(b) as a measurement of the efficiency
of mass mixing. Similarly to the planar results [42], the nor-
malized mixed mass curves also have valleys for cylindrical
geometry at early times about τ = 1.1. However, these curves
show no obvious asymptotic behaviors for cylindrical ge-
ometry in this study. Moreover, the normalized mixed mass
has a dependence on the direction of external acceleration in
cylindrical geometry.

According to the above observations, the cylindrical ge-
ometry have a significant effect on the mixing evolution of RT
turbulence. To this end, we propose to derive the scaling law
of mixing layer in cylindrical RT turbulence.
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FIG. 8. Ratios of the square values of the circumferential veloc-
ity and growth velocity versus rescaled time for (a) the inward mixing
layer and (b) the outward mixing layer.

IV. SCALING LAWS

We consider the mixing layer in cylindrical RT turbu-
lence with initial perturbed interface r0. The uniform external
acceleration is imposed as g = −ĝer for convergent case
and g = ĝer for divergent case. As the mixing region on
both the sides of interface r0 is asymmetric about the ini-
tial perturbed interface, the inward and the outward mixing
layer widthes, i.e., hin and hout, are needed to be modelled
separately.

In order to establish the scaling law of mixing layer in
cylindrical RT turbulence, we first analyze the dynamic factor
that govern the mixing layer growth when the flow achieves
self-similarity. The basic mechanism of RT turbulence is a
buoyancy-induced fluid-mixing mechanism [43]. For planar
RT turbulence, if the mixing is self-similar, then the growth of
the mixing layer can be modelled by [5,15]

dḣi

dt
= 2αiAT g, (10)

where i = b, s, hb is the bubble mixing width, hs is the spike
mixing width, and αi denotes the dimensionless coefficient.
In cylindrical RT turbulence, the outward mixing layer is the
bubble region (i.e., hout = hb) and the inward mixing layer is
the spike region (i.e., hin = hs) for the convergent case and
vice versa for the divergent case. Equation (10) for the growth
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FIG. 9. The scaling law of outward mixing layer for (a) conver-
gent cases and (b) divergent cases, and the scaling law of inward
mixing layer for (c) convergent cases and (d) divergent cases.

of the mixing layer in planar RT turbulence can be outlined
as follows. The advancement of the bubbles and spikes in the
respective pure fluids may be viewed as the result of a buoy-
ancy force scaled by the density difference [15]. Specifically,
the left-hand-side term of Eq. (10) represents the acceleration
of the mixing region, which can also be referred to as the
acceleration of the fluid parcels [15], and the right-hand-side
term denotes the integrated buoyancy force acting on the fluid
parcels in the mixing region.

As for cylindrical RT turbulence, the evolution of the bub-
bles and spikes in the respective pure fluids can also be viewed
as the result of a buoyancy force, which has a similar form
as Eq. (10) in planar RT turbulence when scaled by density
difference. In addition to the dynamic factor (i.e., radial buoy-
ancy force), the kinematic relationship of the mixing layer
growth must be considered. Therefore, the radial acceleration
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of the fluid parcels in the mixing layer is obtained as

ar = dur

dt
− u2

θ

r
. (11)

Note that the radial velocity ur in the mixing layer determines
the evolution of the mixing layer and the average magnitude of
ur is approximated as the mixing layer growth velocity, ḣin and
ḣout. Doubtlessly, when the flow reaches turbulent phase, the
circumferential motion will arise due to the nonlinear effect,
which is formulated as the term u2

θ /r that also contributes to
the radial acceleration and in turn the mixing layer growth. In
order to quantitatively determine the contribution of circum-
ferential motion, employing the DNS results, the ratios, i.e.,
〈u2

θ 〉in/ḣ2
in and 〈u2

θ 〉out/ḣ2
out for the inward and outward mixing

layers, respectively, have been plotted in Fig. 8. It is exhibited
clearly that uθ in mixing layers have the same order in mag-
nitudes with ḣin and ḣout at τ � 2.0 when the flows achieve
turbulent state. In that u2

θ /r is reasonably estimated as ḣ2
out/rout

for the outward mixing layer and ḣ2
in/rin for the inward mixing

layer, where rout = r0 + hout and rin = r0 − hin are the mean
radii of outward and inward mixing layers, respectively. Thus,
considering the growth of mixing layer caused by buoyancy
force, the model equations of the inward and outward mixing
layers in cylindrical RT turbulence can be derived, given as

dḣin

dt
+ ḣ2

in

r0 − hin
= 2αinAT g, (12)

and

dḣout

dt
− ḣ2

out

r0 + hout
= 2αoutAT g, (13)

respectively, where αin and αout are dimensionless coeffi-
cients. As expected, when the effect of cylindrical geometry
becomes negligibly weak as r0 → ∞, both Eqs. (12) and (13)
for the cylindrical RT mixing layer are reduced straightfor-
wardly to Eq. (10) for the planar RT mixing layer.

Here Eqs. (12) and (13) are nonhomogeneous and can
be solved by the method of constant variation. Integrating
the homogeneous parts of Eqs. (12) and (13) gives ḣin =
Cin(r0 − hin ) and ḣout = Cout (r0 + hout ), where Cin and Cout are
integral constants. We assume that ḣin = Cin(t )(r0 − hin ) and
ḣout = Cout (t )(r0 + hout ) are solutions of Eqs. (12) and (13),
which lead to Cin(t ) = 2[αinAT g/(r0 − hin ) − αinAT g/r0]1/2

and Cout (t ) = 2[αoutAT g/r0 − αoutAT g/(r0 + hout )]1/2 when
substituting into Eqs. (12) and (13) for a subsequent integrat-
ing. Finally, as the initial mixing widths are zero, the widths of
the inward and outward mixing layers can be obtained by in-
tegrating ḣin = Cin(t )(r0 − hin ) and ḣout = Cout (t )(r0 + hout ),

hin

r0
= 1

2
(1 − cos 2

√
αinτ ), (14)

and
hout

r0
= 1

2
(cosh 2

√
αoutτ − 1), (15)

where τ = (AT g/r0)1/2t is the rescaled time. Based on the
scaling law, (r0/AT g)1/2 and r0 are taken as a natural choice
of the characteristic time- and length scales for the self-similar
evolution of the cylindrical RT turbulent mixing layer.

In the following, we employ the high-fidelity DNS results
obtained for the cases of cylindrical RT turbulence listed in
Table I to verify the scaling laws described as Eqs. (14)
and (15). It is exhibited in Fig. 9 that acos(1 − 2hin/r0)/τ
for the inward mixing layer and ach(1 + 2hout/r0)/τ for
the outward mixing layer expectedly tend to be a quasis-
teady value at τ � 2.0 for all the cases listed in Table I
when the flows achieve turbulent state, which verifies that
the scaling laws derived are reliable. Moreover, the sym-
bols of all the cases in Fig. 9 collapse together excellently
well, which means that the self-similar evolution features
of the mixing layer in cylindrical RT turbulence are unified
based on the characteristic timescale (r0/AT g)1/2 and length
scale r0. Furthermore, the dimensionless coefficients αin and
αout are given by 2α

1/2
in = acos(1 − 2hin/r0)/τ and 2α

1/2
out =

ach(1 + 2hout/r0)/τ , respectively, when τ � 2.0. Therefore,
the dimensionless coefficients αout and αin are obtained ap-
proximately as 0.022 and 0.063 based on our DNS, falling
into the range of ∼0.020-0.087 for the coefficients αb and αs

in the planar RT turbulence [5].
Further, we can confirm that the scaling laws for cylindrical

RT turbulence, i.e., the hyperbolic cosine growth of the out-
ward mixing layer and the cosine growth of the inward mixing
layer, can be reduced to the quadratic growth for planar RT
turbulence, when the effect of cylindrical geometry vanishes.
To this end, Taylor expansions of Eqs. (14) and (15) are
given as

hin = αinAT gt2 − (αinAT gt2)2

3r0
+ · · · + (−1)m−1r0

2(2m)!

(
4αinAT gt2

r0

)m

+ · · ·, (16)

and

hout = αoutAT gt2 + (αoutAT gt2)2

3r0
+ · · · + r0

2(2m)!

(
4αoutAT gt2

r0

)m

+ · · ·, (17)

where m is the ordinal number corresponding to the mth term
am of the Taylor series of Eqs. (16) and (17) at a given moment
t . As the limits lim

m→∞ |am+1/am| = lim
m→∞(4αiAT gt2)/[(2m +

2)(2m + 1)r0] = 0, the above series converge according to
the D’Alembert’s test. Moreover, the difference between the
cylindrical and planar cases appears as the curvature effect

1/r0 at the cylindrical interface. The effect of cylindrical ge-
ometry will be negligible as r0 → ∞ and consequently the
term (αinAT gt2)/r0 is infinitesimal at any given moment t ,
thus Eqs. (16) and (17) are reduced as hin = αinAT gt2 and
hout = αoutAT gt2. The reduced mixing width is formulated
exactly the same as that of planar RT turbulence [5,7]. This
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analysis further confirms that our scaling law of mixing layer
is valid for cylindrical RT turbulence and transcends the clas-
sical power law for the planar RT turbulence.

V. CONCLUSIONS

The scaling laws of the mixing layer in cylindrical RT tur-
bulence are proposed based on physical insights and verified
by DNS of the Navier-Stokes equations. Specifically, the out-
ward mixing layer satisfies the hyperbolic cosine growth and
the inward mixing layer obeys the cosine growth in cylindrical
geometry. The scaling laws for the cylindrical RT turbulence
can be recovered to the power law for planar RT turbulence as
cylindrical geometry effect vanishes. According to the scaling

laws, characteristic time- and length scales are also obtained
to describe the self-similar evolution features of the mixing
layer in cylindrical RT turbulence. Moreover, we have nu-
merically revealed the multiscale feature and self-similarity
and analyzed the fundamental measurements of cylindrical RT
turbulence.
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