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Theoretical derivation of slip boundary conditions for single-species gas and binary gas mixture
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A theoretical derivation of slip boundary conditions for single-species gas and binary gas mixture based on two
typical gas-surface scattering kernels is presented. If the Maxwell model is assumed, then the derived slip bound-
ary conditions are consistent with the previous conclusions. Considering the limitation of the Maxwell model
in describing the complexity of gas-surface scattering behavior, we further perform theoretical analyses based
on the Cercignani-Lampis-Lord (CLL) model, where separate accommodation coefficients in the tangential and
normal directions are defined. Our results demonstrate that for both single-species gas and binary gas mixture,
the velocity slip predicted by the CLL model is only dependent on the tangential accommodation coefficient,
while the temperature jump determined by the CLL model is related to the accommodation coefficients in
both tangential and normal directions. To account for the collision effect in the Knudsen layer, we propose
to add correction terms to the theoretical models, and the corrected slip coefficients agree well with the previous
numerical results obtained by solving Boltzmann equation for single-species gas. Moreover, the slip boundary
conditions for binary gas mixture based on the CLL model are determined theoretically for the first time. Since
at most situations the tangential and normal accommodation coefficients are not equal, the temperature jump
boundary condition based on the CLL model is expected to give more accurate predictions about temperature
distribution and heat flux at the boundaries, particularly for hypersonic gas flows with strong nonequilibrium
effect.
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I. INTRODUCTION

Aerodynamic design of aircraft requires accurate and re-
fined prediction of its surrounding flow fields and surface
properties such as drag force, lift force, and heat flux. This
requirement is challenging for advanced hypersonic vehicles,
such as reusable spacecraft, single stage to orbit vehicles,
and hypersonic gliders, as they encounter significantly var-
ious flow regimes in different altitudes due to the change
of atmospheric density [1,2]. Generally, aerodynamic design
of such hypersonic vehicles needs comprehensive analyses
by incorporating flight experiments, wind tunnel testing, and
numerical simulation. While the first two methods are expen-
sive and technically challenging, numerical simulation can
be performed with relatively low cost even under extreme
conditions.

Computational fluid dynamics (CFD) has played a vital
role in the prediction of aerodynamic performance and hence
boost the development of aerodynamic design during the past
half century. The validity and reliability of CFD calcula-
tions rely upon not only the numerical algorithms for solving
governing equations but also the underlying physical mod-
els including constitutive relations and boundary conditions
[3–6]. If the vehicles fly at low altitudes, then the gas flow
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is in the continuum regime represented by a small Knudsen
number (Kn), i.e., Kn < 0.001. Generally, Kn is defined as
the ratio of the molecular mean free path, which is inversely
proportional to the density, to the concerned length in the sys-
tem. It is believed that in the continuum regime, the flow fields
can be obtained using conventional CFD methods, which
numerically solve the Navier-Stokes-Fourier (NSF) equations
in conjunction with linear constitutive relations and no-slip
boundary conditions.

On the contrary, when the hypersonic vehicles fly to higher
altitudes, the number of intermolecular collisions in the flow
fields becomes much smaller due to lower atmospheric den-
sity. In this case, nonequilibrium gas effect needs to be
considered [7]. It is recognized that for Kn > 0.1, which
is referred to rarefied flow regime, the description by the
traditional CFD methods with linear constitutive relations
is less accurate and in some cases even wrong. Instead,
the numerical methods by solving the Boltzmann equation
[8,9] or alternatively, using the stochastic particle descrip-
tion like the direct simulation Monte Carlo (DSMC) method
[10,11], can provide accurate predictions under this condi-
tion. However, both methods are computationally expensive
for the slip regime with mediate Knudsen numbers, e.g.,
0.001 < Kn < 0.1. In this case, CFD methods using appro-
priate slip boundary conditions have been demonstrated to
be a promising strategy to correctly predict nonequilibrium
behavior to some extent with a much lower computational cost
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compared to molecular-based calculations [3,12–14]. There-
fore, it is preferred particularly for engineering applications
in the slip regime.

Maxwell [15] was the first to propose a slip boundary
condition for a flat surface. According to his theory, the
slip velocity is determined by a slip coefficient multiplied
by the velocity gradient normal to the surface. Gökçen and
MacCormack [16] found that the surface properties predicted
by such a simple boundary condition for large Knudsen num-
bers might significantly deviate from that determined by the
theory for free-molecular flow. Hence, they extended the
Maxwell model and proposed a general model which could
also give correct predictions for large Knudsen numbers. Al-
though the first-order model is not perfect, it is still the most
widely used model so far. In contrast, a variety of second-
order slip models with two free parameters [17–22] have also
been developed, but the values of the parameters for a specific
problem are still under discussion.

Alternatively, Myong [23] proposed a slip model on the
basis of the theory of Langmuir isotherm adsorption. While
it has been successfully applied to low-speed micro gas flows,
the prediction for hypersonic rarefied gas flows is not so good.
Le et al. [24,25] improved this kind of boundary condition and
extend its application to hypersonic flows. In addition, another
kind of slip model was developed by scaling the relationship
between stress and strain rate, in order to correctly capture
the structure of the Knudsen layer. It is generally represented
in terms of correction function, such as wall function [26],
power-law scaling [27], and double-power series [28,29].
Note that these scaling functions are determined by the curve-
fitting on the basis of kinetic theory or DSMC calculations.
These two kinds of boundary conditions are out of the scope
of the present work.

According to the kinetic theory, the form of the slip
boundary conditions and the associated slip coefficients are
dependent on the underlying physics of gas-surface interac-
tions. It is known that the two ideal models for describing
gas-surface interactions are specular and diffuse reflections.
Maxwell [15] introduced one parameter called as accommo-
dation coefficient (AC), to characterize the degree to which the
molecule adapts to the wall. Its value is in the range of 0 to 1,
with the lower and upper limits corresponding to completely
specular and diffuse reflection, respectively. For a specific
gas-surface interaction model with a determined AC, the slip
boundary conditions can be determined theoretically using
the so-called half-flux method based on the kinetic theory.
This method was proposed by Patterson and then developed
by Shidlowsky (for reviews, see Ref. [9]). Afterwards, Scott
[30] and Gupta et al. [31] employed the similar method
and extended the application to multicomponent reacting
flow. Their researches inspired a lot of follow-up studies by
others [32–34].

It should be noted that all the aforementioned boundary
conditions, derived by the half-flux method, contain only
one AC except the recent work of Struchtrup [35]. However,
both experiments [36,37] and molecular dynamics simula-
tions [38,39] have demonstrated that, the Maxwell model with
only one AC is inadequate to represent all the behaviors of
the gas-surface interactions. An advanced and sophisticated
gas-surface interaction model, including two separate ACs for

FIG. 1. Schematic of the gas behavior within the Knudsen layer,
where the intermolecular collisions are neglected. The net flux is
evaluated with the distribution function at the top of the Knudsen
layer. The blue solid circle denotes one molecule impinging on the
surface with a incident flux and rebounded back with a reflected flux
depending on the gas-surface interaction model.

tangential and normal directions, is the so-called Cercignani-
Lampis-Lord (CLL) model [40–42]. It has been proved that
the CLL model is capable of capturing the scattering behavior
of the reflected molecules very well, particularly, the lobular
distribution as reported by experimental and molecular dy-
namics simulation results [36,43,44].

Since the CLL model is more reliable to describe the gas-
surface interactions, a natural question that arises is: what
are the corresponding slip boundary conditions based on the
CLL model? To answer this question, we extend the previous
theoretical derivations based on the Maxwell model to the
CLL model. Our derived results for the single-species gas are
consistent with the conclusion given by Struchtrup [35], albeit
he did not provide the details of derivation. To account for the
effect of molecular collisions, we propose to add correction
factors to the original theoretical models, and the predictions
by the corrected models are consistent with previous numeri-
cal results. Moreover, we extend the theoretical derivation to
binary gas mixture. To the best of our knowledge, the slip
boundary conditions for binary gas mixture based on the CLL
model has not been reported in the literature yet.

II. SLIP BOUNDARY CONDITIONS
FOR SINGLE-SPECIES GAS

For any gas flows around a solid surface, there is a so-called
Knudsen layer close to the surface, as shown in Fig. 1. The
thickness of the Knudsen layer is about several molecular
mean free paths, so the intermolecular collisions could be
neglected within the layer but the effect gas-surface interac-
tions becomes dominant. It is well recognized that in the slip
regime, if the values of velocity slip and temperature jump are
assigned properly, then the conventional CFD method is capa-
ble of predicting gas flows outside the Knudsen layer, albeit
the prediction within the Knudsen layer may be incorrect.

Strictly speaking, the accurate slip coefficients in any slip
boundary conditions need to be determined on the basis of
resolving the Knudsen layer, either solving the Boltzmann
equation or using DSMC method with proper gas models
[45–47]. However, this would be a massive work as numerical
solving of the Boltzmann equation is computationally very
expensive and a large number of cases need to be run for a
complete parametric study. For a comprehensive review of
the slip coefficients, we refer the readers to Ref. [48]. Al-
ternatively, a theoretical method called as half-flux method
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is a promising way to derive the slip boundary conditions
and the associated slip coefficients. It assumes that within
the Knudsen layer, the intermolecular collisions are negligible
and the behavior of the gas is governed by the gas-surface
interaction and free transport of gas molecules. As demon-
strated by Struchtrup [35] and Wu and Struchtrup [34], the
slip coefficients determined by this method agree well with
those determined by solving Boltzmann equation. Therefore,
the half-flux method is employed in this work to derive the
slip boundary conditions due to its simplicity and acceptable
accuracy.

As shown in Fig. 1, the half-flux method assumes that the
momentum and energy fluxes are constant in the Knudsen
layer. It means that the net flux (F ) at the top of the Knudsen
layer is equal to the total flux on the wall, which is composed
of the incident flux (F i) and the reflected flux (F r), that is,

F = F i + F r . (1)

For a property φ(C′) such as molecular momentum and
energy, which can be convected due to molecular movements,
the net flux of it at the top of the Knudsen layer in the normal
direction is

F =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
V ′φ(C′) f s(C′) dC′, (2)

where the vector C′ denotes molecular thermal velocity or
peculiar velocity, which is equal to the molecular velocity
minus the macroscopic velocity. The three components of C′
in the Cartesian coordinates (x, y, z), as shown in Fig. 1,
are denoted as U ′, V ′, W ′, respectively, and f s(C′) is the
distribution function.

Similarly, the incident flux on the wall can be obtained
by integrating over the corresponding half-space in molecular
velocity, i.e.,

F i =
∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
V ′φ(C′) f s(C′)dC′, (3)

where the incident distribution function is assumed to the
same as that at the top of the Knudsen layer. On the contrary,
the reflected flux from the wall is more complicated, as the
reflected distribution function needs to be determined by the
gas-surface scattering kernel. In the following, we will pro-
vide theoretical derivations of the slip boundary conditions
for the specific gas-surface scattering kernels including the
Maxwell model and the CLL model.

A. Slip boundary conditions for single-species gas
based on the Maxwell model

The Maxwell model assumes that the reflected flux is
caused by a sum of α portion of diffuse reflection and (1 − α)
portion of specular reflection, and α is the accommodation
coefficient (AC). Hence, Eq. (1) can be written as

F = F i + (1 − α)F sp + αFw. (4)

Specifically, the specularly and diffusely reflected flux can
be obtained as

F sp =
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V ′φ(C′) f s(U ′,−V ′,W ′) dC′, (5)

Fw =
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V ′φ(C′) f w(C′) dC′. (6)

Note that f w is the distribution function at the wall and hence
can be evaluated by the Maxwellian form ( f M) due to diffuse
reflection, that is,

f w = f M = n
β3

π3/2
exp

(−β2C′2), (7)

where n is the number density and β is the reciprocal
of the most probable thermal speed, i.e., β = √ m

2kT . Here
m denotes molecular mass, k is the Boltzmann constant, and
wall temperature Tw is used for the calculation of β in Eq. (7)
to determine f w.

Now we can apply Eq. (4) to derive the slip velocity. To
this end, the convected property is chosen as the molecular
momentum in the x direction, i.e., φ = m(us + U ′). Note that
us is the macroscopic gas velocity at the top of the Knudsen
layer and is virtually the slip velocity associated with NSF
equations. To estimate a variety of fluxes, the key step is to
determine the distribution function and then perform integra-
tions over the corresponding velocity space. Considering that
the NSF equations is essentially the first-order approxima-
tion of the Boltzmann equation in terms of Chapman-Enskog
expansion, so it is consistent to employ the first-order dis-
tribution function for the derivation of the slip boundary
conditions. For simplicity, we suppose that the macroscopic
velocity varies only in the y direction, i.e., u0 = u0(y), and
neglect any temperature variation, and hence the Chapman-
Enskog distribution function with the first-order form can be
written as

f s = f M

[
1 − 4μβ4

ρ
U ′V ′ ∂u0

∂y

]
, (8)

where μ is the dynamic viscosity coefficient and ρ is the mass
density.

Substituting φ = m(us + U ′) and Eq. (8) for f s into
Eq. (3), we can obtain the incident flux as

F i =
∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
V ′m(us +U ′) f M

[
1 − 4μβ4

ρ
U ′V ′ ∂u0

∂y

]
dC′

= −nC′

4
mus − 1

2
μ

∂u0

∂y
, (9)

where C′ denotes the average value of the molecular ther-

mal speed, i.e., C′ =
√

8kT
πm . For brevity, we just provide the

result and the details of integration are provided in the Ap-
pendix. According to the definitions for the net flux [Eq. (2)],
the specularly reflected flux [Eq. (5)], and the diffusely re-
flected flux [Eq. (6)], similar integrations provide the results as
follows:

F = −μ
∂u0

∂y
, (10)

F sp = −F i, (11)

Fw = 0. (12)

Substituting Eqs. (9)–(12) into Eq. (4), we have

−μ
∂u0

∂y
= α

(
−nC′

4
mus − 1

2
μ

∂u0

∂y

)
. (13)
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Reformulating the above equation, we can obtain the theoret-
ical formula of the slip velocity, that is,

us = 2 − α

α

2μ

nmC′
∂u0

∂y
= 2 − α

α

μβ
√

π

ρ

∂u0

∂y
. (14)

Next we derive temperature jump condition based on the
Maxwell model. In this case, we focus on the transport of
molecular translational energy, i.e., φ = 1

2 mC′2. For simplic-
ity, we suppose that the temperature varies only in the y
direction, i.e., T = T (y), and neglect any velocity variations,
then Chapman-Enskog distribution function with the first-
order form can be written as

f s = f M

[
1 − 4κβ2

5nk

(
β2C′2 − 5

2

)
V ′ 1

T

∂T

∂y

]
, (15)

where κ is the coefficient of thermal conductivity. Substituting
Eq. (15) into Eq. (3) and using the results of basic integrals
provided in Appendix, we can obtain the incident flux of
energy as

Ei =
∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
V ′ 1

2
mC′2 f M

×
[

1 − 4κβ2

5nk

(
β2C′2−5

2

)
V ′ 1

T

∂T

∂y

]
dC′

= −nC′

4
2kT − 1

2
κ

∂T

∂y
. (16)

Similarly, the net energy flux, the specularly reflected energy
flux, and the diffusely reflected energy flux are determined as

E = −κ
∂T

∂y
, (17)

Esp = −Ei, (18)

Ew = nC′

4
2kTw. (19)

Substituting Eqs. (16)–(19) into Eq. (4), we have the temper-
ature jump condition as

T − Tw = 2 − α

α

κ

knC′
∂T

∂y
. (20)

B. Slip boundary conditions for single-species gas
based on the CLL model

It can been seen from Eqs. (14) and (20) that the slip coeffi-
cients in the boundary conditions based on the Maxwell model
are dependent on the accommodation coefficient (AC). Once
the specific AC is obtained using experimental technique or
molecular dynamics simulation, the slip models are com-
pletely determined. However, it has been demonstrated that
the Maxwell model contains just one AC and hence is not ac-
curate enough to describe scattering behavior of the reflected
molecules at some situations. The CLL model which employs
two ACs to independently determine the reflected velocities
in the tangential and normal directions, has demonstrated its
advantage in describing molecular scattering behavior at the
kinetic level.

According to kinetic theory, the scattering kernel
PCLL(c′ → c), which represents the probability of a gas

molecule with a incident velocity vector c′ being reflected
with a new velocity vector c, is generally used to describe
a specific gas-surface interaction. Note that the molecular
velocity c defined here is the sum of the macroscopic ve-
locity c0 and the molecular thermal velocity C, and the three
components of c in Cartesian coordinates are denoted as u, v,
and w, respectively. According to the definition of scattering
kernel, there is a relationship between the reflected distri-
bution function f r (C) and the incident distribution function
f i(C′) as [49]

V f r (C) = −
∫

V ′<0
V ′PCLL(c′ → c) f i(C′) dC′, (21)

where V and V ′ are the reflected and incident molecular
thermal velocity in the normal direction, respectively, and
f i(C′) is equal to f s(C′) according to the assumption that the
distribution function is unchanged within the Knudsen layer.

For the CLL model, the tangential and normal scattering
kernels can be written as

PCLL(u′ → u) = β√
παt

exp

[
−β2

(
u − √

1 − αt u′)2

αt

]
,

(22)

PCLL(v′ → v) = 2β2v

αn
I0

(
2β2

√
1 − αnv

′v
αn

)

× exp

[
−β2 v2 + (1 − αn)v′2

αn

]
, (23)

where αt and αn are the two ACs of the tangential and normal

energy, respectively, β =
√

m
2kTw

, and I0 denotes the zeroth-

order modified Bessel function,

I0(z) = 1

π

∫ π

0
exp (z cos θ )dθ. (24)

It can be seen from Eqs. (22) and (23) that the reflected tan-
gential velocity follows a drift Maxwellian distribution with
a mean velocity of

√
1 − αt times of the incident tangential

velocity and a temperature of αt Tw, while the reflected normal
velocity can be determined as the resultant of the two tangen-
tial velocity components. Note that the CLL model can also be
formulated in terms of tangential momentum AC (σt ), which
relates to the tangential energy AC (αt ) as αt = σt (2 − σt ).
Compared to the Maxwell model, the advantage of the CLL
model is that it can predict the lobular distributions of the
reflected molecules, as shown in Fig. 2, and this scattering
behavior agrees with experimental and molecular dynamics
results.

Now we can derive the slip boundary conditions based
on the CLL model. Compared to the derivations based on
the Maxwell model, the only difference is determining the
reflected flux due to specific scattering properties. With a
determined distribution function of reflected molecules, the
reflected flux yields

F r =
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V φr (C) f r (C) dC. (25)
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FIG. 2. Schematic of scattering properties for the Maxwell model (a) and the CLL model (b). Maxwell model is a combination of the
diffusive and specular reflection, while CLL model can predict lobular distribution of the reflected molecules.

Using the relation given by Eq. (21), the reflected flux defined
in Eq. (25) can be transformed to the following form:

F r =
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V ′φr (C) f s(U ′,−V ′,W ′) dC′, (26)

where φr (C) is the average value of the convected quantity
being reflected from the surface, that is,

φr (C) =
∫

V >0
φr (C)PCLL(c′ → c) dC. (27)

For a gas molecule with incident tangential velocity in the
x direction as u′ = (us + U ′), the average of reflected velocity
u based on the CLL model is

u =
∫ ∞

−∞
uPCLL(u′ → u) dU

=
∫ ∞

−∞
u

β√
παt

exp

[
−β2

(
u − √

1 − αt (us + U ′)
)2

αt

]
du

=
√

1 − αt (us + U ′). (28)

Consequently, the reflected momentum flux according to
Eq. (26) is

F r =
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V ′m

√
1 − αt (us + U ′) f M

×
[

1 + 4μβ4

ρ
U ′V ′ ∂u0

∂y

]
dC′

=
√

1 − αt

(
nC′

4
mus + 1

2
μ

∂u0

∂y

)
. (29)

Substituting Eqs. (9), (10), and (29) into Eq. (1), we have

us = 1 + √
1 − αt

1 − √
1 − αt

μβ
√

π

ρ

∂u0

∂y
. (30)

This is the velocity slip boundary condition based on CLL
model. Using the relation αt = σt (2 − σt ), we can transform
the above equation to

us = 2 − σt

σt

μβ
√

π

ρ

∂u0

∂y
. (31)

Compared to Eq. (14), it can be concluded that the CLL model
predicts the same velocity slip as the Maxwell model, if the
same AC is employed.

Next we derive the temperature jump condition based on
the CLL model. Considering one gas molecule with incident

velocity (U ′,V ′,W ′) without any macroscopic velocity, i.e.,
c′ = C′, the average of the square of the reflected velocity in
the x direction can be obtained as

u2 =
∫ ∞

−∞
u2PCLL(u′ → u) du

=
∫ ∞

−∞
u2 β√

παt
exp

[
−β2

(
u − √

1 − αtU ′)2

αt

]
du

= αt
kTw

m
+ (1 − αt )U

′2. (32)

Similarly, the average of the square of the reflected velocity in
the z direction is

w2 = αt
kTw

m
+ (1 − αt )W

′2. (33)

And the average of the square of the reflected velocity in the
normal direction is

v2 =
∫ ∞

0
v2PCLL(v′ → v)dv

=
∫ ∞

−0
v2 2β2v

αn
I0

(
2β2

√
1 − αnV ′v
αn

)

× exp

[
−β2 v2 + (1 − αn)V ′2

αn

]
dv

= αn
2kTw

m
+ (1 − αn)V ′2. (34)

Consequently, the reflected energy flux according to
Eq. (26) is

Er =
∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V ′ 1

2
m(u2 + v2 + w2) f M

×
[

1 + 4κβ2

5nk

(
β2C′2 − 5

2

)
V ′ 1

T

∂T

∂y

]
dC′

= nC′

4
(αn + αt )kTw + nC′

4
(2 − αn − αt ) kT

+ 5 − 3αn − 2αt

10
κ

∂T

∂y
. (35)

It can be seen from Eq. (35) that if αn = αt = 0, the predicted
result automatically reduces to that predicted by Eq. (18) for
the specularly reflected energy flux, while if αn = αt = 1, it
reduces to the result predicted by Eq. (19) for the diffusively
reflected energy flux.
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TABLE I. Comparison of the original viscous slip coefficient Cm, the corrected viscous slip coefficient C∗
m, and the numerical results [47]

for different accommodation coefficients σt and αn.

αn = 0 αn = 0.5 αn = 1

σt Cm C∗
m Ref. [47] Cm C∗

m Ref. [47] Cm C∗
m Ref. [47]

0.25 6.202 6.414 6.452 6.202 6.414 6.387 6.202 6.414 6.336
0.50 2.658 2.840 2.866 2.658 2.840 2.825 2.658 2.840 2.791
0.75 1.477 1.628 1.646 1.477 1.628 1.626 1.477 1.628 1.609
1 0.886 1.007 1.018 0.886 1.007 1.018 0.886 1.007 1.018

Substituting Eqs. (16), (17), and (35) into Eq. (1), we can
get the temperature jump condition as follows:

T − Tw = 2(10 − 3αn − 2αt )

5(αn + αt )

κ

knC′
∂T

∂y
. (36)

If αn = αt , then the temperature jump predicted by the above
equation is consistent with the result predicted by the Maxwell
model, as shown in Eq. (20). Note that it has been demon-
strated by experiments and MD simulations [38,50,51], αn

and αt are not equal in most circumstances, and their values
are dependent on surface materials, surface temperature, gas
temperature, gas velocity, etc. For instance, Yamamoto et al.
[38] reported that the tangential and normal energy ACs are
0.52 and 0.61, respectively, for nitrogen molecules impinging
on the platinum surface contaminated with xenon molecules,
and thus the deviations of the temperature jump coefficients
caused by the Maxwell model [Eq. (20)] and the CLL model
[Eq. (36)] is about 12.7%; Spijker et al. [50] found that the
tangential and normal energy ACs are 0.28 and 0.46, respec-
tively, for argon molecules impinging on the clean platinum
surface at 300 K, and thus the deviations of the temperature
jump coefficients caused by these two models are up to 41.0%.
It is indicated that the temperature jump boundary condition
based on the CLL model is promising to give more reasonable
predictions than the Maxwell model, as long as the indepen-
dent values of αn and αt can be measured accurately.

C. Comparison of the slip coefficients

For the applications using CFD calculations, it is more
convenient to express the velocity slip and temperature jump
boundary conditions in general forms with slip coefficients,
that is,

us = Cm
μ

βp

∂u0

∂y
, (37)

T − Tw = Ct
μ

βp

∂T

∂y
, (38)

where p is the local pressure, and Cm and Ct are viscous
slip coefficient and temperature jump coefficient, respectively.
Compared the theoretical formulas derived in the present
work, as shown in Eqs. (14) and (20) for the Maxwell model,
to the above two equations, we can determine the theoretical
slip coefficients, that is,

Cm, Maxwell = 2 − α

α

√
π

2
, (39)

Ct, Maxwell = 2 − α

α

15
√

π

16
. (40)

Here we have used the relation between the viscosity coeffi-
cient and the thermal conductivity coefficient for monatomic
gases, i.e., μ = 4m

15k κ , to determine the temperature jump co-
efficient shown in Eq. (40).

Similarly, based on the theoretical formulas derived in
Eqs. (31) and (36), we can also determine the theoretical slip
coefficients for the CLL model, that is,

Cm, CLL = 2 − σt

σt

√
π

2
, (41)

Ct, CLL = 2[10 − 3αn − 2σt (2 − σt )]

5[αn + σt (2 − σt )]

15
√

π

16
. (42)

For the sake of comparison, we use the tangential momentum
AC (σt ) instead of the tangential energy AC (αt ) here.

It should be noted that the theoretical analysis performed
in this work is based on the half-flux method, which assumes
that within the Knudsen layer, the intermolecular collisions
are negligible and the behavior of the gas is governed by the
gas-surface interaction and free transport of gas molecules. It
has been reported that neglecting molecular collisions within
the Knudsen layer would result in the deviations of the pre-
dicted slip coefficients, and the largest deviation is about 15%
[35,52]. To alleviate this deviation, Loyalka [53,54] proposed
an approximate method by accounting for the variation of the
distribution function within the Knudsen layer due to the ef-
fect of molecular collisions. For the Maxwell model, Loyalka
determined the slip coefficients as follows [53],

C∗
m, Maxwell = 2 − α

α

√
π

2
(1 + 0.1366α), (43)

C∗
t, Maxwell = 2 − α

α

15
√

π

16
(1 + 0.1621α). (44)

It can be seen that the slip coefficients determined by Loyalka
are similar to the previous results for the Maxwell model, i.e.,
Eqs. (39) and (40), but with simple correction factors. Pre-
vious studies have demonstrated the the corrected theoretical
formulas could give extremely consistent predictions with the
numerical results [53].

Consider the similarity of the forms of slip coefficients for
the Maxwell and CLL models derived in this work. We follow
Loyalka’s method and propose simple corrections to the slip
coefficients for the CLL model,

C∗
m, CLL = 2 − σt

σt

√
π

2
(1 + 0.1366σt ), (45)

C∗
t, CLL = 2[10 − 3αn − 2σt (2 − σt )]

5[αn + σt (2 − σt )]

15
√

π

16
(1 + 0.1621σt ).

(46)
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FIG. 3. Comparison of the theoretical velocity slip coefficient
derived in this work and the numerical results in the literature [47].
The theoretical predictions include the original model [Eq. (41)]
and the corrected model [Eq. (45)]. The abscissa is the tangential
momentum accommodation coefficient.

To evaluate the accuracy of the slip coefficients determined
by our theoretical models for the CLL model, we compare the
original predictions given by Eqs. (41) and (42), the corrected
predictions given by Eqs. (45) and (46), and the numerical
results provided by Sharipov [47]. The numerical results were
obtained by solving the simplified Boltzmann equation, i.e.,
the Shakhov model, using the discrete velocity method for the
Knudsen layer.

Our theoretical models for the velocity slip, i.e., Eqs. (41)
and (45), predict that the viscous slip coefficient is indepen-
dent of αn, and this behavior is confirmed by the numerical
results [47], which demonstrate that the relationship between
the viscous slip coefficient and αn is very week, as shown
in Fig. 3. At the same time, both our present work and the
numerical results [47] predict that the viscous slip coefficient
decreases as the increase of σt . Compared to the original
theoretical model, the corrected model is more consistent with
the numerical results, as shown in Fig. 3. For the sake of quan-
titative comparison, the data in details are presented in Table I.
It can be seen that the maximum fractional error between the
original viscous slip coefficient Cm and the numerical result is
about 13%, while the maximum fractional error between the
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FIG. 4. Comparison of the theoretical temperature jump coeffi-
cient derived in this work and the numerical results in the literature
[47]. The theoretical predictions include the original model [Eq. (42)]
and the corrected model [Eq. (46)]. The abscissa is the tangential
momentum accommodation coefficient.

corrected viscous slip coefficient C∗
m and the numerical result

is less than 2%.
Figure 4 shows the comparison of the temperature jump co-

efficients determined by our theoretical models and numerical
results for different σt and αn. In contrast to the viscous slip
coefficient, the temperature jump coefficient is determined
by both σt and αn. Basically, the theoretical models and nu-
merical results predict that the temperature jump coefficient
decreases as the increase of σt and αn. Compared to the
original model, the corrected model significantly improves
the accuracy of prediction of the temperature jump coeffi-
cient. The data in details are presented in Table II. It can be
seen that the maximum fractional error between the original
temperature jump coefficient Ct and the numerical result is
about 17%, while the maximum fractional error between the
corrected temperature jump coefficient C∗

t and the numerical
result is less than 4%.

For engineering applications, the shear stress and heat
flux of the surfaces, instead of the velocity slip and tem-
perature jump themselves, are the more important concerned
quantities. Theoretically, shear stress and heat flux are
proportional to the velocity gradient and the temperature

TABLE II. Comparison of the original temperature jump coefficient Ct , the corrected temperature jump coefficient C∗
t , and the numerical

results [47] for different accommodation coefficients σt and αn.

αn = 0 αn = 0.5 αn = 1

σt Ct C∗
t Ref. [47] Ct C∗

t Ref. [47] Ct C∗
t Ref. [47]

0 — — — 11.29 11.29 11.45 4.648 4.648 4.722
0.25 13.85 14.83 15.03 5.400 5.784 5.763 2.829 3.030 3.009
0.50 7.525 8.440 8.653 3.718 4.170 4.170 2.087 2.340 2.335
0.75 5.755 6.629 6.855 3.060 3.525 3.549 1.756 2.023 2.040
1 5.312 6.173 6.404 2.877 3.344 3.376 1.660 1.929 1.954
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gradient in the normal direction, respectively. Therefore,
the relative errors of the shear stress and heat flux caused
by the uncertainty of slip coefficients are generally much
smaller than the values of the velocity slip and tempera-
ture jump themselves. For this reason, it can be concluded
that our theoretical models with reasonable corrections
could give quantitative values of the slip coefficients with
an acceptable accuracy. However, solving the Boltzmann
equation is computationally expensive. Moreover, for each
case with specific values of σt and αn, it is required for nu-
merical method to run a separate simulation to determine the
slip coefficients. Therefore, the corrected theoretical model
presented in this work has big advantages in terms of com-
putational efficiency, especially for engineering applications.

III. SLIP BOUNDARY CONDITIONS
FOR BINARY MIXTURE

It is ubiquitous to encounter gas mixture flows for engi-
neering applications, such as air flows around a hypersonic
vehicle. For this reason, we further extend the above deriva-
tions to binary gas mixture. In the following, all the quantities
related to a specific species are denoted with the subscript A
or B. For instance, the number densities for species A and
B are denoted as nA and nB, respectively. The viscosity and
thermal conductivity coefficients for binary gas mixture are
approximated as follows:

μ = nA

n
μA + nB

n
μB, (47)

κ = nA

n
κA + nB

n
κB. (48)

Note that the exact formula of the transport coefficients for
binary gas mixture, as summarized by Bird et al. [55], are
more complicated than the above two equations. However,
as demonstrated by Gupta et al. [31], these two relations are
satisfied approximations for air, so they are used in this work
for the sake of simplicity.

Compared to the flux balance equation [Eq. (1)] for
the single species, the flux balance equation for the binary
mixture is

FA + FB = F i
A + F i

B + F r
A + F r

B . (49)

If the Maxwell model is employed for the gas-surface interac-
tion, then the corresponding flux balance equation is

FA + FB = F i
A + F i

B + (1 − αA)F sp
A + (1 − αB)F sp

B

+αAFw
A + αBFw

B . (50)

In the following, we will derive the slip boundary conditions
for binary gas mixture based on the Maxwell and the CLL
model.

A. Slip boundary conditions for binary mixture
based on the Maxwell model

Similar to the derivation of velocity slip for single-species
gas, the convected property due to molecular movements is
the momentum of the binary gas mixture in the x direction,
φ = mA(us + U ′

A) + mB(us + U ′
B). We also only consider the

variation of the macroscopic velocity in the y direction and ne-

glect any temperature variation for simplicity. Consequently,
the Chapman-Enskog distribution function with first-order
form for species A could be written as

f s
A = f M

A

[
1 − 4μAβ4

A

nmA
U ′

AV ′
A

∂u0

∂y

]
, (51)

where n is the total number density of binary gas mixture, i.e.,
n = nA + nB, and f (M )

A is the equilibrium distribution function
for species A, that is,

f M
A = nA

β3
A

π3/2
exp

(−β2
AC′

A
2)

. (52)

Note that species B has the same form of distribution function
as species A.

The incident momentum flux of species A is

F i
A =

∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
V ′

AmA(us + U ′
A) f M

A

×
[

1 − 4μAβ4
A

nmA
U ′

AV ′
A

∂u0

∂y

]
dC′

A

= −nAC′
A

4
mAus − 1

2
μA

nA

n

∂u0

∂y
. (53)

The net flux of species A can be obtained by the integration
over the whole velocity space, and the result goes to

FA = −μA
nA

n

∂u0

∂y
. (54)

For the Maxwell model, the reflected fluxes due to specu-
lar reflection and diffuse reflection for the species A can be
determined easily, that is,

F sp
A = −F i

A, (55)

Fw
A = 0. (56)

Substituting the above four equations for the species A and
the similar equations for the species B into the flux balance
equation [Eq. (50)], we have

us = 2[(2 − αA)μAnA + (2 − αB)μBnB]

n(αAnAC′
AmA + αBnBC′

BmB)

∂u0

∂y
. (57)

If we assume that the two species have the same ACs, that is,
αA = αB = α, then the above equation can be simplified as

us = 2 − α

α

2μ

nAC′
AmA + nBC′

BmB

∂u0

∂y
, (58)

where the formula for the viscosity of binary gas mixture

[Eq. (47)] has been employed. Using the relation C′
A =

√
8kT
πmA

and C′
B =

√
8kT
πmB

, the above equation can also be written as

us = 2 − α

α

√
π

2kT

μ

nA
√

mA + nB
√

mB

∂u0

∂y
, (59)

This form is consistent with that presented by Gupta et al. [31]
for the binary gas mixture if the concerned two species have
the same ACs.

Next we derive temperature jump boundary condition
for binary gas mixture based on the Maxwell model. The

055103-8



THEORETICAL DERIVATION OF SLIP BOUNDARY … PHYSICAL REVIEW E 104, 055103 (2021)

convected property due to molecular movements is the transla-
tional energy of molecules, i.e., φ = 1

2 mAC′
A

2 + 1
2 mBC′

B
2. We

suppose that the temperature varies only in the y direction and
neglect any velocity variation, then the first-order Chapman-
Enskog distribution function for species A can be written as

f s
A = f M

A

[
1 − 4κAβ2

A

5nk

(
β2

AC′
A

2 − 5

2

)
V ′

A

1

T

∂T

∂y

]
, (60)

where κA is the thermal conductivity coefficient of species A.
The incident energy flux of species A is

Ei
A =

∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
V ′

A

1

2
mAC′

A
2 f M

A

×
[

1 − 4κAβ2
A

5nk

(
β2

AC′
A

2 − 5

2

)
V ′

A

1

T

∂T

∂y

]
dC′

A

= −nAC′
A

4
2kT − 1

2
κA

nA

n

∂T

∂y
. (61)

Similarly, the net energy flux, the specularly reflected energy
flux, and the diffusely reflected energy flux can be determined
as follows:

EA = −κA
nA

n

∂T

∂y
, (62)

Esp
A = −Ei

A, (63)

Ew
A = nAC′

A

4
2kTw. (64)

Substituting the above four equations for the species A and
species B into the flux balance equation [Eq. (50)], we have

T − Tw = (2 − αA)κAnA + (2 − αB)κBnB

nk(αAnAC′
A + αBnBC′

B)

∂T

∂y
. (65)

Also, if we assume that these two species have the same ACs,
then the above equation can be simplified as

T − Tw = 2 − α

α

κ

k
(
nAC′

A + nBC′
B

) ∂T

∂y
. (66)

Using the relation C′
A =

√
8kT
πmA

and C′
B =

√
8kT
πmB

, the temper-

ature jump boundary condition based on the Maxwell model
can also be written as

T − Tw = 2 − α

α

√
π

8kT

κ

k(nA/
√

mA + nB/
√

mB)

∂T

∂y
. (67)

B. Slip boundary conditions for binary mixture based
on the CLL model

To derive the slip boundary conditions for binary gas mix-
ture based on the CLL model, the crucial step is to obtain the
reflected momentum flux and energy flux. For simplicity, we
assume that these two species have the same ACs but each
has different tangential and normal energy ACs. Following the
above analyses, the reflected velocity of species A based on
the CLL model can be written as

uA =
√

1 − αt (us + U ′
A). (68)

Consequently, the reflected momentum flux of species A is

F r
A =

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V ′

AmA

√
1 − αt (us + U ′

A) f M
A

×
[

1 + 4μAβ4
A

nmA
U ′

AV ′
A

∂u0

∂y

]
dC′

A

=
√

1 − αt

(
nAC′

A

4
mAus + 1

2
μA

nA

n

∂u0

∂y

)
. (69)

Substituting Eqs. (53), (54), and (69) into Eq. (49), we can
obtain the velocity slip for binary gas mixture as

us = 1 + √
1 − αt

1 − √
1 − αt

√
π

2kT

μ

nA
√

mA + nB
√

mB

∂u0

∂y
. (70)

To derive the temperature jump boundary condition, we
first determine the average values of the square of the
reflected velocity components for species A according to
Eqs. (32)–(34), that is,

uA
2 = αt

kTw

mA
+ (1 − αt )U

′
A

2
, (71)

wA
2 = αt

kTw

mA
+ (1 − αt )W

′
A

2
, (72)

vA
2 = αn

2kTw

mA
+ (1 − αn)V ′

A
2
. (73)

Consequently, the reflected energy flux for species A is

Er
A =

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
V ′

A

1

2
mA(uA

2 + vA
2 + wA

2) f M
A

×
[

1 + 4κAβ2
A

5nk

(
β2

Ac′
A

2 − 5

2

)
v′

A

1

T

∂T

∂y

]
dc′

A

= nC′
A

4
(αn + αt )kTw + nC′

A

4
(2 − αn − αt ) kT

+ 5 − 3αn − 2αt

10
κA

nA

n

∂T

∂y
. (74)

Substituting Eqs. (61), (62), and (74) into Eq. (49) and using
Eq. (48) for the thermal conductivity of binary gas mixture, we
can obtain the temperature jump boundary condition based on
the CLL model as

T − Tw = 2(10 − 3αn − 2αt )

5(αn + αt )

×
√

π

8kT

κ

k(nA/
√

mA + nB/
√

mB)

∂T

∂y
. (75)

Similar to single-species gas, if the tangential and normal en-
ergy ACs are not equal, then the temperature jump coefficients
based on the CLL model, as shown in Eq. (75), would be
obviously different from that based on the Maxwell model.
It is known that capturing the temperature jump behavior
correctly at the boundary is one of the key factors to give ac-
curate prediction of the heat flux on the surface of hypersonic
vehicles. Therefore, the proposed temperature jump boundary
condition based on the CLL model would be useful for the
simulation of hypersonic gas flows. In addition, if the two
species have different ACs, the form of the temperature jump
boundary condition is more complicated than Eq. (75), but it
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is can be easily derived following the above procedure. To the
best of our knowledge, there are no reported slip coefficients
determined by numerical results on the basis of the CLL
model so far. Therefore, it is inaccessible to directly validate
our results for the binary gas mixture at present, and it is
expected to do in the future if massive numerical simulations
based on the Boltzmann equation are performed. It is worth
noting that, similar to the case of single species, we neglect
molecular collisions in the analyses for binary gas mixture.
Consequently, the theoretical models of the binary gas mixture
also need corrections if accurate slip coefficients are required.

IV. CONCLUSIONS

We employed the half-flux method to perform theoretical
analysis within the Knudsen layer, to derive the slip boundary
conditions for both single-species gas and binary gas mix-
ture based on two typical scattering kernels. If the Maxwell
model is assumed for the gas-surface interaction, then the
corresponding slip coefficient contains only one accommoda-
tion coefficient for both velocity slip and temperature jump.
On the contrary, if the CLL model is assumed, although
the derived velocity slip is the same as that predicted by
the Maxwell model, then the derived temperature jump con-
tains two accommodation coefficients in the tangential and
normal directions. It has been demonstrated by experiments
and molecular dynamics simulations that the tangential and
normal accommodation coefficients can have obvious differ-
ences, and thus the temperature jump boundary condition
derived based on the CLL model is promising to give more
accurate predictions about temperature distribution and heat
flux at the boundaries. To validate our theoretical models, we
compared the slip coefficients predicted by our models and
numerical results obtained by solving Boltzmann equation.
It demonstrated that, with reasonable correction factors, the
theoretical models can predict the consistent slip coefficients
with the numerical results.

In this work, our analyses have only focused on single-
species gas and binary gas mixture, and the extension to

multicomponent mixture is straightforward. In addition, the
nonequilibrium effect of internal energy during reflection
from the surface and the effect of finite-rate surface catalytic
recombination can also be included. Previous theoretical
works [31,32] have been carried out on this subject based on
the Maxwell model, and it would be meaningful, particularly
for hypersonic gas flows, to extend them by taking into ac-
count the CLL scattering kernel. It should be noted that the
CLL model is also not perfect at some extreme conditions, and
thus it is expected to develop general slip boundary conditions
based on more realistic but more complicated gas-surface
interaction models [56,57].
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APPENDIX

1. Basic integrals for obtaining various fluxes

Here we list the the basic integrals of the distribution
function needed in this work for the theoretical derivation.
They are frequently used to determine the required fluxes of
momentum and energy:∫ ∞

0
exp

(−β2x2
)
dx =

√
π

2β
, (A1)∫ ∞

0
xexp

(−β2x2
)
dx = 1

2β2
, (A2)∫ ∞

0
x2exp

(−β2x2
)
dx =

√
π

4β3
, (A3)∫ ∞

0
x3exp

(−β2x2
)
dx = 1

2β4
. (A4)

2. Integrations for the incident flux

According to Eq. (9), the incident momentum flux based
on the Maxwell model is

F i =
∫ ∞

−∞

∫ 0

−∞

∫ ∞

−∞
V ′m(us + U ′)n

β3

π3/2
exp

(−β2C′2)[1 − 4μβ4

ρ
U ′V ′ ∂u0

∂y

]
dC′

=
∫ +∞

−∞

∫ 0

−∞

∫ +∞

−∞
nm

(
β3

π3/2

)
exp

(−β2C′2)[usV
′ + U ′V ′ − usU

′V ′2 4μβ4

ρ

∂u0

∂y
− U ′2V ′2 4μβ4

ρ

∂u0

∂y

]
dC′. (A5)

Note that in the square brackets, the second and the third terms are odd functions of U ′ and the integration ranges are the whole
velocity space, so they can be dismissed directly. The first term in the square brackets can be integrated according to Eqs. (A1)
and (A2), while the fourth terms can be integrated according to Eqs. (A1) and (A3). Summing up the integration results, we have

F i = − nC′
4 mus − 1

2μ∂u0
∂y . (A6)

Note that the incident energy flux based on the Maxwell model can be determined by similar procedure of integration, and it can
also be obtained using software such as Wolfram Mathematica .

[1] I. A. Leyva, Phys. Today 70(11), 30 (2017).
[2] M. Schouler, Y. Prévereaud, and L. Mieussens, Prog. Aerosp.

Sci. 118, 100638 (2020).
[3] C. J. Greenshields and J. M. Reese, Prog. Aerosp. Sci. 52, 80

(2012).

[4] J. J. Thalakkottor and K. Mohseni, Phys. Rev. E 94, 023113
(2016).

[5] G. V. Candler, Annu. Rev. Fluid Mech. 51, 379
(2019).

[6] J. Chen and H. Zhou, Acta Mech. Sin. 37, 2 (2021).

055103-10

https://doi.org/10.1063/PT.3.3762
https://doi.org/10.1016/j.paerosci.2020.100638
https://doi.org/10.1016/j.paerosci.2011.08.001
https://doi.org/10.1103/PhysRevE.94.023113
https://doi.org/10.1146/annurev-fluid-010518-040258
https://doi.org/10.1007/s10409-021-01051-9


THEORETICAL DERIVATION OF SLIP BOUNDARY … PHYSICAL REVIEW E 104, 055103 (2021)

[7] I. Nompelis, G. V. Candler, and M. S. Holden, AIAA J. 41, 2162
(2003).

[8] H. Struchtrup, Macroscopic Transport Equations for Rarefied
Gas Flows (Springer, Berlin, 2005).

[9] C. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations
and Micro Flows (Springer Science & Business Media, Berlin,
2006).

[10] I. D. Boyd and T. E. Schwartzentruber, Nonequilibrium Gas
Dynamics and Molecular Simulation (Cambridge University
Press, Cambridge, UK, 2017).

[11] J. Zhang, B. John, M. Pfeiffer, F. Fei, and D. Wen, Adv.
Aerodyn. 1, 12 (2019).

[12] T. Gökçen, R. W. MacCormack, and D. R. Chapman, in AIAA
Paper (1987), p. 1115.

[13] P. M. Bhide, N. Singh, T. E. Schwartzentruber, I. Nompelis,
and G. V. Candler, in Proceedings of the 2018 AIAA Aerospace
Sciences Meeting (2018), p. 1235.

[14] J. H. Guo, G. P. Lin, J. Zhang, X. Q. Bu, and H. Li, Aerosp. Sci.
Technol. 93, 105296 (2019).

[15] J. C. Maxwell, Philos. Trans. R. Soc. London 170, 231 (1879).
[16] T. Gökçen and R. W. MacCormack, in AIAA Paper (1989),

p. 0461.
[17] R. G. Deissler, Int. J. Heat Mass Transfer 7, 681 (1964).
[18] N. G. Hadjiconstantinou, Phys. Fluids 15, 2352 (2003).
[19] D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber,

Phys. Rev. E 70, 017303 (2004).
[20] A. Beskok, Numer. Heat Transfer, Part B: Fundamentals 40, 451

(2001).
[21] G. Karniadakis, A. Beskok, and N. Aluru, Microflows and

Nanoflows: Fundamentals and Simulation (Springer Science &
Business Media, Berlin, 2006).

[22] Z. Guo, J. Qin, and C. Zheng, Phys. Rev. E 89, 013021 (2014).
[23] R. S. Myong, Phys. Fluids 16, 104 (2004).
[24] N. T. P. Le, C. White, J. M. Reese, and R. S. Myong, Int. J. Heat

Mass Transfer 55, 5032 (2012).
[25] N. T. P. Le, N. H. Tran, T. N. Tran, and T. T. Tran, Proc. Inst.

Mech. Eng., Part G: J. Aerosp. Eng. 234, 840 (2020).
[26] D. A. Lockerby, J. M. Reese, and M. A. Gallis, AIAA J. 43,

1391 (2005).
[27] C. R. Lilley and J. E. Sader, Phys. Rev. E 76, 026315 (2007).
[28] W. Li, L. S. Luo, and J. Shen, Comput. Fluids 111, 18

(2015).
[29] S. D. Jiang and L. S. Luo, J. Comput. Phys. 316, 416 (2016).
[30] C. D. Scott, AIAA J. 13, 1271 (1975).

[31] R. N. Gupta, C. D. Scott, and J. N. Moss, NASA Tech. Paper
2452 (1985).

[32] D. E. Rosner and D. H. Papadopoulos, Ind. Eng. Chem. Res. 35,
3210 (1996).

[33] B. Xu and Y. G. Ju, Combust. Theor. Model. 10, 961 (2006).
[34] L. Wu and H. Struchtrup, J. Fluid Mech. 823, 511 (2017).
[35] H. Struchtrup, Phys. Fluids 25, 112001 (2013).
[36] N. Yamanishi, Y. Matsumoto, and K. Shobatake, Phys. Fluids

11, 3540 (1999).
[37] D. Bruno, M. Cacciatore, S. Longo, and M. Rutigliano, Chem.

Phys. Lett. 320, 245 (2000).
[38] K. Yamamoto, H. Takeuchi, and T. Hyakutake, Phys. Fluids 18,

046103 (2006).
[39] T. F. Liang, Q. Li, and W. J. Ye, Phys. Rev. E 88, 013009 (2013).
[40] C. Cercignani and M. Lampis, Transp. Theory Stat. Phys. 1, 101

(1971).
[41] R. G. Lord, Phys. Fluids A 3, 706 (1991).
[42] R. G. Lord, J. Fluid Mech. 239, 449 (1992).
[43] N. A. Mehta and D. A. Levin, J. Thermophys. Heat Transfer 31,

757 (2017).
[44] N. Andric, D. W. Meyer, and P. Jenny, Phys. Fluids 31, 067109

(2019).
[45] S. K. Loyalka, Phys. Fluids A 1, 403 (1989).
[46] S. Takata, S. Yasuda, S. Kosuge, and K. Aoki, Phys. Fluids 15,

3745 (2003).
[47] F. Sharipov, Eur. J. Mech. B. Fluids 22, 133 (2003).
[48] F. Sharipov, J. Phys. Chem. Ref. Data 40, 023101 (2011).
[49] F. Sharipov, Rarefied Gas Dynamics: Fundamentals for Re-

search and Practice (John Wiley & Sons, New York, NY, 2015).
[50] P. Spijker, A. J. Markvoort, S. V. Nedea, and P. A. J. Hilbers,

Phys. Rev. E 81, 011203 (2010).
[51] T. A. Sipkens and K. J. Daun, J. Phys. Chem. C 122, 20431

(2018).
[52] R. W. Barber and D. R. Emerson, Heat Transfer Eng. 27, 3

(2006).
[53] S. K. Loyalka, Phys. Fluids 14, 2291 (1971).
[54] I. N. Ivchenko, S. K. Loyalka, and R. Tompson, Jr., Analytical

Methods for Problems of Molecular Transport, Vol. 83 (Springer
Science & Business Media, Berlin, 2007).

[55] R. B. Bird, E. W. Stewart, and N. E. Lightfoot, Transport
Phenomena (John Wiley & Sons, New York, NY, 2006).

[56] T. Liang, J. Zhang, and Q. Li, Phys. Fluids 33, 082005 (2021).
[57] S. Mohammad Nejad, E. Iype, S. Nedea, A. Frijns, and D.

Smeulders, Phys. Rev. E 104, 015309 (2021).

055103-11

https://doi.org/10.2514/2.6834
https://doi.org/10.1186/s42774-019-0014-7
https://doi.org/10.1016/j.ast.2019.07.029
https://doi.org/10.1098/rstl.1879.0067
https://doi.org/10.1016/0017-9310(64)90161-9
https://doi.org/10.1063/1.1587155
https://doi.org/10.1103/PhysRevE.70.017303
https://doi.org/10.1080/104077901753306593
https://doi.org/10.1103/PhysRevE.89.013021
https://doi.org/10.1063/1.1630799
https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.050
https://doi.org/10.1177/0954410019886955
https://doi.org/10.2514/1.13530
https://doi.org/10.1103/PhysRevE.76.026315
https://doi.org/10.1016/j.compfluid.2014.12.018
https://doi.org/10.1016/j.jcp.2016.04.011
https://doi.org/10.2514/3.60540
https://doi.org/10.1021/ie9600351
https://doi.org/10.1080/13647830600792313
https://doi.org/10.1017/jfm.2017.326
https://doi.org/10.1063/1.4829907
https://doi.org/10.1063/1.870211
https://doi.org/10.1016/S0009-2614(00)00247-5
https://doi.org/10.1063/1.2191871
https://doi.org/10.1103/PhysRevE.88.013009
https://doi.org/10.1080/00411457108231440
https://doi.org/10.1063/1.858076
https://doi.org/10.1017/S0022112092004488
https://doi.org/10.2514/1.T4934
https://doi.org/10.1063/1.5094768
https://doi.org/10.1063/1.857462
https://doi.org/10.1063/1.1624075
https://doi.org/10.1016/S0997-7546(03)00017-7
https://doi.org/10.1063/1.3580290
https://doi.org/10.1103/PhysRevE.81.011203
https://doi.org/10.1021/acs.jpcc.8b06394
https://doi.org/10.1080/01457630500522271
https://doi.org/10.1063/1.1693331
https://doi.org/10.1063/5.0059029
https://doi.org/10.1103/PhysRevE.104.015309

