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Dynamic effects in transition from regular to Mach reflection in steady supersonic flows
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The effect of rapid wedge rotation on the transition from regular (RR) to Mach reflection (MR) is investigated.
This unsteady shock reflection transition is compared with the steady-state transition. The dependence of various
flow features such as the unsteady Mach stem height, position of the reflection point, and shock angle at the
reflection or triple point on the wedge angle for a fixed Mach number is compared at various rotation rates. The
study is further extended to compare the dynamic effects for various Mach numbers in the strong shock reflection
domain at higher wedge speeds. Transition lines corresponding to different rotation speeds are obtained similar
to the detachment transition line in steady cases. It is found that the pivot point has only marginal effect on
the transition point, but it substantially affects the Mach stem growth and the movement of the reflection point,
specifically at higher Mach numbers. The location of the transition from the inlet also depends on the pivot point
and the rate of rotation.
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I. INTRODUCTION

Shock wave reflection is one of the interesting and impor-
tant phenomena in high-speed flows. Shock wave reflections
are observed in nozzle flows, supersonic inlets, and vari-
ous other applications and are broadly classified into regular
reflection (RR) and irregular reflection (IR) [1]. The most
common type of irregular reflection observed in steady flows
is a simple Mach reflection (SMR), also known as a Mach
reflection (MR). There are clear, distinct features for RR and
MR, best described with the help of a schematic diagram, as
shown in Figs. 1(a) and 1(b). Regular reflection is a two-shock
structure in which an incident shock wave (i) and a reflected
shock wave (r) meet at the reflection point R as shown in
Fig. 1(a). In the RR, the reflected shock wave induces an
equal and opposite flow deflection to the one induced by the
incident shock wave [2,3]. On the other hand, an MR is a
three shock structure, consisting of an incident shock wave, a
reflected shock wave, and a Mach stem (m) with a slipstream
(s), intersecting at the triple point T as shown in Fig. 1(b). In
the MR, the net flow deflection near the triple point induced by
the incident and the reflected shock wave is equal to the flow
deflection induced by the Mach stem [2,3]. The slipstream acts
as a contact surface, and the pressure across it near the triple
point is uniform. Apart from the standard solution of an IR,
which is the MR, various nonstandard solutions such as von
Neumann reflection (vNR) [4,5], Guderely reflection (GR)
[6,7], and Vaislev reflection (VR) [8] which are collectively
known as weak-Mach reflections (WMR) [9] exist and are not
so common in steady flows.
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These shock structures transit into one another depend-
ing on various parameters, a phenomenon known as shock
wave transition [10]. The shock wave transitions commonly
occurring in the steady flows are regular to Mach reflection
(henceforth indicated as RR → MR) and Mach to regular re-
flection (MR → RR). It is important to identify the transition
point because the transition leads to a significant change in
the flow properties [11]. Azevedo and Liu [12] showed the
significant influence of the subsonic region behind the Mach
stem in acoustic pressure levels after the transition to MR,
which could have been otherwise supersonic in an RR. Hence,
the identification of the transition point in physical and param-
eter spaces is important in designing supersonic vehicles and
engine inlets.

The steady-state RR ↔ MR transition has been a contin-
ued interest since the pioneering work of von Neumann [2].
A detachment condition for the transition RR → MR and the
von Neumann condition for the transition MR → RR were
introduced by von Neumann [2,3]. These criteria were not in
complete agreement with the experimental results obtained for
a wide range of Mach numbers and wedge angles [13]. The
transition criteria also depend on the domain where the reflec-
tions happen. The shock reflections were classified into two
domains [14], a weak shock reflection domain and a strong
shock reflection domain based on a critical free stream Mach
numbers M0C = 2.47 for monoatomic gas and M0C = 2.2 for
diatomic gas. The flow downstream of the reflected shock
is subsonic in a weak shock reflection domain, whereas it
is supersonic in a strong shock reflection domain. A length
scale criterion for RR → MR transition was also proposed,
and it was postulated that, for a finite length scale (a Mach
stem) to exist in an MR, there must be a communication of
pressure signals to the reflection point through the expansion
fan, which can only happen when the flow downstream of the
reflection point is sonic, also known as the sonic criterion for
RR → MR transition [15]. There have been several studies to
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(a) (b)

FIG. 1. Schematic representations of (a) regular reflection,
(b) Mach reflection. Incident shock, i meets reflected shock r at
point R in regular reflection and at point T in Mach reflection.
Additionally, at T , Mach reflection has a third shock wave m, which
is the Mach stem.

estimate the Mach stem height and overall MR configuration
in both symmetric [11,16–19] and asymmetric [20–22] wedge
reflections in steady flows, as the flow properties vary remark-
ably across the Mach stem.

It was first hypothesized that the transitions RR → MR
and MR → RR could occur at different wedge angles [15], a
phenomenon known as hysteresis in the wedge angle variation
induced RR ↔ MR transition. There were failures in observ-
ing the hysteresis phenomenon because of its sensitivity to
perturbations. Henderson and Lozzi [23,24] failed to record
the hysteresis in their experiments and concluded that both
RR ↔ MR transitions happen at the von Neumann condition.
Hornung and Robinson [25] conducted experiments for var-
ious Mach numbers and concluded that strong disturbances
and/or turbulence in the flow set up an information path and
cause an early transition to MR at the von Neumann con-
dition, and hence failed to observe the hysteresis. They also
showed that the RR ↔ MR transition depends on whether the
free stream Mach number M is more or less than a critical
value M0C given by [14]. The hysteresis in experiments was
first demonstrated using extremely minimal noise levels in
the wind tunnel to avoid any effect of perturbations on the
transition point [26,27]. Hysteresis in the computational sim-
ulations was observed first by Chpoun et al. [28], followed by
many others [29–34].

A review of the well-established steady-state RR ↔ MR
transition criteria for the strong and weak shock reflections by
Ben-Dor [10] discusses several applications. Both RR ↔ MR
transitions occur at the steady detachment condition in the
weak shock reflection domain. In contrast, a dual solution
domain exists in the strong shock reflection domain, and
the transition RR → MR occurs at the steady detachment
condition while the transition MR → RR occurs at the von
Neumann condition.

Although there are several studies available on the steady-
state RR ↔ MR transition, limited reports exist on the
unsteady shock reflection. The unsteadiness here is the rapid
variation of wedge angle for a steady oncoming supersonic
flow. The dynamic effects can be significant in practical
applications involving rapidly flapping surfaces such as in
supersonic inlets with wedge angle changing in time, thrust
vectoring, and supersonic flow over control surfaces. One
such investigation to study the maximum permissible rotation
speed without introducing the dynamic effects was carried out
by Khotyanovsky et al. [35]. They observed a shock curvature

at higher speeds of wedge rotation. Mouton and Hornung [17]
showed in their experiments that at a higher wedge rotation
rate RR → MR transition is delayed, and RR can be main-
tained further into the dual solution domain but not up to or
beyond the detachment condition. Felthun and Skews [36] did
a computational investigation on the effects of rapid wedge
rotation for constant Mach number M = 3.0. They observed
that at higher wedge speeds RR → MR transition happens
beyond the detachment condition, and MR → RR transition
happens below the von Neumann condition.

Naidoo and Skews [37] provided the first experimental
confirmation of RR → MR transition beyond the steady de-
tachment condition in symmetric wedge reflection at higher
wedge speeds. They conducted an experimental and computa-
tional study to investigate RR → MR transition criteria and
the mechanism of the transition at rapid wedge rotation in
the strong and weak reflection domain. It was found that the
RR was maintained even in the presence of the length-scale
information in the strong reflection domain (at M = 2.98),
and the transition happened even before the appearance of
the length-scale information in the weak reflection domain (at
M = 1.93). Based on this, they concluded that the transition to
MR in the dynamic case happens when the flow at the reflec-
tion point cannot be turned parallel to the wall by the reflected
shock wave, which was termed the dynamic counterpart for
the steady detachment condition. A brief parametric study
was also done to investigate the effect of change in the point
of rotation and the initial incidence on RR → MR transition.
Naidoo and Skews [38] further extended this study to a wider
range of rotation rates to confirm the RR → MR transition
criteria in the dynamic case. They confirmed that the sonic,
detachment, and length-scale criteria are different in the rapid
wedge rotation, and the transition in the dynamic case occurs
due to the inability of the flow to maintain the wall boundary
conditions. Naidoo and Skews [39] studied the effect of rota-
tion rate on the Mach stem growth in MR → RR transition.
The sensitivity of the transition point to the pivot point and
the initial incidence was also examined briefly. However, its
influence on the Mach stem growth and the location of the
transition from the domain inlet has not been studied. Their
investigation was mainly focused on the RR → MR transi-
tion mechanism at higher wedge speeds. The previous studies
involving dynamic effects were mostly done for a single Mach
number M = 2.98 in the strong reflection domain. The present
study aims to bridge these gaps, specifically to comare the
dynamic effects at a wide range of rotation rates, Mach num-
ber, and pivot points, focusing on the specific flow features as
mentioned above for symmetric shock reflection.

In the above studies, though the overall features of the
dynamic shock transition phenomenon were presented, the
dependence of flow features, such as the unsteady Mach
stem height, position of the reflection point, and shock angle
at the reflection point, on the wedge angle in the dynamic
shock reflection regime for RR → MR transition were not
discussed in detail. The influence of the above parameters
on the aerodynamic forces generated on bodies traveling at
supersonic speeds is significant. For example, the inlet cowl
opening of a supersonic vehicle may generate dynamic effects
depending on the speed at which it opens. The growth rate
of the Mach stem after the RR → MR transition determines
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how the unsteady pressure and temperature loads evolve on
the geometry. The steady-state transition criteria may not pre-
dict the transitions and configuration of the Mach reflections,
which are influenced significantly by the dynamic effect. The
present study identifies the importance of dynamic effects in
the shock reflection process.

We carried out a computational study of the dynamic
RR → MR transition with the wedge angle changing in
time. The methodology to simulate such continuously mov-
ing domains is discussed briefly. The important flow features
investigated in the present work are the unsteady Mach stem
height, position of the reflection or triple point, and shock
angle at the reflection or triple point. A comparative anal-
ysis is done between the steady-state RR → MR transition
and the transition at higher wedge speeds in the range Me ∈
[0.001, 0.1] for various Mach numbers in the range M ∈
[2.5, 4.5]. The wedge is rotated about different pivot points
and the influence of the pivot point on the RR → MR transi-
tion and on some of the flow features is discussed.

II. NUMERICAL METHOD

The dynamic effects in RR → MR due to the wedge rota-
tion involves moving surfaces in the computational domain.
The grid and domain size are time dependent and hence the
setup is computationally challenging. The shock reflection
phenomenon is primarily inviscid in nature [10], and here
we do not discuss the viscous effects. In this paper, the flow
is simulated by solving two-dimensional (2D) compressible

Euler equations for a time-dependent computational mesh and
domain [40].

For a stationary control volume, the unsteady, compressible
governing equations in the conservative finite volume form are
given as

∂q
∂t

+ ∇ · F = 0. (1)

where, the vector q is the conserved quantity given as q =
[ρ, ρu, ρv, ρE ]T , and F represents the convective flux vector
of conserved variables. The local grid changes its volume and
surface area as the domain changes in time. To account for
the volume changes due to the local control surface velocity,
the convective flux vector undergoes the transformation given
as F∗ = F − qW, where W = Wxî + Wy ĵ is the local control
volume face speed [40]. The velocity in the x and y directions
for each face of the control volume is calculated based on the
average of the velocities of the bounding nodes of that face;
for example, the face from bounding nodes n1 and n2 is given
by

Wx =
(

dx
dt

)
n1 + (

dx
dt

)
n2

2
, Wy =

( dy
dt

)
n1 + ( dy

dt

)
n2

2
. (2)

Here, dx/dt and dy/dt are the velocities of the node in
the x and y directions, respectively. Similarly Wx and Wy are
evaluated for all four faces of the quadrilateral cell. For a
moving control volume, F∗ can then be written as [40]

F∗ =

⎡
⎢⎣

ρ(u − Wx )
ρu(u − Wx ) + p

ρv(u − Wx )
(ρE + p)(u − Wx ) + Wx p

⎤
⎥⎦î +

⎡
⎢⎣

ρ(v − Wy)
ρu(v − Wy)

ρv(v − Wy) + p
(ρE + p)(v − Wy) + Wy p

⎤
⎥⎦ ĵ. (3)

The velocity of each node in the x and y directions is
calculated based on the change in the position of that node
in a time interval δt as

dx

dt
= xf − xi

δt
,

dy

dt
= yf − yi

δt
, (4)

where the subscripts i and f represent initial and final nodal
positions, respectively. The initial and final position of every
node in δt time are known a priori, as the mesh movement is
done with a predefined speed of wedge rotation. Each node
is assumed to be moving at a uniform speed in the x and y
directions. The nodal coordinates in the x and y directions
are updated at each time step. The change of geometrical
parameters such as surface area, volume, and normal vectors
are also updated at each time step for all the elements.

The governing equations are solved using the cell-centered
finite volume method on an unstructured quadrilateral mesh
[41]. Convective flux across the interface is calculated using
a second-order AUSM+-up scheme formulated by Liou [42].
The gradients at the cell centers are calculated using the least-
squares method, and values of the flow variables to the left and
the right of the cell interfaces are computed using a Taylor
series expansion with second-order accuracy along with the

Venkatakrishnan limiter [43] to avoid the oscillations in the
second-order accurate solution. For each face of the quadri-
lateral element, F∗ given in Eq. (3) is computed using the
values of the flow variables either to the left or the right of the
cell interface, depending on the wave information travel, as
discussed in [42]. The net flux vector F∗ through each element
is thus calculated by the summation of the flux through all the
bounding faces of the element. A fourth-order Runge-Kutta
scheme is used for time marching. The solver is optimized for
speed using OPENMP.

A. Computational domain

The computational model in Fig. 2 shows the domain
boundaries. Only one-half of the domain of symmetrical dou-
ble wedge configuration is simulated by modeling the top
boundary as a reflection plane. The velocity normal to the
reflection plane is zero, and the normal gradient of all other
primitive variables such as pressure, temperature, and density
are also zero. The flow at the inlet is supersonic with P0 =
474k Pa and T0 = 302 K, values consistent with the experi-
ments for validation [37]. The outlet flow is supersonic, and
all variables at the outlet are extrapolated from the domain.
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FIG. 2. Schematic diagram of the computational model. The
wedge of length w is rotated at a fixed rotation rate Me. In the
figure, trailing edge pivot rotation is indicated. The wedge angle θ

is measured from the horizontal as shown.

All the solid surfaces are modeled as slip walls, with the
fluid having a tangential velocity relative to the wall while the
normal velocity is zero. Similar to Felthun and Skews [36], a
dimensionless rotation speed,

Me = Ve

a∞
= �w

a∞
, (5)

is specified, which quantifies the moving edge speed (Ve) of
the wedge in terms of free stream speed of sound (a∞). Here,
Ve = �w where � is the rate of wedge rotation, and w is the
wedge length. The ratio g/w is fixed for the trailing edge pivot
and h/w for the leading edge pivot.

The wedge is started from an initial angle and is rotated
about the pivot points at a uniform speed to a final wedge an-
gle. The initial and final nodal positions are obtained from the
mesh at the initial and final wedge angles, respectively. The
wedge is rotated about the trailing edge for most of the simula-
tions unless otherwise specified and is compared with the flow
features resulting from the leading edge pivot in some cases.
The study is done for various values of Me ∈ [0.001, 0.1] and
M ∈ [2.5, 4.5]. The time interval δt , during which the mesh
moves from initial to final position, is computed based on Me.
The value of Me for increasing wedge angle (anticlockwise
rotation) is taken as positive, and that for decreasing wedge
angle (clockwise rotation) is taken as negative. The initial
condition for each case is the steady state solution attained for
that particular initial wedge angle. The steady state solution
for the initial wedge angle is obtained first before the wedge
is continuously rotated to a final wedge angle.

B. Grid sensitivity

The study in this paper is carried out for various inlet Mach
numbers M at various Me, in the strong reflection domain
(M > 2.2 for γ = 1.4). The prediction of the RR → MR tran-
sition is often considered a good marker for grid sensitivity
[37,44]. The grid dependence of the solution is checked on
the Mach number and Me independently. Although a grid-
independent solution is obtained on a coarser grid for lower
Mach numbers, the same grid is found to be not suitable for
higher Mach numbers. A comparatively finer grid is required
for higher Mach numbers at the same Me. Similarly, a finer
grid is required for a grid-independent solution at a higher Me

TABLE I. Variation of wedge angle at transition, θT , and shock
angle at transition, φT (in degrees) with refinement as dimensionless
minimum size of the element in the grid, s/w in RR → MR transi-
tion for M = 4.5 and Me = 0.1. The grid system with s/w = 0.0012
is chosen as the final grid.

Number of elements s/w θT φT

175 000 0.0048 32.4 42.9
350 000 0.0024 31.6 41.3
700 000 0.0012 31.2 40.5
1 000 000 0.00086 31.1 40.5
1 400 000 0.0006 31.1 40.4

for the same M. Thus, the grid sensitivity study is done for the
“worst-case scenario” of this study, the highest Mach number
(M = 4.5) and the highest rate of rotation, Me = 0.1.

The wedge is rotated continuously for an incoming steady
flow. Each simulation starts from an initial wedge angle θi

and is rotated at a constant rate Me. The results are recorded
for every 0.1◦ of wedge rotation. The transition RR → MR is
identified by the appearance of the Mach stem from the con-
tour plots. The transition point is assumed to be at the instance
at which the Mach stem appears first, in steps of 0.1◦ of the
wedge rotation. A smaller Mach stem might not be captured
by a coarser grid system, leading to a delayed transition point.
The transition points for RR → MR are checked on various
grids from coarser to finer until a grid-independent solution is
obtained. The simulations start with a steady RR established
at an initial wedge angle θi = 24◦ in the dual solution domain
at M = 4.5, and the wedge is rotated at Me = 0.1 until the
transition occurs. The variation of the wedge angle at transi-
tion (θT ) and shock angle at transition (φT ) for different grids
is shown in Table I. Also shown in Table I is the refinement of
each grid in terms of the dimensionless minimum size of the
element in the grid (s/w), where s is the minimum element
size.

The shock angle (φ) is measured at the reflection point in
an RR and at the triple point in an MR due to shock cur-
vature in dynamic cases [35,36]. The angles were measured
from the numerical schlieren. Lines passing through centers
of these shocks are considered, as the shocks waves have a
finite thickness, and the reflection and the triple points are
identified at their intersections. A smaller value of s/w results
in a higher Mach stem resolution and an early transition to
MR than the coarser grids, as shown in Table I. The grid
convergence is obtained as shown in Table I, and a grid system
with s/w = 0.0012 is chosen as the final grid. The results
shown in this paper henceforth are all for the grid with 7 × 105

quadrilateral elements with the refinement of s/w = 0.0012.

C. Validation of the code

Steady reflection RR → MR. The code is tested for various
rotation rates, and it is confirmed that Me = 0.001 is small
enough for the flow to exhibit nearly steady-state behavior at
each time step. A hysteresis test is done for the steady state
for M = 4.5. For RR → MR, a steady RR is first established
at an initial wedge angle θi = 24◦, as shown in Fig. 3(a), and
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FIG. 3. The wedge rotation speed of Me = 0.001 is found to be
nearly steady shock reflection case for all M. The dimensions shown
are in meters. Static pressure (in MPa) contours for M = 4.5 in
steady RR → MR transition starts at (a) θ = 24.0◦ with a steady
state solution and progressively increasing the wedge angle. The
contours shown are just before the transition (b) θ = 27.0◦, at transi-
tion point (c) θ = 27.1◦, and just after transition (d) θ = 27.2◦. See
Supplemental Material [45].

the wedge angle is increased steadily at Me = 0.001 until the
transition to MR takes place. The transition is observed at
a wedge angle, θ = 27.1◦, as shown in Fig. 3(c); the cor-
responding theoretical detachment criteria [10] is θ = 26.9◦.
The pressure contours just before and after the transition are
shown in Figs. 3(b) and 3(d), respectively. The comparison of
shock angle is 39.4◦ against a theoretical value of 39.2◦ [10].

Steady reflection MR → RR. To validate the MR → RR
transition at M = 4.5, the simulation starts from an MR case
at θi = 28◦ and progressively decreases the wedge angle indi-
cated by negative rotation speed. For MR → RR, a steady MR
is first established at an initial wedge angle θi = 28◦, as shown

FIG. 4. The wedge rotation speed of Me = −0.001 is nearly
steady shock reflection case and the negative sign indicates de-
creasing wedge angle. The dimensions shown are in meters. Static
pressure (in MPa) contours for M = 4.5 in steady MR → RR
transition start at (a) θ = 28.0◦ with a steady state solution and
progressively decreasing the wedge angle. Contours shown are just
before transition (b) θ = 21.4◦, at transition (c) θ = 21.3◦, and after
transition (d) θ = 21.2◦. See Supplemental Material [45].

in Fig. 4(a) and the wedge angle is decreased steadily at Me =
−0.001, until the transition to RR occurs. The transition is
observed at θ = 21.3◦ when the Mach stem size goes to zero,
as shown in Fig. 4(c); the corresponding theoretical von Neu-
mann criterion [10] is θ = 21◦. The pressure contours near the
transition are shown in Figs. 4(b) and 4(d), respectively. The
shock angle computed is 32.2◦, whereas the theoretical value
is 31.9◦ [10] for steady reflection MR → RR. The values
of wedge angle and shock angle at transition are in good
agreement with the theoretical values for both RR → RR and
MR → RR.

Dynamic shock reflection. The code is validated with the
results of dynamic wedge rotation about the trailing edge pivot
(g ≈ 0.6w) reported by Naidoo [46]. The Mach stem growth
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FIG. 5. Growth of the Mach stem for M = 2.98 with (a) shock
angle in RR → MR due to the impulsive rotation of the wedge about
the trailing edge at Me = 0.1, and (b) wedge angle in MR → RR
transition due to the impulsive rotation of the wedge about the trailing
edge at Me = −0.05.

rate in RR → MR transition is the quantity that is used for
comparison. A steady RR is established at first for M = 2.98
at an initial wedge angle θi = 19◦, and the wedge angle is
increased from θi = 19◦ at a rotation rate of Me = 0.1 until
an MR is obtained. The variation of dimensionless Mach stem
height (hm/w), where hm is the Mach stem height, is plotted
against the shock angle (φ), and along with results from the
2D simulations of Naidoo [46] in Fig. 5(a).

Further, the dynamic MR → RR transition is compared
with a test case from Naidoo and Skews [39]. As discussed
in the previous case, a steady MR is first established for M =
2.98 at θi = 24.5◦ and wedge angle is progressively decreased
at Me = −0.05 until a RR is obtained. The Mach stem height
is computed for all wedge angles as shown in Fig. 5(b), and
the plot matches well with the literature.

In the next section, the influence of wedge rotation on
various shock reflection parameters and indicators is analyzed
for a wide range of M and Me.

FIG. 6. Growth of the Mach stem with wedge angle in RR →
MR transition at various wedge rotation rates for M = 4.5.

III. STEADY AND DYNAMIC RR → MR TRANSITION

Felthun and Skews [36] briefly discussed the dynamic
effects in RR → MR transition and reported a delay in transi-
tion at higher rates of wedge rotation. Naidoo and Skews [37]
confirmed the delay in transition experimentally and mainly
focused on the investigation of the criteria and mechanism
of RR → MR transition at higher wedge speeds. Although
Naidoo and Skews [37] compared the Mach stem growth with
the shock angle for the steady and unsteady cases, the depen-
dences of Mach stem height and various flow features such
as the position of the reflection or triple point and the shock
angle at the reflection or triple point on the wedge angle have
not been compared at various Me. They briefly investigated the
effect of the pivot point on RR → MR transition; however, its
influence on the Mach stem growth has not been studied. In
this section, the dependences of various flow features such as
the unsteady Mach stem height, the position of the reflection
point, and shock angle at reflection or triple point on the
wedge angle at various Me for M = 4.5 are compared. The
influence of the pivot point on RR → MR transition and the
Mach stem growth is also investigated in detail.

A. Mach stem growth in rapid wedge rotation

The growth of the Mach stem (hm/w) with the wedge angle
and the shock angle at the triple point at various rates of
rotation in RR → MR transition for M = 4.5 is investigated
and compared. A steady RR is established at first for M = 4.5
at an initial wedge angle θi = 24◦. The wedge is started at the
same θi = 24◦ for both the trailing and leading edge pivots to
avoid the effect of initial incidence, if any, on the transition
point, and the wedge angle is increased continuously at con-
stant rates of rotation. At θi = 24◦, exit height g/w is 0.6 for
rotation about the trailing edge and inlet height h/w is 1.0 for
rotation about the leading edge (refer to Fig. 2).

In Fig. 6, the Mach stem height hm/w is plotted against the
wedge angle at various rotation speeds. Both cases of rotation,
namely the leading and trailing edge pivots, are shown in the
figure. After the transition point, there is a remarkable differ-
ence in the growth rate of the Mach stem for all Me. The Mach
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FIG. 7. Growth of Mach stem with shock angle at the triple point
in RR → MR transition at various wedge rotation rates for M = 4.5.

stem after the transition point is smaller at higher Me than at
lower Me. The Mach stem growth rate is abrupt closer to the
transition point for the nearly steady case of Me = 0.001 and
decreases away from the point of transition. This can be seen
from Fig. 6 by comparing the slope of the curves closer to the
point of transition and away from it for Me = 0.001. The slope
shows an inflection point at lower Me. On the other hand, at
higher Me, the Mach stem grows gradually after the transition.
The Mach stem growth is found to be dependent on the pivot
point and is higher for the leading edge pivot in comparison to
the trailing edge pivot at a particular Me for M = 4.5. Unlike
the steady case, the transition happens beyond the detachment
condition (shown as a green filled square) at higher θ on
increasing Me, which agrees with Felthun and Skews [36] and
Naidoo and Skews [37].

In Fig. 7, the Mach stem height is plotted against the shock
angle at the triple point at various rotation speeds for rotation
about the leading and trailing edge pivots. The Mach stem
growth with shock angle at the triple point at various Me

exhibits a similar trend as its variation with the wedge angle at
various Me. The Mach stem height for a particular shock angle
is the highest for lower Me, consistent with the observation
of Naidoo [46] for M = 2.98. This can be attributed to the
curvature of the incident shock in the dynamic case. It can
be seen that the effective shock angle at the reflection point
is less due to this curvature. This, in effect, corresponds to
a lower wedge angle, causing a reduction in the size of the
Mach stem. Apart from this, the growth of the Mach stem
is qualitatively similar for all the rotation rates. A maximum
difference of 0.2◦ is observed between the transition points of
the trailing and leading edge pivots, which may be considered
marginal. The delay in the wedge angle at transition is more
than the shock angle at the transition from their corresponding
steady-state values. Therefore, the influence of Me on θT is
higher as compared to φT , as can be understood from the
fundamental θ -φ-M relations.

It should be noted from Fig. 7 that, although the transition
points are nearly the same for both the pivots, the Mach
stem height is affected by the location of the pivot point. The
difference in the Mach stem size for the leading and trailing

FIG. 8. Dependence of the position of the reflection or triple
point on the wedge angle in RR → MR transition at various rotation
rates for M = 4.5.

edge pivots becomes significant at higher shock angles. It is
known that Mach stem height is a length scale in the flow field
which depends on the geometry as well as the flow parameters
such as the free stream conditions, inlet height, wedge length,
and wedge angle. When the rotation is about the leading edge,
the trailing edge height g changes, which may not have a direct
influence on the Mach stem size, other than the effect of the
wedge angle. On the other hand, when the rotation is about the
trailing edge, the inlet height h changes, leading to a change
in the Mach stem height.

B. Movement of the reflection or triple point
in rapid wedge rotation

The variation of the position of the reflection or triple point
(xR/w) with the wedge angle is studied at various rates of
rotation for RR → MR transition. Here, xR is the distance of
the reflection or triple point from the inlet of the domain. The
influence of Me on the location of the transition from the inlet
and the dependence of the position of reflection or triple point
on the pivot point is also investigated.

Figure 8 shows the dependence of reflection or triple point
on wedge angle at various Me for the rotation about the
leading and trailing edge pivots. It can be seen from Fig. 8
that the reflection point starts moving immediately towards
the inlet without any delay on increasing the wedge angle
for Me = 0.001 whereas, at higher Me, the position of the
reflection point is unchanged for some time when the wedge
angle is increased. The delay in the movement of the reflection
point increases as Me increases, as seen for Me = 0.05 and
Me = 0.1 in Fig. 8. This is because the flow in the steady
wedge rotation has sufficient time available to set up a com-
munication path for the information about the wedge rotation
to get propagated to the reflection point. This results in the
immediate movement of the reflection point in the steady
case. However, at higher Me, a lag in the communication of
information occurs due to the finite speed of the disturbances
carrying information about the wedge rotation. Hence, the
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FIG. 9. Static pressure contours coloured with streamwise veloc-
ity u (m/s), for rotation about the trailing edge for M = 4.5, Me =
0.1. The reflection point is indicated as xR (mm) from the inlet; other
dimensions are similar to those in Fig. 3. Rotation starts with a steady
case at (a) θi = 24◦, and the xR remains the same for (b) θ = 24.1◦;
an expansion wave emanates from leading edge. Expansion waves
continue to propagate and xR remains stationary, (c) θ = 24.5◦, till
expansion waves reach the reflection point at (d) θcr = 25.3◦. After
θcr , the xR starts moving towards the exit till it reaches (e) θm = 26.2◦.
For any further increase in θ , the reflection point moves towards the
inlet as in (f), θ = 27.8◦. See Supplemental Material [45].

wedge rotates by a significant amount at higher Me before the
reflection point starts moving.

The speed at which the reflection point moves towards the
inlet changes after the flow undergoes the transition for all
the rotation rates simulated in this study. This is evident from
the change in gradient of the curves at the transition point, as
shown in Fig. 8. A similar change in the gradient was observed
in the unsteady experiments conducted by Naidoo and Skews
[37]. From the present simulation, it is noted here that, at
lower Me, there is an abrupt change in gradient at the transition
point due to the sudden appearance of the Mach stem. The
change in the gradient is smaller on increasing Me.

The speed of the motion of the reflection point is dependent
on the pivot point and is higher for the leading edge pivot.
The transition happens closer to the domain inlet for the
leading edge pivot compared to the trailing edge pivot for a
particular Me. The difference in the location of transitions for
both the pivots increases with Me. Also seen from Fig. 8, the
transition location is closer towards the inlet for higher Me,
more evidently for the leading edge pivot. Hence, the location
of transition is found to be dependent on both the pivot point
and Me.

There are clear differences observed in the flow field de-
pending on the choice of the pivot point. Figure 9 shows the

TABLE II. Effect of Me on the movement of the reflection point
for trailing edge pivot. Here, θcr is the wedge angle at which the
expansion waves reach the reflection point, and θm is the wedge angle
at which the reflection point starts moving towards the inlet.

Me 0.01 0.05 0.1
θcr (degrees) 24.1 24.6 25.3
θm (degrees) 24.2 25.2 26.2

pressure contours for the rotation about the trailing edge at
Me = 0.1 for M = 4.5. As before, a steady RR is established
first at θi = 24◦, as shown in Fig. 9(a). As the wedge angle
is increased with a rotation rate of Me = 0.1 about the trail-
ing edge pivot, the expansion waves start emerging from the
wedge surface because the leading edge moves away from the
reflection plane [Fig. 9(b)]. These waves are seen at higher
Me, particularly at Me = 0.05 and at Me = 0.1, but are not
present in the nearly steady case (Me = 0.001). This is clearly
a dynamic effect as visualized from the contour plots. Naidoo
and Skews [39] have discussed the presence of similar waves
and their effect on the Mach stem growth in MR → RR tran-
sition for rapid wedge rotation. The waves propagate towards
the reflection point as shown in Fig. 9(c) and take a finite time
to reach the reflection point.

Further, the wave propagation and reflection point affect
each other as follows. In the supersonic flow, when the wedge
is rotated about the trailing edge, the reflection point is un-
aware of the wedge movement. The position of the reflection
point is unchanged until the waves emanating from the leading
edge reach the reflection point, which happens at a critical
wedge angle (θcr), which in this case is θcr = 25.3◦ [Fig. 9(d)].
The shock angle at the reflection point is also unchanged till
θcr . As the wedge angle is increased beyond θcr , there is a
slight but noticeable movement of the reflection point away
from the domain inlet till a particular wedge angle (θm, here
θm = 26.2◦), as in Fig. 9(e). On increasing the wedge angle
beyond θm, the reflection point starts to move continuously
towards the domain inlet [Fig. 9(f)]. The initial movement
of the reflection point away from the inlet on increasing the
wedge angle is contrary to its expected movement towards the
inlet. This is because, for the trailing edge pivot, when the
wedge angle is increased rapidly, the inlet height (h) increases
at a constant shock angle at the reflection point. Because the
position of the reflection point depends on the h and the shock
angle, the reflection point moves slightly away from the inlet
before it starts continuously moving towards the inlet at higher
wedge speeds. Comparatively, at higher Me, the reflection
point moves farther away from the inlet before continuously
moving towards it. On the other hand, for the steady case,
an immediate movement of the reflection point towards the
domain inlet is observed on increasing the wedge angle, unlike
in the dynamic case. Expansion waves are not seen in the
steady case as the flow has sufficient time to communicate
the wedge movement to the reflection point.

Table II shows the wedge angle at which the expansion
waves reach the reflection point (θcr) and the wedge angle at
which the reflection point starts moving towards the inlet (θm)
at various Me for M = 4.5. The initial wedge angle (θi) for all
the cases shown in Table II is 24◦. It can be seen that θcr and
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FIG. 10. Static pressure (in MPa) contours for rotation about the
wedge leading edge for M = 4.5, Me = 0.1. The reflection point
is indicated as xR (mm) from the inlet; the other dimensions are
similar to those in Fig. 3. The simulation starts with a steady case
at (a) θi = 24◦, and compression waves start emanating from the
leading edge at (b) θ = 24.1◦. The reflection point is unaware of
wedge movement even at (c) θ = 24.9◦, till the wave arrives at
(d) θcr = 25.3◦. After θcr , the reflection point starts moving towards
the inlet. See Supplemental Material [45].

θm are higher for higher Me. This implies that the delay in the
movement of the reflection point is higher for higher wedge
speeds.

The dynamics wedge rotation about the leading edge pro-
duces almost similar flow features as the trailing edge pivot,
except for the absence of a reflection point moving away from
the inlet. Figure 10 shows the pressure contours for rotation
about the leading edge at Me = 0.1 for M = 4.5. A steady RR
is established at θi = 24◦ for the leading edge pivot similar
to the trailing edge pivot, as shown in Fig. 10(a). For rotation
about the leading edge pivot, compression waves start emerg-
ing from the wedge surface as the trailing edge moves towards
the reflection plane, as shown in Fig. 10(b). The waves travel
towards the reflection point shown in Fig. 10(c). The reflection
point is unaware of the wedge movement until these waves
arrive at the reflection point at critical wedge angle (θcr , here
θcr = 25.3◦) for Me = 0.1 as shown in Fig. 10(d). On further
increasing the wedge angle, the reflection point starts moving
towards the domain inlet. As the inlet height h is constant for
rotation about the leading edge, no movement of the reflection
point away from the inlet is seen as in the case of the trailing
edge pivot. The values of the critical wedge angle (θcr), at
which the reflection point starts moving, is found to be nearly
the same for both the pivots at a given Me.

C. Shock angle at the reflection or triple point
in rapid wedge rotation

In this section, the variation of the shock angle at the
reflection or triple point with the wedge angle is examined.
The variations of the wedge angle and the shock angle with
time for various rotation rates are also discussed.

FIG. 11. Variation of the shock angle at the reflection or triple
point with the wedge angle in RR → MR transition at various rota-
tion rates for M = 4.5.

In Fig. 11, the shock angle is plotted with the wedge an-
gle for various rotation speeds for rotation about the trailing
edge pivot. For the steady case, φ increases on increasing θ .
However, at higher Me, the shock angle at the reflection point
remains constant initially, as shown for Me = 0.1 in Fig. 11,
until the waves from the wedge surface reach the reflection
point at θcr , after which it starts increasing. The change in
slopes of the curves for dynamic cases in the figure suggests
this regime change. For a particular wedge angle, φ at the
reflection point is smaller at higher Me. The shock angle at
transition point φT is shown with the magenta star symbol
(*) in Fig. 11. The value of φT is dependent on the shock
curvature and increases with Me. However, at higher Me, the
variation of φT seems to be asymptotic, a behavior previously
noted by [36].

In Fig. 12(a), the wedge angle is plotted against the time
for rotation about the trailing edge. The rotation rate is kept
constant for the dynamic cases examined in this paper; there-
fore, the wedge angle increases linearly with time, as shown
in the plot. The slope of the lines represents the magnitude of
the rotation rate, Me. The slope is the highest for Me = 0.1
and least for Me = 0.001. As seen from the plot, the transition
(symbols magenta star) happens at higher θ but earlier in
time at higher Me. Figure 12(b) shows the variation of θT /φT

with time for various rotation rates. It can be seen from the
plot that θT increases more rapidly than φT on increasing the
rotation rate. This is surmised as follows: the value of φT at
the reflection or triple point in the dynamic case depends on
the shock curvature, and, at a higher Me, the wedge rotates
by a higher amount but a comparatively lower variation in the
curvature.

D. Transition lines for RR → MR

There are well-established transition criteria for steady
RR → MR transition [10]. In steady cases, the wedge angle
at which the transition occurs for a particular Mach number
can be identified from the detachment line. In this section,
transition lines for RR → MR transition over a range of Mach
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FIG. 12. Variation of (a) the wedge angle with time, (b) θT /φT

with time, at various rotation rates for M = 4.5.

numbers, M ∈ [2.5, 4.5] at Me ∈ [0.01, 0.1] in the dynamic
case, are discussed. The investigation to study the influence
of the initial wedge angle (θi) on the transition point for the
dynamic case is also carried out.

As a range of Mach numbers is investigated, it is neces-
sary to choose the correct range of wedge angles for each
Mach number such that Htmin < Ht < Htmax (where Ht repre-
sents the distance between the trailing edge and the reflection
plane) given by Ben-Dor [10] to obtain stable RR and MR
configurations. These initial wedge angles are chosen such
that a stable RR configuration can be obtained for that par-
ticular Mach number. The initial wedge angles (in degrees)
and the corresponding Mach numbers are the following pairs:
[M, θi] = [(2.5, 17); (3.0, 20); (3.5, 22); (4.0, 24); (4.5, 24)].

The wedge angle is progressively increased from an initial
wedge angle for each of the Mach numbers, as already dis-
cussed in the previous sections. Figure 13 shows the wedge
angle plotted against M, for various Me; the locus of these
points is the transition lines. It can be observed from Fig. 13
that the wedge angle at transition is increasing with an in-
crease in Me for all M. At lower M, the difference between

FIG. 13. The wedge angle at transition plotted against M for
various Me. The loci of these points are called the transition lines,
here shown for RR → MR.

steady detachment and transition point for a given Me is higher
than for a higher M.

The influence of initial wedge angle on transition points
is investigated next. A steady RR is established for M = 4.5
at two different initial wedge angles, θi = 24◦ and θi = 18◦.
The wedge angle is increased continuously from these initial
states at various Me until the transition to MR is attained. The
wedge angle at transition (θT ) and shock angle at transition
(φT ) are computed and tabulated in Table III. From the table,
it can be seen that the transition happens at the same wedge
angle and shock angle irrespective of the initial wedge angle,
and the transition points are independent of the initial wedge
incidence.

E. Effect of Mach number on Mach stem growth at higher
wedge speeds

In this section, the nondimensionalized Mach stem height
(hm/h, where hm is the Mach stem height and h is the distance
between the leading edge and the reflection plane) variation
with wedge angle is investigated. Here, hm/h is plotted instead
of hm/w as in the earlier section because the wedge length w

remains the same for all the runs in this section. Since the h
value is different for each Mach number, plotting hm/h leads
to better comparison among the Mach stem growth rates for
various Mach numbers.

Figures 14(a) and 14(b) show the development of the Mach
stem with the wedge angle in RR → MR transition at Me =

TABLE III. Effect of initial wedge angle θi on RR → MR tran-
sition at various Me for M = 4.5. Transition points are independent
of the initial wedge angle.

θi = 24◦ θi = 18◦

Transition θT φT θT φT

Me = 0.01 27.6◦ 39.6◦ 27.6◦ 39.5◦

Me = 0.05 29.3◦ 40.2◦ 29.3◦ 40.3◦

Me = 0.1 31.2◦ 40.5◦ 31.2◦ 40.5◦

055101-10



DYNAMIC EFFECTS IN TRANSITION FROM REGULAR TO … PHYSICAL REVIEW E 104, 055101 (2021)

FIG. 14. Development of the Mach stem along the wedge angle
for various Mach numbers at (a) Me = 0.05, (b) Me = 0.1 in RR →
MR transition.

0.05 and 0.1 respectively. In both these plots, Mach stem
height at a particular wedge angle is higher for lower Mach
number, which is similar to the Mach stem growth in steady
wedge rotation. The slope of the lowest Mach number curve
closer to the point of transition is comparatively smaller than
the slope of the other two curves. This implies that, just after
the transition point, the Mach stem growth rate is higher for
higher Mach numbers. It is also observed from these plots
that the difference in the Mach stem heights between the
leading and trailing edge pivots is minimal at lower Mach
numbers, while it is more prominent at higher Mach numbers
(particularly at M = 4.5). Hence, the difference in the Mach
stem growth between the leading and trailing edge pivots
is dependent on the Mach number. However, the transition
points are nearly the same for both the leading and trailing
edge pivots for all the Mach numbers, as shown in Table IV.

F. Effect of Mach number on the movement of the reflection or
triple point at higher wedge speeds

In Sec. III B, the effect of Me on the position of the reflec-
tion or triple point for a fixed Mach number (M = 4.5) was

TABLE IV. Effect of the pivot point on the transition wedge
angle in RR → MR transition for various Mach numbers.

M 2.5 3.5 4.5

Trailing edge pivot (Me = 0.01) 19.1◦ 24.7◦ 27.6◦

Leading edge pivot (Me = 0.01) 19.1◦ 24.7◦ 27.5◦

Trailing edge pivot (Me = 0.05) 22.2◦ 26.8◦ 29.3◦

Leading edge pivot (Me = 0.05) 22.3◦ 27.0◦ 29.2◦

Trailing edge pivot (Me = 0.1) 25.6◦ 29.3◦ 31.2◦

Leading edge pivot (Me = 0.1) 25.8◦ 29.3◦ 31.0◦

discussed. It was observed that the position of the reflection
point at higher wedge speeds is unchanged until the compres-
sion or expansion waves generated from the wedge surface
reach the reflection point at a critical wedge angle, θcr . In this
section, the influence of the Mach number on the movement
of the reflection or triple point is examined.

The movement of the reflection point is monitored with the
wedge movement at a given rate of rotation for various Mach
numbers. The angle (	θ , in degrees) by which the wedge
rotates before the waves reach the reflection point is noted for
each Mach number for various Me ∈ [0.01, 0.1] and is shown
in Table V. It is clear from the table that the wedge rotates by
a higher amount at the lower Mach numbers before the waves
reach the reflection point, This means that the propagation
speed of these waves decreases at lower Mach numbers, and
hence the time taken to communicate the wedge movement to
the reflection point is higher.

Figures 15(a) and 15(b) show the position of reflection
point (xR/w) with wedge angle for various Mach numbers at
Me = 0.05 and 0.1 respectively. As seen from these figures,
the transition happens further away from the domain inlet
on increasing the Mach number. The difference between the
locations of transition is reduced on increasing Mach number.
The reflection point moves faster in the leading edge pivot
case for all the Mach numbers, and the change in the speed of
the reflection or triple point at the transition is higher at higher
Mach numbers.

The quantitative information deduced from this work con-
sists of the Mach stem growth rate after the RR → MR
transition and the estimation of the movement of the reflection
point. The extent of the Mach stem height determines the
area of the subsonic domain behind it. For an aerodynamic
body, the information of the subsonic region is crucial since
additional aerodynamic forces are generated on the supersonic
body due to the RR → MR transition. The location and move-

TABLE V. Angle (	θ ) by which the wedge rotates before the
reflection point starts moving, for various Mach numbers at various
rotation rates.

Me 0.01 0.05 0.1

M = 2.5 0.2◦ 1.0◦ 2.6◦

M = 3.0 0.2◦ 0.9◦ 2.1◦

M = 3.5 0.1◦ 0.8◦ 1.8◦

M = 4.0 0.1◦ 0.7◦ 1.4◦

M = 4.5 0.1◦ 0.6◦ 1.3◦
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FIG. 15. Dependence of the position of the reflection or triple
point for various Mach numbers at (a) Me = 0.05, (b) Me = 0.1 in
RR → MR transition.

ment of the reflection point will help in estimating unsteady
loads on the supersonic body.

IV. CONCLUSION

A computational study of the dynamic RR → MR transi-
tion with the wedge angle changing in time is carried out. The
transition lines at various dynamic wedge speeds are obtained.

The RR → MR transition occurs at a higher wedge angle
and a higher shock angle beyond the steady detachment angle
at higher wedge speeds, consistent with the previous results
[36,37]. The delay in the transition beyond the wedge angle
at the steady detachment condition is higher for lower Mach
numbers at a particular Me. After the transition point, there
is a remarkable difference in the growth rate of the Mach
stem for various Me. At the transition point, the Mach stem
is smaller at higher Me, and for the nearly steady case of
Me = 0.001 there is an abrupt change in the growth rate. The
flow features such as the unsteady Mach stem height and the
movement of the reflection point depend on the pivot point.
The difference in the Mach stem heights between the leading
and the trailing edge pivots is more significant at higher Mach
numbers, with the leading edge pivot having a higher growth
rate than the trailing edge pivot. For all the rotation speeds
and the Mach numbers tested, in the rotation about the trailing
edge, the reflection point moves slower than the rotation about
the leading edge. The wedge rotates by a higher amount before
the reflection point starts moving at higher wedge speeds and
lower Mach numbers. The transition point for the leading edge
pivot is closer to the inlet than the trailing edge pivot for all
the cases tested, and the difference in the locations of the
transition points increases as the wedge speeds increase. θT

increases more rapidly than φT on increasing the rotation rate;
however, the variation of φT seems to reach an asymptotic
value at higher Me.

The findings confirm that the dynamic effects such as the
rate of wedge rotation cannot be neglected in wedge angle
variation induced transition. The transition points itself are
modified due the rapid wedge rotation. Another important
aspect where the dynamic effects have a large influence is the
development of the overall Mach reflection configuration. The
rate of the wedge rotation in the dynamic case significantly
alters the Mach reflection configuration from that of the steady
cases. The characteristic changes in the MR configuration
would help quantify the transient forces generated on super-
sonic bodies where RR → MR transition occurs due to the
geometry changes. These will provide useful inputs to the
supersonic or hypersonic vehicle designers.
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