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Theorem for the design of deployable kirigami tessellations with different topologies
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The concept of kirigami has been extensively utilized to design deployable structures and reconfigurable
metamaterials. Despite heuristic utilization of classical kirigami patterns, the gap between complex kirigami
tessellations and systematic design principles still needs to be filled. In this paper, we develop a unified design
method for deployable quadrilateral kirigami tessellations perforated on flat sheets with different topologies.
This method is based on the parametrization of kirigami patterns formulated as the solution of a linear equation
system. The geometric constraints for the deployability of parameterized cutting patterns are given by a unified
theorem covering different topologies of the flat sheets. As an application, we employ the design method to
achieve desired shapes along the deployment path of kirigami tessellations, while preserving the topological
characteristics of the flat sheets. Our approach introduces interesting perspectives for the topological design of
kirigami-inspired structures and metamaterials.
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I. INTRODUCTION

Kirigami has recently become an emerging paradigm for
morphable structures and metamaterials [1–9]. Programmable
deformations can be achieved by prescribing the sizes, ori-
entations, and connections of the cuts perforated on flat
sheets. The bridge between geometric distributions of cuts and
the corresponding deployability is the key to understanding
kirigami-induced deformation mechanisms. The design prin-
ciples of deployable kirigami tessellations have been studied
in the literature [10–19]. The previous works mostly focus
on varying the sizes and orientations of cuts under fixed
connections on an intact sheet without defects such as holes
or cracks, that is, the topology of the sheet is fixed. The
kirigami patterns perforated on flat sheets with flexible topolo-
gies are investigated in Refs. [20–24], where the deployability
is realized by folding to close the cutting holes. Conversely,
many other kirigami structures are deployed in the way of
opening cuts, among which the quadrilateral tessellations are
extensively used to achieve unique properties such as recon-
figurability [16,25], high stretchability [26,27], and auxeticity
[28,29]. It is noted that a theorem for rigidly and flat fold-
able quadrilateral origami proved by Tachi [30] has benefited
the inverse design of origami tessellations [31,32]. However,
topological design principles for quadrilateral kirigami tessel-
lations are largely absent.

In this paper, we propose a unified design method for
rigidly deployable planar quadrilateral kirigami (RDPQK)
tessellations with different topologies. Here, the planar
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quadrilateral kirigami (PQK) tessellations are constructed by
cutting flat sheets into arrayed quadrilateral panels connected
by flexible hinges at the corners, and rigid deployability
means that the tessellation can be deployed by rotating the
quadrilateral panels around the corners while preserving their
sizes, shapes, and connections. The topology of a sheet to be
cut is determined by the value of genus [33], which equals
the number of holes on the sheet. Specifically, the holes are
made on the undeployed state by removing some of the ar-
rayed panels and introducing interior boundaries to the PQK
tessellations. We will formulate the vertex positions of the
quadrilateral kirigami patterns by a set of linear equations,
which can be efficiently solved. Benefiting from the linear
formulations, we can optimize the vertex positions to meet the
geometric constraints of rigid deployability. These geomet-
ric constraints are given by a deployability theorem, stating
that a PQK tessellation is rigidly deployable if there exists
one deployed configuration with parallelogram voids of cuts,
regardless of the genus. The theorem greatly simplifies the
realization of deployability, because we only need to guaran-
tee the connections of rigid panels at one specific deployed
state, and the entire path of rigid deployment will be automat-
ically achieved. Further, we can inversely design the RDPQK
tessellations to fit a predefined deployed shape by incorpo-
rating the objectives of shape morphing and the constraints
of rigid deployability into an optimization algorithm. We will
also show that the designed RDPQK tessellations are floppy
mechanisms with one degree of freedom, so that the deploy-
ment can be easily controlled by a mechanical system with
actuators.

This paper is organized as follows. First, we focus on
the parametrization and formulation of genus-0 RDPQK
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FIG. 1. Shape morphing of RDPQK tessellations with differ-
ent topologies. (a) A genus-0 square RDPQK tessellation that is
deployed to approximate a disk. (b) A genus-1 square RDPQK tes-
sellation with a circular hole that is deployed to approximate a disk
with a square void.

tessellations with no prescribed holes [see Fig. 1(a), left].
Then, the deployability condition for genus-1 RDPQK tessel-
lations [with a hole; see Fig. 1(b), left] is given and proved. We
will demonstrate the effect on the rigid deployability induced
from the topology of flat sheets. Next, the deployability condi-
tion is generalized to the case of genus-n and a unified theorem
is summarized for the design of RDPQK tessellations with an
arbitrary number of holes. In the end, as an application of the
proposed design method, we give an optimization scheme for
the shape morphing of RDPQK tessellations.

II. GENUS-0 TESSELLATION

The criteria for rigid deployability of a genus-0 PQK tes-
sellation was first studied by Choi et al. [19]. They proved
that a genus-0 PQK tessellation is rigidly deployable when the
voids of cuts are rhombuses. This criteria has been generalized
in our recent work [34] with the following necessary and
sufficient condition.

Lemma 1 (Genus-0 deployability). A genus-0 PQK tessel-
lation is rigidly deployable if and only if all the cuts form
parallelogram voids.

Lemma 1 shows that the rigid deployability of a genus-0
PQK tessellation can be achieved by constraining the shapes
of opening cuts to be parallelograms. This lemma was stated
as a corollary of a compatibility theorem of spherical kirigami
tessellations and proved as the degeneracy of spherical geom-
etry in Ref. [34]. Here we provide a straightforward proof in
Appendix A directly from the viewpoint of planar geometry.

As a starting point of the unified design method, we
parametrize the cutting patterns of genus-0 RDPQK tessel-
lations and formulate the rigid motions of the quadrilateral
panels. The genus-n RDPQK tessellations can be formu-

lated similarly. Before the formulations, we introduce some
notations to characterize the configurations of RDPQK tessel-
lations. Figure 2(a) demonstrates the deployment of a 4 × 4
square RDPQK tessellation. The flat sheet is divided into
arrayed quadrilateral panels by interwoven cuts—each cut is
intersected by its two neighbors and is split into four segments
with two vertices on the cut. The notations of geometrical
elements (panels, cuts, and vertices) for the kirigami pattern
and deployed configuration are illustrated in Fig. 2(b). Col-
lectively, we use Pi, j to denote the panel of the ith column
and the jth row, and the cut between panels Pi−1, j−1, Pi, j−1,
Pi−1, j , and Pi, j is denoted by Ci, j . In the undeployed kirigami
configuration, the vertices on the cut Ci, j are denoted by
xi, j and x′

i, j , which move to yi, j and y′
i, j upon deployment,

respectively. We can classify the cuts into two types by the
directions in which they link the vertices; i.e., the cut linking
xi−1, j and x′

i+1, j is referred to as a horizontal cut, and the
one linking x′

i, j−1 and xi, j+1 is a vertical cut, as shown in
Figs. 2(c) and 2(d). Besides, we add extra boundary cuts C̄i, j

around the outline of the tessellation, which are also classified
according to the horizontal or vertical orientations, as shown
in Fig. 2(b). Altogether, the horizontal and vertical cuts (in-
cluding the boundary ones) are arranged as a staggered array
on the tessellation. The array-like feature inspires us to define
a matrix of topology with components ±1 and ±2 to uniquely
represent the staggered arrangement of cuts, i.e.,

T0
4×4 =

⎡
⎢⎢⎢⎣

−1 −2 −1 −2 −1
−2 1 2 1 −2
−1 2 1 2 −1
−2 1 2 1 −2
−1 −2 −1 −2 −1

⎤
⎥⎥⎥⎦. (1)

Here the superscript 0 represents the genus of this tessellation,
and the subscript 4 × 4 is the number of panels. The compo-
nents ±1 indicate that vertices xi, j , x′

i, j belong to horizontal
cuts, and ±2 correspond to vertical cuts. The positive and neg-
ative signs represent interior and boundary cuts, respectively.
In general, for a genus-0 RDPQK tessellation with M × N
panels, the matrix of topology T0

M×N is an (M + 1) × (N + 1)
matrix defined by

ti, j =
{
σi, j1 for even i + j
σi, j2 for odd i + j

, (2)

for i = 1, 2, ..., M + 1 and j = 1, 2, ..., N + 1, in which the
sign function σi, j = + for i = 2, ..., M and j = 2, ..., N , and
σi, j = − for i = 1, M + 1 or j = 1, N + 1. Note that the tes-
sellations discussed here are restricted to having at least three
columns and rows of panels (i.e., M, N � 3). The PQK tessel-
lations with two columns or rows are actually always rigidly
deployable even if the voids of cuts are arbitrary quadrilater-
als. We exclude these trivial cases for brevity in this paper.

According to Lemma 1, the voids of cuts form parallelo-
grams upon deployment of genus-0 RDPQK tessellations. We
denote the side lengths of the parallelogram voids by ai, j and
bi, j [see Figs. 2(c) and 2(d)]; then the aspect ratio for each
cut Ci, j is defined by ri, j = bi, j/ai, j . If we fix the boundary
vertices as xbound

i, j with ti, j < 0 for the kirigami patterns, the
positions of interior vertices xi, j and x′

i, j with ti, j > 0 can
be uniquely solved by the following linear equation system
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FIG. 2. A genus-0 RDPQK tessellation. (a) The deployment of the tessellation with blue arrows representing the expanding directions of
opening angles. (b) Geometrical notations of the kirigami pattern (undeformed configuration) and the deployed configurations. The horizontal
cuts (red notations, even i + j) and vertical cuts (green notations, odd i + j) are distributed in a staggered way. (c) Geometry of the horizontal
cuts. (d) Geometry of the vertical cuts.

(LES),

(1 − ri, j )x′
i+1, j − xi, j + ri, jxi−1, j = 0, ti, j = 1,

(1 − ri, j )xi−1, j − x′
i, j + ri, jx′

i+1, j = 0, ti, j = 1,

(1 − ri, j )xi, j+1 − xi, j + ri, jx′
i, j−1 = 0, ti, j = 2,

(1 − ri, j )x′
i, j−1 − x′

i, j + ri, jxi, j+1 = 0, ti, j = 2, (3)

along with the boundary conditions

xi, j = x′
i, j = xbound

i, j , ti, j < 0. (4)

The equations for ti, j = 1 and 2 in Eq. (3) represent the
collinear constraints of vertices on horizontal and vertical
cuts, respectively. Equations (3) and (4) indicate that we can
parametrize the cutting pattern of a genus-0 RDPQK tes-
sellation by the aspect ratios ri, j for cuts Ci, j and positions
of boundary vertices xbound

i, j . For example, the tessellation in
Fig. 2 is constructed by setting ri, j = 0.45 and uniformly dis-
tributing the boundary vertices on a square sheet. Remarkably,
the kirigami pattern can be determined efficiently by solving
the LES with standard numerical methods, which benefits the
inverse design such as the optimization of shape morphing in
Sec. V.

The parallelogram voids of cuts also lead to a concise
formulation of deployment for genus-0 RDPQK tessellations.
As shown in Fig. 2(b), first, the motion of a panel Pi, j with
|ti, j | = 1 is a pure translation relative to P1,1. Second, it can
be observed that the opening angles at a common vertex of
adjacent parallelogram voids are complementary angles, and
therefore, each panel Pi, j with |ti, j | = 2 rotates by the same

angle. In a word, the deployment has one degree of freedom
that can be parameterized by a reference opening angle ω as
illustrated in Figs. 2(c) and 2(d). The rotation matrix on a
plane is given by

Rω =
[

cos ω − sin ω

sin ω cos ω

]
. (5)

We can derive the rigid transformations Rω
i, j of the motion

(combinations of rotations and translations) for each panel Pi, j

iteratively as follows:
1) Fix the first panel P1,1 by the identity transformation I:

Rω
1,1 = I. (6)

2) If a panel Pi, j has no neighbor below it, calculate the
motion relative to its left panel:

Rω
i, jx = (x − x′

i, j ) + Rω
i−1, jx

′
i, j, |ti, j | = 1,

Rω
i, jx = Rω(x − xi, j+1) + Rω

i−1, jxi, j+1, |ti, j | = 2, (7)

for ti, j < 0 and ti+1, j < 0.
3) If a panel Pi, j has a neighbor below it, calculate the

motion relative to the panel below:

Rω
i, jx = (x − x′

i+1, j ) + Rω
i, j−1x′

i+1, j, |ti, j | = 1,

Rω
i, jx = Rω(x − xi, j ) + Rω

i, j−1xi, j, |ti, j | = 2, (8)

for ti, j > 0 or ti+1, j > 0.
Consequently, the displacement of any vertex x on the

panel Pi, j can be calculated by

y = Rω
i, jx, x ∈ Pi, j . (9)
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FIG. 3. The genus-1 PQK tessellations. Each tessellation can be regarded to be composed of four genus-0 RDPQK tessellations (distin-
guished by colors of light and dark yellow). (a) A genus-1 PQK tessellation that is not rigidly deployable. The voids of cuts surrounding a hole
cannot form closed rings of parallelograms. (b) A genus-1 RDPQK tessellation. The voids of cuts form two parallelogram rings highlighted
by red dotted lines. (c) Notations of the panels above the hole extracted by the boxes from the genus-1 RDPQK tessellation. The blue arrows
on the panels represent directions of rotation.

For a genus-0 RDPQK tessellation, the links of corresponding
corners of adjacent panels are preserved upon deployment.
In other words, the displacement of a vertex is the same no
matter which panel the calculation is based on, e.g., y′

3,3 =
Rω

2,3x′
3,3 = Rω

3,3x′
3,3. This fact follows the rigid deployability

depicted in Lemma 1. However, we will show that it is not
always the case for genus-n PQK tessellations (n � 1) with
parallelogram voids of cuts.

III. GENUS-1 TESSELLATION

Moving beyond the genus-0 tessellations, we add one
or more interior boundaries to modify the topology of flat
sheets (i.e., making holes). This modification can be expressed
clearly with the matrices of topology. For example, consider
the 7 × 7 PQK pattern with a hole replacing the panel at the
center, as illustrated in Fig. 3(a). We reverse the signs of the
four components at the center of the matrix of topology T0

7×7
defined by Eq. (2), and obtain the genus-1 matrix of topology

T1
7×7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 −2 −1 −2 −1 −2 −1
−1 2 1 2 1 2 1 −2
−2 1 2 1 2 1 2 −1
−1 2 1 −2 −1 2 1 −2
−2 1 2 −1 −2 1 2 −1
−1 2 1 2 1 2 1 −2
−2 1 2 1 2 1 2 −1
−1 −2 −1 −2 −1 −2 −1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

The negative components t4,4, t4,5, t5,4, and t5,5 indicate that
the associated vertices xi, j and x′

i, j for i, j = 4, 5 are con-
verted to boundary vertices and the panel P4,4 is removed. To
keep the configurations unified with genus-0 tessellations dis-
cussed in Sec. II, the distance between the exterior and interior
boundaries has been limited to be not fewer than three panels

(the same below). As a result, it is necessary that the voids
of cuts are parallelograms to guarantee the rigid deployability
of genus-1 PQK tessellations. Therefore, the genus-1 patterns
can also be determined by solving Eqs. (3) and (4) if the aspect
ratios ri, j of cuts are given and the positions of vertices on both
the exterior and interior boundaries are fixed. Specifically,
we apply randomized ri, j ∈ [0.4, 0.6] to construct the PQK
tessellation in Fig. 3(a). Besides, the deployment process of
this tessellation is obtained according to the same rules in
Eqs. (6)–(9). However, what we observe is that the calculated
deformations are not continuous as adjacent panels above the
hole are disconnected, even though the voids of cuts are all
parallelograms. This phenomenon shows that the tessellation
in Fig. 3(a) is not rigidly deployable and Lemma 1 is not
applicable to genus-n pattern when n � 1.

Now we turn to the constraints of the rigid deployability
additionally induced from the modification of topology. A
genus-1 RDPQK tessellation is illustrated in Fig. 3(b). Rigid
deployability requires that the connections of panels remain
unchanged upon deployment. In other words, all the voids of
cuts should be intact parallelograms along the deploying path.
Before elaborating how we obtain the kirigami pattern, we
present a lemma on the deployability of genus-1 tessellations
which will greatly simplify the formulations:

Lemma 2 (Genus-1 deployability). A genus-1 PQK tessel-
lation is rigidly deployable if and only if there exists a
deployed state with all the cuts forming parallelogram voids.

The proof of Lemma 2 is based on the observation that the
voids of cuts can form rings of parallelograms surrounding
the interior boundary, and these rings remain closed upon
deployment as shown in Fig. 3(b). Details of the proof are
provided in Appendix B. The key point of Lemma 2 is that
we only need to ensure the connectivity of the panels at one
specific deployed configuration (say ω = ω̃), and then the
panels will always remain connected throughout the deploy-
ing process. Specifically, for tessellations with a matrix of
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topology T1
7×7 in Eq. (10), the connectivity can be expressed

by Rω̃
4,5x′

5,5 = Rω̃
5,5x′

5,5, Rω̃
4,6x5,7 = Rω̃

5,6x5,7, and Rω̃
4,7x′

5,7 =
Rω̃

5,7x′
5,7, as shown in Fig. 3(c). Keeping in mind that the

motions of panels are obtained from Eqs. (6)–(9), we have
the following relationships: Rω̃

4,7x′
5,7 − Rω̃

5,7x′
5,7 = Rω̃

4,6x5,7 −
Rω̃

5,6x5,7 = Rω̃
4,5x′

5,5 − Rω̃
5,5x′

5,5. As a result, these expressions
for connections are equivalent to each other. That is to say,
the rigid deployability of a genus-1 RDPQK tessellation es-
sentially introduces two additional constraints to the kirigami
patterns. These two constraints are consistent with Eqs. (B8)
and (B9) derived in the proof of Lemma 2.

Since the connections of panels discussed above are non-
linear constraints with respect to the aspect ratios of cuts,
we use an optimization method to find RDPQK patterns. In
general, if we remove the interior panels from columns I1 to
I2 and rows J1 to J2 of an M × N PQK tessellation, the interior
boundary can be indexed by ti, j < 0 for i = I1, I1 + 1, ..., I2,
j = J1, J2, and i = I1, I2, j = J1, J1 + 1, ..., J2 in the matrix
of topology T1

M×N [e.g., I1, J1 = 4 and I2, J2 = 5 in Eq. (10)].
Then the distance between vertices to be connected is given
as follows:

dI2,J2

(
ri, j, xbound

i, j , ω̃
)

=
{‖Rω̃

I2−1,J2
x′

I2,J2
− Rω̃

I2,J2
x′

I2,J2
‖, tI2,J2 = −1

‖Rω̃
I2−1,J2

xI2,J2+1 − Rω̃
I2,J2

xI2,J2+1‖, tI2,J2 = −2
.

(11)

We determine a genus-1 RDPQK tessellation by solving the
optimization problem:

min
ri, j

∑
i, j

(ri, j − r̄i, j )
2 subject to

[
dI2,J2

(
ri, j, xbound

i, j , ω̃
)]2 = 0,

(12)
where the aspect ratios ri, j are optimized to be close to the
initial values r̄i, j . For example, the tessellation in Fig. 3(b) is
obtained from the optimization initialized by the aspect ratios
in Fig. 3(a). In the optimization, we control the connectivity of
panels for the deployed configuration at ω̃ = 0.5π (the same
below). Then the panels above the hole can also be connected
at other states of deployment, which verifies the lemma of
genus-1 deployability. Besides, it can be observed that the
kirigami patterns of these two tessellations are quite similar.
However, the optimized tessellation is rigid deployable, while
the initial one cannot preserve the connectivity of panels.
The obvious difference in the deformed configurations for
almost the same kirigami patterns is induced from the high
nonlinearity of the finite rotations of panels.

IV. GENUS-n TESSELLATION

Having formulated the genus-1 RDPQK tessellations, we
go further to treat the general cases of genus-n (n � 1). The
matrix of topology TK

M×N with K disjoint interior boundaries
(no closer than three panels to each other) can be con-
structed based on T0

M×N by reversing the sign of ti, j for i =
Ik
1 , Ik

1 + 1, ..., Ik
2 , j = Jk

1 , Jk
1 + 1, ..., Jk

2 , and k = 1, 2, ..., K ,
then setting ti, j = 0 for i = Ik

1 + 1, Ik
1 + 2, ..., Ik

2 − 1, j =
Jk

1 + 1, Jk
1 + 2, ..., Jk

2 − 1 (if Ik
2 − Ik

1 � 2 and Jk
2 − Jk

1 � 2),
and k = 1, 2, ..., K , where (Ik

1 , Jk
1 ) and (Ik

2 , Jk
2 ) are the low-

est and highest indexes of panels removed for the kth hole,

respectively. In this way, the minus components represent
boundary vertices, and the zero components stand for the
vertices inside interior boundaries, which need to be removed
from the tessellations. For example, Fig. 4(a) illustrates a
genus-4 PQK tessellation with exterior boundary vertices uni-
formly distributed on a square sheet, and interior boundary
vertices on four arrayed circles. We obtain the kirigami pat-
tern by assigning aspect ratios ri, j = 0.4 and solving Eqs. (3)
and (4) based on the matrix of topology T4

17×17 in Eq. (C2).
The deployed configuration [see Fig. 4(a) right] determined
by Eqs. (6)–(9) has four bands of split voids of cuts, indicating
that this tessellation is not rigidly deployable.

The condition for rigid deployability of genus-n PQK tes-
sellations can be given by the following theorem:

Theorem 1 (Genus-n deployability). A genus-n (n � 0)
PQK tessellation is rigidly deployable if and only if there
exists a deployed state with all the cuts forming parallelogram
voids.

Theorem 1 is equivalent to Lemmas 1 and 2 for n = 0
and 1, respectively. Besides, for n � 2, this theorem can be
directly verified by applying the proof of Lemma 2 to each of
the holes. Similar to the genus-1 case, we optimize the aspect
ratios ri, j to construct closed rings of parallelograms around
each hole while minimizing the variations from initial aspect
ratios r̄i, j :

min
ri, j

∑
i, j

(ri, j − r̄i, j )
2 subject to

[
dIk

2 ,Jk
2

(
ri, j, xbound

i, j , ω̃
)]2 = 0.

(13)
For example, the RDPQK tessellation in Fig. 4(b) is obtained
from initial aspect ratios r̄i, j = 0.4. Note that although we
only demonstrate an example with arrayed circular holes here,
the validity of Theorem 1 does not rely on the shapes of
the holes and flat sheets, because the proof of Lemma 2 in
Appendix B is based on a general ring of parallelograms
independent of the interior or exterior boundaries. Therefore,
the theorem describes the rigid deployability of quadrilateral
kirigami in the sense of different topologies.

V. INVERSE DESIGN

Theorem 1 stipulates the geometrical constraints that an
RDPQK tessellation should satisfy. Under these constraints,
the aspect ratios and locations of boundary vertices can further
be optimized to inversely design the kirigami patterns and
achieve desired shapes along the deploying path. To this end,
we minimize the distance between outermost vertices on a
deployed tessellation and a given target curve. Specifically,
we solve the following optimization problem:

min
ri, j , xbound

i, j ,T

[
h
(
ycontrol

s ; T
)]2

subject to
[
dIk

2 ,Jk
2

(
ri, j, xbound

i, j , ω̃
)]2 = 0,

(14)
where h is the function of a target curve, and ycontrol

s are
deployed vertices that we aim to control to match the target
curve, in which the indices s = 1, 2, ..., S, and S is the total
number of the control vertices. Besides, we apply an affine
transformation T defined by T (λ, α, b)x = λRαx + b, which
is used to adjust the size and orientation of the target curves.

Figure 1(a) illustrates a square genus-0 tessellation that
approximates a circle hcircle(y; T ) = ‖T y‖ − 1. We prescribe
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FIG. 4. The genus-4 PQK tessellations with circular interior boundaries. (a) A genus-4 PQK tessellation with aspect ratios ri, j = 0.4. The
gray boxes frame four areas of split voids of cuts, which means this tessellation is not rigidly deployable. (b) A genus-4 RDPQK tessellation
optimized from r̄i, j = 0.4. The voids of cuts surrounding each hole can form a closed ring of parallelograms, highlighted by the red dotted
lines.

the control vertices ycontrol
s on the target curve as the out-

ermost ones yi, j and y′
i, j for ti, j = −1 with i = 1, 11, and

ti, j = −2 with j = 1, 11. The optimization is initialized by
regular aspect ratios r̄i, j = 0.5 and uniformly distributed
boundary vertices on a square. In order to preserve the out-
line shape of the sheet, we only allow the vertices xbound

to slide on the square boundary. The optimized tessella-
tion can be rigidly deployed to approximate the target circle
precisely at ω̃ = 0.5π . In addition, the optimization frame-
work can be harnessed to design general genus-n RDPQK
tessellations as well. For example, the square genus-1 tessel-
lation in Fig. 1(b) is deployed to fit a circle hcircle(y; T1) =
‖T1y‖ − 1, while the interior boundary approximates a
square hsquare(y; T2). The function of the square curve
is given by hsquare(y; T2) = (|e1 · T2y| − 1)(|e2 · T2y| − 1) +
ϕ(|e1 · T2y| − 1) + ϕ(|e2 · T2y| − 1), in which e1 = (1, 0, 0),
e2 = (0, 1, 0), and ϕ is the ramp function defined by ϕ(x) = x
for x > 0 and ϕ(x) = 0 for x � 0. This tessellation is built
on the matrix of topology T1

10×10 in Eq. (C1). We prescribe
the same control vertices (denoted by yext

s1
) on the exterior

boundary as the genus-0 case, and select the interior control
vertices yint

s2
in an analogous manner. The optimization is

performed by simultaneously minimizing hcircle(yext
s1

; T1) and
hcircle(yint

s2
; T2) in the framework of Eq. (14). The obtained

tessellation is rigidly deployable since the connectivity of
panels is preserved by d2

Ik
2 ,Jk

2
= 0 in the optimization.

VI. CONCLUSIONS

In conclusion, we demonstrate a unified design strategy for
RDPQK tessellations perforated on flat sheets with an arbi-
trary number of holes. The effectiveness of the design strategy
is attributed to two main factors. First, the kirigami patterns
are formulated by an LES that can be efficiently solved via
standard numerical methods. Second, the deployability the-
orem reduces the problem of achieving rigidly deployable
deformations from the entire deploying path to a specific
deployed configuration. Remarkably, this theorem reveals the
deployability property of RDPQK tessellations that is inde-
pendent of the topologies of the flat sheets to be cut. In
addition to shape morphing, the proposed optimization frame-
work can also be used to design kirigami tessellations with
other properties such as tunable porosity and programmable

Poisson’s ratio. As future work, we envision a generaliza-
tion of the current theorem to three-dimensional kirigami.
For instance, Araújo et al. [35] used network topology to
design polyhedral kirigami, which was later extended by Melo
et al. [36] to study the deployable dynamics. But a deployabil-
ity theorem incorporating the genus number of the kirigami in
three dimension is still absent, which is a promising subject to
be investigated. Finally, we hope that our study will benefit the
applications of kirigami-inspired structures and metamaterials
based on various topologies.
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APPENDIX A: PROOF OF LEMMA 1

We begin the proof of Lemma 1 by examining the basic
3 × 3 PQK tessellations as illustrated in Fig. 5(a). The side
lengths of the head-to-tail connected quadrilateral voids Ci

are denoted by ai, bi, ci, and di, and the opening angles are
denoted by αi, βi, γi, and δi ∈ [0, π ] for i = 1, 2, 3, 4. Since
these voids are straight segments at the undeployed state (i.e.,
αi = γi = 0, βi = δi = π ), we have the constraints ai + bi =
ci + di. Therefore, the quadrilaterals formed by the voids of
cuts can be parameterized by an ellipse as shown in Fig. 5(b).
Besides, the relationships αi + βi+1 = π for opening an-
gles of adjacent quadrilateral voids Ci and Ci+1 hold upon

FIG. 5. (a) Geometric notations of a 3 × 3 genus-0 PQK tessel-
lation. The blue arrows indicate the expanding directions of opening
angles. (b) A quadrilateral determined by two foci and two vertices
on an ellipse.
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deployment, where i cycles from 1 to 4 (the same below). We
denote the functions gi as the relationship between cosines of
opening angles cos βi and cos βi+1:

cos βi = gi(cos βi+1) � g[cos βi+1; ai, bi, ci, di], (A1)

where the function g is defined by

cos β = g(− cos α; a, b, c, d ) �

cos

[
arccos

(
a2 + e2 − d2

2ae

)

+ arccos

(
b2 + e2 − c2

2be

)]
(A2)

and

e =
√

a2 + d2 − 2ad cos α. (A3)

The expression of g is actually obtained from the relation-
ship β = ∠F1X1X2 + ∠F2X1X2 and e = X1X2 as illustrated in
Fig. 5(b). The functions gi reflect on the dependence between
the opening angles of adjacent voids of cuts. Thus, a valid
deployed configuration for 3 × 3 PQK tessellations requires
the following loop condition:

g1 ◦ g2 ◦ g3 ◦ g4(cos β1) ≡ cos β1. (A4)

Here the operator ◦ represents the composition of two func-
tions defined by gi ◦ gi+1(x) = gi[gi+1(x)]. This condition
guarantees that the opening angle β1 does not change through
a loop of the quadrilateral voids by the relationship αi =
π − βi+1.

Obviously, if all the voids of cuts are parallelograms, we
have cos βi = cos βi+1, so that g1 ◦ g2 ◦ g3 ◦ g4 is an iden-
tity function and Eq. (A4) is always satisfied, and then the
tessellation is rigidly deployable. To prove Lemma 1, we
need to verify that Eq. (A4) does not hold if there are non-
parallelogram voids of cuts. Because the expressions of gi

are complicated to deal with for arbitrary quadrilaterals, we
investigate the differential form of Eq. (A4) instead:

g′
1(cos β2) · g′

2(cos β3) · g′
3(cos β4) · g′

4(cos β1) ≡ 1, (A5)

where g′
i can be calculated by

g′
i(cos βi+1) = g′[cos βi+1; ai, bi, ci, di]. (A6)

In order to derive the expression of g′ = −d cos β/d cos α, we
combine the following differential equations of quadrilaterals:

ad sin αdα = bc sin γ dγ ,

ab sin βdβ = cd sin δdδ,

dα + dβ + dγ + dδ = 0, (A7)

and the identity

ad sin α + bc sin γ = ab sin β + cd sin δ. (A8)

Then the differential relationship between the adjacent open-
ing angles α and β is obtained as

dβ

dα
= − d sin δ

b sin γ
. (A9)

Thus, we have

g′(− cos α; a, b, c, d ) = d sin β sin δ

b sin α sin γ
. (A10)

Naturally, Eq. (A5) is a necessary condition of Eq. (A4). Next
we prove that g′ is monotonic when there are nonparallelo-
gram voids. By direct calculations, the second derivative of g
is

g′′(− cos α; a, b, c, d ) = kg(−ad sin α cot γ

− ab sin β cot δ − bc sin γ cot α − cd sin δ cot β ), (A11)

where kg = d sin β sin δ/(b2c sin2 α sin2 γ ), and we have
kg > 0 for α, β, γ , δ ∈ (0, π ). Note that a quadrilateral
formed by the voids of cuts can be determined by an
ellipse as illustrated in Fig. 5(b). We denote the fo-
cal distance by 2 f , and length of the major axis by
2l with 0 < f < l . Hence, Eq. (A11) can be written in
terms of the coordinates of the foci F1 = (− f , 0, 0), F1 =
( f , 0, 0), and two points X1 = (l cos θ1,

√
l2 − f 2 sin θ1, 0),

X2 = (l cos θ2,
√

l2 − f 2 sin θ2, 0) on the ellipse:

g′′ = kg( f 2 − l2)
1 + cos(θ1 − θ2)

sin θ1 sin θ2

t1 f 2 + t2l2

t3 f 2 + t4l2
, (A12)

where the coefficients are defined by

t1 = − sin2(θ1 + θ2),

t2 = 2 sin2 θ1 − sin2(θ1 − θ2) + 2 sin2 θ2,

t3 = 1 + cos(θ1 + θ2),

t4 = −1 − cos(θ1 − θ2), (A13)

and the parameters θ1 ∈ (0, π ) and θ2 ∈ (−π, 0) repre-
sent two points above and below the x axis, respec-
tively. The sign of g′′ can be determined by the follow-
ing considerations. First, for a quadrilateral that is not
a parallelogram, we have θ1 − θ2 �= π , so that kg( f 2 −
l2)[1 + cos(θ1 − θ2)]/(sin θ1 sin θ2) > 0. Second, the voids of
cuts are convex quadrilaterals; thus, the following constraints
should be satisfied:

e3 · [(X1 − F2) × (X2 − F2)] > 0,

e3 · [(X2 − F1) × (X1 − F1)] > 0, (A14)

where e3 = (0, 0, 1). Then we can obtain the range l2 ∈
( f 2,−t3/t4 f 2) from Eq. (A14), implying t3 f 2 + t4l2 >

0. Third, we have t2 > 0 and t1 f 2 + t2l2 > t1 f 2 + t2 f 2 =
4 sin2 θ1 sin2 θ2 > 0. Altogether, we conclude that g′′ > 0 for
a nonparallelogram quadrilateral on an ellipse, and therefore,
the function g′ increases monotonically. For the 3 × 3 tessel-
lation illustrated in Fig. 5(a), on the one hand, with regard
to the voids of cuts that are not parallelograms (e.g., Ci), the
function g′

i is always positive and increases monotonically;
on the other hand, for the parallelogram voids of cuts (e.g.,
Cj), we have g′

j ≡ 1. As a result, if any of the voids are
not parallelograms, we will find that Eq. (A5) does not hold,
which means that the loop condition Eq. (A4) is violated.
Since a larger genus-0 PQK tessellation is composed of 3 × 3
parts, the rigid deployability thereof requires that all the voids
of cuts are parallelograms. Besides, if the voids of cuts are all
parallelograms for a genus-0 PQK tessellation with arbitrary
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FIG. 6. Ring of parallelogram voids. The minor diagonals (red
dotted arrow), major diagonals (green dash-dotted arrow), and edges
(purple solid arrow) of corresponding parallelograms are connected
head to tail and form a closed ring of vectors.

number of panels, we can verify that Eq. (A4) holds for every
loop of the voids, so that the tessellation is rigid deployable,
Q.E.D.

APPENDIX B: PROOF OF LEMMA 2

The geometrical notations of the ring of parallelograms are
illustrated in Fig. 6. Our goal is to prove that this ring remains
closed when the opening angles of these parallelograms vary
simultaneously. Without loss of generality, we assume that
there are totally m + 4 parallelograms (m is an even num-
ber) including four parallelograms on the corner indexed by
the even numbers k′

1 < k′
2 < k′

3 < k′
4 = m′. Specifically, we

have k′
1 = 4′, k′

2 = 8′, k′
3 = 12′, k′

4 = 16′, and m = 16 for the
example in Fig. 6. Since the ring is extracted from a given
genus-1 PQK tessellation, the included angles between these
parallelograms (i.e., αi and α′

j) are fixed. It can be seen that
the closed ring is essentially determined by the vectors of
minor diagonals (red dotted arrow), major diagonals (green
dash-dotted arrow), and edges (purple solid arrow) of the
parallelograms. The coordinates of these vectors can be ex-
pressed by

tω
i = (ai − bi cos ω,−bi sin ω)T, i = 1, 3, 5, ..., m − 1,

tω
j = (a j + b j cos ω, b j sin ω)T, j = 2, 4, 6, ..., m,

tω
k = (ak, 0)T, k = k′

1, k′
2, k′

3, k′
4, (B1)

where ai, bi, a j , b j , ak , and bk are the side lengths of the
parallelograms, as illustrated in Fig. 6 right. Similar to the par-
allelograms, these vectors are also connected head to tail with
rotations by angles αi and α′

i determined by the given kirigami
pattern. The condition that these vectors form a closed loop is
as follows:

Rα1 tω
1 + Rα1 R−α2 tω

2 + Rα1 R−α2 Rα3 tω
3 + · · ·

+ Rα1 R−α2 Rα3 · · · R−αk1 tω
k1

+ Rα1 R−α2 Rα3 · · · R−αk1 Rαk′
1 tω

k′
1
+ · · ·

+ Rα1 R−α2 Rα3 · · · R−αm tω
m

+ Rα1 R−α2 Rα3 · · · R−αm Rαm′ tω
m′ = 0. (B2)

For simplicity, we define the following rotation angles:

β1 = α1,

β2 = α1 − α2,

β3 = α1 − α2 + α3,

· · ·
βk1 = α1 − α2 + α3 + · · · − αk1 ,

βk′
1
= α1 − α2 + α3 + · · · − αk1 + αk′

1
,

· · ·
βm = α1 − α2 + α3 + · · · − αk1 + αk′

1
+ · · · − αm,

βm′ = α1 − α2 + α3 + · · · − αk1 + αk′
1
+ · · · − αm + αm′ .

(B3)
Then Eq. (B2) can be rewritten as

Rβ1 tω
1 + Rβ2 tω

2 + Rβ3 tω
3 + · · · + Rβk1 tω

k1
+ Rβk′

1 tω
k′

1
+ · · ·

+ Rβm tω
m + Rβm′ tω

m′ = 0. (B4)

Furthermore, Eq. (B4) can be arranged in terms of cos ω and
sin ω as follows:

u1 + u2 cos ω + u3 sin ω = 0,

û1 − u3 cos ω + u2 sin ω = 0, (B5)

where the parameters u1, û1, u2, and u3 are defined by

u1 =
∑m

i=1
(ai cos βi ) +

∑4

i=1
(ak′

i
cos βk′

i
),

û1 =
∑m

i=1
(ai sin βi ) +

∑4

i=1
(ak′

i
sin βk′

i
),

u2 =
∑m

i=1
[(−1)ibi cos βi],

u3 =
∑m

i=1
[(−1)i−1bi sin βi]. (B6)

These parameters are independent of the reference opening
angle ω. Considering that the closed loop of vectors does
exist for the undeployed configuration (ω = 0) of any kirigami
pattern, we obtain

u1 + u2 = 0,

û1 − u3 = 0. (B7)

Thus, Eq. (B5) is equivalent to the matrix form

Mωu = 0, (B8)

where the coefficient matrix Mω and vector u are

Mω =
[

1 − cos ω sin ω

− sin ω 1 − cos ω

]
, u =

[
u1

û1

]
. (B9)

The determinant of Mω is

det(Mω ) = 2(1 − cos ω). (B10)

Now we go back to Lemma 2. On the one hand, for a
given genus-1 PQK tessellation, if there exists a deployed
configuration with parallelogram voids of cuts, we have a spe-
cific ω̃ ∈ (0, π ], such that Mω̃u = 0. Since det(Mω̃ ) > 0 for
this situation, we have u = 0. Therefore, for any ω ∈ [0, π ],
Eq. (B8) always holds, which means that this genus-1 PQK
tessellation is rigidly deployable. On the other hand, it is
trivial that an RDPQK genus-1 tessellation has valid deployed
configurations, and the voids of cuts must be parallelograms to
guarantee the rigid deployability as stated in Sec. III, Q.E.D.
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APPENDIX C: MATRIX OF TOPOLOGY

The matrices of topology of the tessellations illustrated in Figs. 1(b) and 4(b) are given below:

T1
10×10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1
−2 1 2 1 2 1 2 1 2 1 −2
−1 2 1 2 1 2 1 2 1 2 −1
−2 1 2 −1 −2 −1 −2 −1 2 1 −2
−1 2 1 −2 0 0 0 −2 1 2 −1
−2 1 2 −1 0 0 0 −1 2 1 −2
−1 2 1 −2 0 0 0 −2 1 2 −1
−2 1 2 −1 −2 −1 −2 −1 2 1 −2
−1 2 1 2 1 2 1 2 1 2 −1
−2 1 2 1 2 1 2 1 2 1 −2
−1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C1)

T4
17×17 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1
−1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 −2
−2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 −1
−1 2 1 −2 −1 −2 −1 −2 1 2 −1 −2 −1 −2 −1 2 1 −2
−2 1 2 −1 0 0 0 −1 2 1 −2 0 0 0 −2 1 2 −1
−1 2 1 −2 0 0 0 −2 1 2 −1 0 0 0 −1 2 1 −2
−2 1 2 −1 0 0 0 −1 2 1 −2 0 0 0 −2 1 2 −1
−1 2 1 −2 −1 −2 −1 −2 1 2 −1 −2 −1 −2 −1 2 1 −2
−2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 −1
−1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 −2
−2 1 2 −1 −2 −1 −2 −1 2 1 −2 −1 −2 −1 −2 1 2 −1
−1 2 1 −2 0 0 0 −2 1 2 −1 0 0 0 −1 2 1 −2
−2 1 2 −1 0 0 0 −1 2 1 −2 0 0 0 −2 1 2 −1
−1 2 1 −2 0 0 0 −2 1 2 −1 0 0 0 −1 2 1 −2
−2 1 2 −1 −2 −1 −2 −1 2 1 −2 −1 −2 −1 −2 1 2 −1
−1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 −2
−2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 −1
−1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2 −1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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