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Asymptotic softness of a laterally confined sheet in a pressurized chamber
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Elastohydrodynamic models, that describe the interaction between a thin sheet and a fluid medium, have been
proven successful in explaining the complex behavior of biological systems and artificial materials. Motivated
by these applications we study the quasistatic deformation of a thin sheet that is confined between the two sides
of a closed chamber. The two parts of the chamber, above and below the sheet, are filled with an ideal gas.
We show that the system is governed by two dimensionless parameters, � and η, that account respectively for
the lateral compression of the sheet and the ratio between the amount of fluid filling each part of the chamber
and the bending stiffness of the sheet. When η � 1 the bending energy of the sheet dominates the system, the
pressure drop between the two sides of the chamber increases, and the sheet exhibits a symmetric configuration.
When η � 1 the energy of the fluid dominates the system, the pressure drop vanishes, and the sheet exhibits
an asymmetric configuration. The transition between these two limiting scenarios is governed by a third branch
of solutions that is characterized by a rapid decrease of the pressure drop. Notably, across the transition the
energetic gap between the symmetric and asymmetric states scales as δE ∼ �2. Therefore, in the limit � � 1
small variations in the energy are accompanied by relatively large changes in the elastic shape.

DOI: 10.1103/PhysRevE.104.055005

I. INTRODUCTION

The interaction between thin elastic objects and fluid inter-
faces has attracted much attention recently, because numerous
biological systems and technological applications exploit me-
chanical instabilities to ascertain their proper functionality
[1–20]. Morphogenesis of epithelial sheets [21,22], and the
growth of biofilms on soft or fluidlike substrates [23,24], are
just two examples for the ways nature generates complex
patterns to stabilize living systems. Similarly, elastohydrody-
namic instabilities are exploited to fabricate flexible surfaces
in electronic devices [25], and in the field of soft robotics [26].

Motivated by these applications we focus in this paper on
the fundamental building blocks comprising the quasistatic
interaction between a thin sheet and an ideal gas. Our system
consists of a closed chamber that is partitioned by a thin sheet
into two parts, each of which is filled with an ideal gas. Given
the total length of the sheet, the dimensions of the chamber,
and the amount of fluid filling each side, we investigate how
the elastic configuration is correlated to the pressure drop,
and consequently the volume difference, that is induced in the
chamber (see further details in Fig. 1).

Our study reveals that the behavior of the system is gov-
erned by two dimensionless numbers. One is the lateral
displacement, �, that accounts for the ratio between the total
length of the sheet and the width of the chamber, and a second
parameter that accounts for the ratio between the amount of
fluid filling each part of the chamber and the bending stiffness
of the sheet. We denote the latter parameter by η and name it
the “bendo-gases” parameter.

*oshrioz@bgu.ac.il

Accordingly, we show that the state diagram of the system,
spanned on the (η,�) plane, is governed by three different
branches of solutions. When η � 1 the bending energy dom-
inates the system, the pressure drop in the chamber increases,
and the sheet exhibits a solution that is closed in shape to
the symmetric, first mode of buckling. However, when η � 1
the energy of the fluid dominates the system and acts to set the
volume difference, and therefore the pressure drop, to zero.
As a result, this region is characterized by an asymmetric
configuration of the sheet. The transition between these two
limiting cases is accompanied by a third branch of solutions
that allows for a continuous transition between the symmetric
and asymmetric configurations. In particular, we show using
a numerical analysis that the transition region emerges as a
nonlinear effect; i.e., while it appears as an unstable solution
at the leading order of the analysis, it becomes stable once
higher nonlinear corrections are considered. The width along
the η axis over which the latter branch stabilizes scales as ∼�.
Across this narrow region the energy changes by an order
of ∼�2. Therefore, as the lateral displacement diminishes,
the system becomes asymptotically softer; i.e., the sheet can
undergo relatively large deformations at small energetic cost.

We conjecture that under the appropriate design our sys-
tem, and its dynamic extensions, can be exploited to activate
small-scale devices, such as energy harvesters and microsized
pumps. For example, suppose that the elastic sheet is covered
with piezoelectric patches, and that the chamber is constantly
exposed to a source of an external energy, such as acoustic
waves [27–29]. Then, if the natural frequency of the system is
designed to match with the frequency of the external source,
the oscillations of the elastic sheet can potentially supply elec-
tric power to small-scale devices. An interesting aspect within
this energy harvesting application is a scenario in which the
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FIG. 1. Schematic overview of the system. A rectangular cham-
ber with dimensions Lx × Ly is divided into two parts by a thin sheet
that has a total length L and bending modulus B. The upper and lower
parts of the chamber are filled with an ideal gas with N particles and a
temperature T . At equilibrium, the volumes and the pressures in each
side of the chamber are given by Vi and Pi respectively (i = u, d). A
Cartesian coordinate system is located on the left edge of the sheet.
The elastic configuration is determined by the tangent angle, φ(s),
where s is the arc-length parameter.

system is designed to operate close to the transition region,
where the sheet becomes very soft. In this case, the sheet
may undergo large deformations, and therefore increase its
efficiency, even if the intensity of the external source is rather
small. Note that while the complete analysis of this dynamical
system requires to include inertial effects in the analytical
model, the quasistatic solution obtained herein provides us,
on the one hand, with the base solution around which these
dynamic extensions are expanded and, on the other hand, with
a specific region in the parameter space where this application
can be most efficient.

Another example for a potential applicability of the system
is in the design of micropumps. These pumps are used, for
example, to deliver individual microsized particles through
microchannels or to move very small volumes of liquids
[30,31]. In our system, pumping can be realized in the fol-
lowing way. When the two parts of the chamber are filled
with a fluid the system essentially stores energy due to the
deviations of the sheet from the lowest mode of buckling
and the pressure difference that these deviations induce in the
chamber. This stored energy can be exploited, for example,
when fluid is allowed to exchange between the two sides
of the chamber (see a prototypical model of this system in
Ref. [32]). In this case, the fluid’s dynamics will act to set the
pressure difference in the chamber to zero, and the sheet will
act to restore the first mode of buckling. This dynamic process,
if appropriately managed, can be tuned to create very small
bursts of pressure drops that potentially can pump individual
small particles.

The paper is organized as follows. In Sec. II we formulate
the problem, derive the equilibrium equations, and discuss the
schematic evolution of the system. In Sec. III we expand the
equilibrium equations in the small amplitude approximation,

derive their corresponding solutions, and discuss the tran-
sitions between different branches of solutions. In Sec. IV
we compare the leading order analysis with the numerical
solution of the nonlinear equations, and highlight the differ-
ences between them. In addition, we derive the properties of
the transition region, and provide an estimation for the pres-
sure drop throughout the evolution of the system. In Sec. V
we conclude, summarize our main results, and discuss possi-
ble extensions for future studies.

II. FORMULATION OF THE PROBLEM

An inextensible thin sheet with total length L and bending
modulus B is compressed symmetrically against the two sides
of a rectangular closed chamber (see Fig. 1). The horizontal,
the vertical, and the width dimensions of the chamber are
denoted by Lx, Ly, and W , respectively. A Cartesian coor-
dinate system is located on the left edge of the sheet. We
assume that the sheet can only deform in the xy plane, and
therefore set W = 1. The volumes of the chamber above and
below the elastic sheet, Vu and Vd, are filled with the same
amount of an ideal gas, where hereafter subscripts “u” and
“d” correspond to fields that are calculated respectively above
and below the elastic sheet. The ideal gas satisfies the equation
of state,

PiVi = NkBT, (1)

where i = u, d, Pi are the upper and lower pressures, N is the
number of particles, kB is the Boltzmann constant, and T is
the temperature. The system is assumed to be in contact with
a thermal bath, and therefore the temperature remains constant
at all times. In addition, we assume that the volume occupied
by the elastic sheet is negligible compared with the volume of
the sheet, i.e., tL/LxLy � 1, where t is the sheet’s thickness.
Therefore, we have that Vd + Vu = LxLy.

Given the physical parameters of the sheet, L and B, the
dimensions of the chamber, Lx and Ly, and the amount of fluid
filling each part of the chamber, NkBT , we look for the corre-
sponding shape of the elastic sheet, and the pressure difference
between the two sides of the chamber; i.e., Pud ≡ Pu − Pd.

To do that, we first note that the configuration of the sheet
on the xy plane, x = [x(s), y(s)], is given by

x(s) =
∫ s

0
cos φ(s′)ds′, (2a)

y(s) =
∫ s

0
sin φ(s′)ds′, (2b)

where φ(s) is the tangent angle between the sheet and the x
axis, and s ∈ [0, L] is the arc-length parameter. Second, we
use this position vector to write the total energy of the system.
This energy comprises of two main contributions: one is the
elastic energy of the sheet, Eb, and the second is the energy of
the ideal gases, Eg. Therefore, the total energy is given by

E = B

2

∫ L

0
φ̇2ds − NkBT ln Vu − NkBT ln Vd, (3)

where (̇) = d/ds. While the first term in the right-hand side
of Eq. (3) accounts for the bending energy of the sheet, the
second and third terms account for the Helmholtz free ener-
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gies of the fluids. The latter energies are presented up to some
additional constants that do not depend on the sheet’s con-
figuration, and therefore only shift the energy by a constant.
Following Ref. [32] we can relate the volumes of the fluid to
the elastic configuration by

Vi = 1

2

∫ L

0
x · n̂ids + LxLy

2
, (4)

where n̂i = ±(− sin φ, cos φ) is an outwards normal vector to
the enclosed area.

The equilibrium configurations of the system are deter-
mined by minimization of the total energy, Eq. (3), given the
constraints, Eqs. (2). In order to derive these equations we first
normalize all lengths in our system by the relaxed length of
the sheet L (say, s → s/L, etc.), and the total energy by B/L
[E → E/(B/L)]. Second, we modify the energy in Eq. (3) to
account for the geometric constraints. This gives

G =
∫ 1

0

[
1

2
φ̇2 − Qx(s)(ẋ − cos φ) − Qy(s)(ẏ − sin φ)

]
ds

− η(ln Vu + ln Vd), (5)

where Qx(s) and Qy(s) are two Lagrange multipliers that
account respectively for the geometric constraints, Eqs. (2a)
and (2b). In addition, we define the parameter

η ≡ NkBT

B/L
, (6)

that expresses the amount of fluid filling each part of the
chamber, relative to the bending stiffness of the sheet. Here-
after we name this constant the “bendo-gases” parameter [33].

Third, we minimize Eq. (5) with respect to
{φ, x, y, Qx, Qy}. This gives the following equilibrium
equations:

φ̈ + Pud

2
(x cos φ + y sin φ) + Qx sin φ − Qy cos φ = 0,

(7a)

ẋ − cos φ = 0, (7b)

ẏ − sin φ = 0, (7c)

Q̇x − Pud

2
sin φ = 0, (7d)

Q̇y + Pud

2
cos φ = 0. (7e)

Note that the parameter η appears implicitly in these equa-
tions through the pressure difference, Pud. Indeed, using our
normalization convention, we have from Eq. (1) that

Pud = η

(
1

Vu
− 1

Vd

)
. (8)

To close the system of equations the following boundary con-
ditions are assumed:

x(0) = 0, (9a)

x(1) = Lx ≡ 1 − �, (9b)

y(0) = y(1) = 0, (9c)

φ̇(0) = φ̇(1) = 0, (9d)

where we defined the normalized lateral displacement � =
1 − Lx in Eq. (9b), and we specialized to the case of a hinged
sheet, Eq. (9d).

We can further simplify our set of equilibrium equations,
Eqs. (7). To do that, we integrate Eqs. (7d) and (7e) using
Eqs. (7b) and (7c). This gives Qx(s) = Pud

2 y + Px and Qy(s) =
−Pud

2 x + Py, where Px and Py are the constants of integration.
Substituting the latter solutions in Eq. (7a), we obtain

φ̈ + Pud(x cos φ + y sin φ) + Px sin φ − Py cos φ = 0. (10)

This equation describes the balance of normal forces on a
finite element of the sheet. Within this balance of forces
the constants Px and Py denote the reaction forces that the
chamber applies on the sheet at s = 0. We note that some
properties of this equation have been previously investigated
(see Refs. [32,34,35] and references therein).

This completes the formulation of the problem. In sum-
mary, given the vertical dimension of the chamber, Ly, the
lateral displacement, �, and the bendo-gases parameter η,
we can determine the ultimate orientation of the sheet, i.e.,
the elastic fields φ(s), x(s), and y(s), from the simultaneous
solution of Eqs. (7b), (7c), and (10). The various constants in
this solution are determined from the equation of state, and
the boundary conditions, Eqs. (8) and (9).

We add two comments regarding the symmetries in our
model. First, the problem has a mirror symmetry around the
x axis; i.e., flipping the sign of {y, φ, Py, Pud} while keeping
{x, Px} fixed does not change the equilibrium equations and
the boundary conditions. Hence, without loss of generality,
in the following analysis we always assume that the sheet
buckles upwards such that the pressure difference remains
positive, Pud � 0. We keep in mind that the downwards solu-
tions, with Pud � 0, are obtained by a reflection of the elastic
shapes around the horizontal axis. Second, the system has
another symmetry for reflection around the midaxis of the
chamber, x = (1 − �)/2. Indeed, when the x coordinate of
the sheet is reflected around this axis, x → 1 − � − x(s), the
tangent angle flips sign, φ → −φ, the arc-length parame-
ter is reversed, s → 1 − s, and the vertical reaction force is
modified into Py → −Py + Pud(1 − �), the equations and the
boundary conditions remain unchanged. We will refer to the
latter symmetry in Sec. III B 2 when we analyze a branch of
elastic solutions that are not symmetric around the midaxis.
We note that both of these symmetries emanate from the
boundary conditions, Eqs. (9c) and (9d), which are assumed
similar at the two edges of the sheet.

Schematic overview of the system

The ultimate configuration of the sheet comprises from
the competition between the bending energy of the sheet and
the energy of the fluid [see Eq. (3)]. This competition is
manifested in the bendo-gases parameter, η, that essentially
defines two opposite limits of the system. On the one hand,
when η � 1 the fluid’s energy is negligible and the bending
energy dominates the system’s behavior. On the other hand,
when η � 1 the bending contribution becomes negligible and
the elastic configuration is dominated by the energy of the
fluid.
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FIG. 2. The state diagram of the system on the (η/η�, �) plane,
where η� = 6π 4/(3 + π 2). The evolution of the system is gov-
erned by three branches of solutions. A symmetric branch (light
purple shaded area) governs the system when η < η−. This branch
is characterized by a nonzero pressure difference and symmetric
configurations. In the limit η → 0 the elastic shape converges to
the first mode of buckling (see Sec. III B 1). At the transition re-
gion, η− < η < η+, the system is governed by a different set of
solutions, which we call an asymmetric branch with Pud 	= 0 (white
background). The region of stability of this branch depends on �, and
shrinks to zero as the lateral displacement diminishes. Beyond the
transition, η > η+, the system is governed by the asymmetric branch
with Pud = 0 (yellow shaded area). The elastic shape in this region
exhibits an asymmetric profile (see Sec. III B 2). The dashed gray
line indicates the direction of our numerical example in Sec. IV A.

Indeed, when η is small, we would expect the system to
exhibit the first mode of buckling, that is obtained by min-
imization of the bending energy alone. However, when η is
large and the bending contribution is negligible, minimization
of the fluid’s energy, dEg/dVu = 0 where Eg = −η(ln Vu +
ln Vd), gives Vu = Vd; i.e., the upper and lower sides of the
chamber have equal volumes, and therefore equal pressures,
at equilibrium. Obviously, the first mode of buckling, which
is symmetric around the midaxis of the chamber, does not sat-
isfy this requirement. One possible configuration that satisfies
this zero volume difference condition is the second mode of
buckling. Our detailed analysis indeed verifies that this is the
system’s minimizer.

Accordingly, the forthcoming analysis focuses on the in-
vestigation of the transition between the bending dominated
and the fluid’s dominated regions of the system. The main re-
sults of this investigation are presented in the “state diagram”
in Fig. 2, that is plotted on the (η/η�,�) plane, where η� is a
critical value of the bendo-gases parameter close to which the
transition occurs.

This state diagram consists of three branches of solutions.
One is the symmetric branch that emerges at relatively small
values of η/η�, i.e., in the bending dominated region. The
elastic pattern in this branch exhibits a symmetric shape that
converges to the first mode of buckling when η → 0. The
second branch dominates the transition region of the system,
η− � η � η+, where η− and η+ depend on the lateral dis-
placement, �. We will show that the region of stability of this
branch shrinks to zero as the lateral displacement diminishes.

The elastic pattern in this branch does not have a proper sym-
metry. The third branch corresponds to relatively large values
of η/η� and is related to the fluid’s dominated region. The
elastic shape in this region coincides with the second mode of
buckling in the framework of Euler’s elastica.

III. APPROXIMATED SOLUTIONS IN THE SMALL
AMPLITUDE APPROXIMATION

In this section we derive analytical solutions to our system
of equations under the assumption that the lateral displace-
ment remains small, i.e., � � 1.

Considering Eqs. (7b) and (7c), this assumption implies
that the sheet’s trajectory on the xy plane is given by ẏ 
 φ

and ẋ 
 1 − 1
2 ẏ2. Exploiting these approximations to linearize

Eq. (10) gives

˙̇ ˙y + Pxẏ = −Puds + Py. (11)

The general solution of this equation is given by

y(s) = a1 + a2 cos(
√

Pxs) + a3 sin(
√

Pxs) + Py

Px
s − Pud

2Px
s2,

(12)

where ai (i = 1, . . . , 3), Px, Py, and Pud are six unknown
constants that are yet to be determined by the boundary con-
ditions, Eqs. (9b)–(9d), and the equation of state, Eq. (8). In
the small amplitude approximation the latter equation reduces
to

Pud = 8η

L2
y

∫ 1

0
y(s)ds, (13)

where we used Vi 
 Ly

2 ± ∫ 1
0 y(s)ds (Lx = 1 − � 
 1) [see

Eq. (4)]. Equation (13) indicates that our linearized solution
depends on the parameter η̃ ≡ η/L2

y , rather than the two inde-
pendent parameters, η and Ly. For this reason, in the following
analysis we set Ly = 1 and keep in mind that, in general, η

depends on the normalized vertical dimension.
In addition, our approximation implies that the lateral dis-

placement, Eq. (9b), and the total elastic energy, Eq. (3), are
related to the sheet’s configuration by

� = 1

2

∫ 1

0
ẏ2ds, (14a)

E − E0 = 1

2

∫ 1

0
ÿ2ds + 4η

(∫ 1

0
yds

)2

, (14b)

where E0 ≡ −2η ln[(1 − �)/2] is a constant.
In summary, the solution to our system of equations in the

limit of a small lateral displacement, or equivalently small
amplitude, is given by Eq. (12), where the unknown constants
in this solution are determined from the boundary conditions,
Eqs. (9c), (9d), and (14a), and the equation of state, Eq. (13).
The elastic energy of a given solution is determined from
Eq. (14b).

A. The flat-to-buckle instability

As a first step of examining the solution we analyze the
flat-to-buckle instability; i.e., we assume that the lateral dis-
placement is infinitesimal, and disregard Eq. (14a). Given
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the bendo-gases parameter, η, we look for the lowest lateral
compression Px that yields an out-of-plane configuration. The
general solution, Eq. (12), together with the linearized form of
the boundary conditions, Eqs. (9c) and (9d), and the equation
of state, Eq. (13), form a homogenous system of equations
for the five unknowns ai’s, Py, and Pud. Nontrivial solutions
to these equations exist when their corresponding determinant
vanishes. This condition is satisfied when either of the follow-
ing equations holds:

symmetric branch: η sin u − u

3
[(3 + u2)η − 6u4] cos u = 0,

(15a)

asymmetric branch: sin u = 0,

(15b)

where for simplicity we defined u ≡ √
Px/2. The solutions

of Eqs. (15a) and (15b) yield respectively the symmetric and
asymmetric branches as is further clarified below.

When there is no fluid in the chamber, η = 0, the smallest
lateral compression is given by the symmetric branch at u =
π/2 (Px = π2). This solution coincides with the critical force
at which buckling first occurs in the framework of Euler’s
elastica.

When η is slightly increased, the symmetric branch yet
yields the smallest solution for Px; however, buckling is de-
layed compared with the classical criterion. Indeed, expanding
Eq. (15a) in powers of η gives Px 
 π2 + 64

π4 η.

At η ≡ η� = 6π4

3+π2 the solutions of the two branches coin-
cide and satisfy u = π (Px = 4π2). This solution is equivalent
to the critical force at the second mode of buckling in the
framework of Euler’s elastica. While for η > η� the solution
of the symmetric branch increases, u 
 π + (3+π2 )2

6π3(15+2π2 ) (η −
η�), the solution of the asymmetric branch remains constant.
For this reason, when 0 < η/η� < 1 buckling occurs into the
symmetric branch, whereas when η/η� > 1 buckling occurs
into the asymmetric branch.

B. The height profiles

In this section we further determine the eigenfunctions in
each of the two branches, and fix the remaining unknown con-
stant using Eq. (14a); i.e., the lateral displacement is assumed
small but not infinitesimal.

1. Symmetric branch

To derive the sheet’s configuration in the symmetric branch
we first determine the unknown constants ai and Py from the
solution of the boundary conditions, Eqs. (9c) and (9d). This
gives the eigenfunction

y(s) = Pud

2Px
(1 − s)s + Pud

P2
x

[
1 − cos

[√
Px(s − 1/2)

]
cos(

√
Px/2)

]
, (16)

where Px is given by Eq. (15a). This eigenfunction is yet
multiplied by the unknown constant, Pud. Using Eq. (14a) we
find

Pud = 16
√

6u7/2| cos u|√
6u + 4u(6 + u2) cos2 u − 15 sin(2u)

�1/2, (17)

where u = √
Px/2.

Given η and �, Eqs. (15a), (16), and (17) provide the
complete solution of the height profiles in the symmetric
branch. Note that, regardless of the values of Px and Pud,
this solution is symmetric around the midpoint of the sheet,
s = 1/2. Note also that when η → 0, Eqs. (15a) and (17)
reduce to Px 
 π2 + 64

π4 η and Pud 
 32
π2

√
�η, and the height

function converges to y(s) →
√

4�/π2 sin(πs), as expected
from the first mode of buckling in Euler’s elastica.

Last, we calculate the total energy of this branch using
Eq. (14b). This gives [36]

Es − E0 = Px�, (18)

where Px is a solution to Eq. (15a).

2. Asymmetric branch

To derive the height profile of the asymmetric branch we
first fix the lateral compression at a constant value, Px = 4π2,
in accordance with Eq. (15b). Then, we find the various con-
stants in Eq. (12) from the boundary conditions, Eqs. (9c) and
(9d), the equation of state, Eq. (13), and the constraint on the
lateral displacement, Eq. (14a). The solution is divided into
two regions, depending on the value of η:

η = η�: y(s) = Pud

16π4
[2π2(1 − s)s + 1 − cos(2πs)]

+ 1

π

√
� − 15 + 2π2

768π6
P2

ud sin(2πs), (19a)

η > η�: y(s) =
√

�

π
sin(2πs). (19b)

While the pressure difference, Pud, remains arbitrary in
Eq. (19a), and can take any value between Pud ∈ [0, Pcr

ud],
where

Pcr
ud =

√
768π6

15 + 2π2
�1/2, (20)

it vanishes altogether in the second solution, Eq. (19b), i.e.,
Pud = 0.

Evidently, Eq. (19a) represents a continuous family of
solutions that contains as a subset two special configura-
tions: one at Pud = Pcr

ud, where Eq. (19a) coincides with the
solution to the symmetric branch, Eq. (16), and the second
at Pud = 0, where Eq. (19a) coincides with the asymmetric
shape, Eq. (19b). Therefore, this set of solutions describes
a continuous transformation of the height function from the
symmetric branch to the purely asymmetric branch. Note that
since the system has a mirror symmetry around the midaxis
of the chamber (see discussion at the end of Sec. II), the
left-right symmetry in the symmetric branch can be broken
in two different directions. One direction, in which the right
side of the sheet becomes lower than the left side, is plotted in
Fig. 3.

Regardless of the value of η, the total energy of the system
in the asymmetric branch is given by

Eas − E0 = 4π2�. (21)

Therefore, when η = η�, the ground state of the energy con-
tains the continuous set of solutions, whereas when η > η� the
ground state contains only the second mode of buckling.
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FIG. 3. The continuous family of solutions, Eq. (19a), for � =
0.005 and Pud/Pcr

ud = {0, 0.2, 0.4, 0.6, 0.8, 1}. Increasing values of
the pressure difference are indicated by decreasing intensity of gray.
While at Pud = Pcr

ud, Eq. (19a) converges to the height profile of the
symmetric branch, Eq. (16) with Px = 4π 2; at Pud = 0 the solution
converges to the second mode of buckling, Eq. (19b). Keep in mind
that the system has a mirror symmetry around the midaxis of the
chamber. Therefore, an alternative evolution of the system from
the symmetric to the asymmetric branch is readily realized when the
presented shapes are reflected around the midaxis.

We note that although Eq. (19a) does not possess a strict
symmetry, such as the asymmetric profile in Eq. (19b), the
name “asymmetric branch” is given to both solutions. This is
because they both emanate from the condition in Eq. (15b).
Nonetheless, in the forthcoming analysis we refer to the for-
mer solution as “asymmetric branch with Pud 	= 0,” and to the
latter solution as “asymmetric solution with Pud = 0” (see also
the state diagram in Fig. 2).

C. The symmetric-to-asymmetric transition

Our analytical analysis in the small amplitude approxima-
tion suggests that the symmetric-to-asymmetric transition is
of first order. Indeed, identifying η and Pud as the control and
order parameters of the transition, respectively, we find that
while the energies of the two branches coincide at η = η�,
their first derivative, dE/dη at η = η�, is discontinuous [com-
pare Eqs. (18) and (21)].

Consequently, the order parameter, Pud, experiences a dis-
continuity at η�. On the one hand, when η → η� from the
left, i.e., from the direction of the symmetric branch, the pres-
sure difference approaches Pud → Pcr

ud (u → π ), where Pcr
ud is

given by Eq. (20). On the other hand, when η → η� from the
right, i.e., from the asymmetric branch, the pressure difference
vanishes. Indeed, within this analysis the peculiar behav-
ior encountered at η = η� does not affect the transition at
all.

Nonetheless, in the next section we show that when non-
linear effects are taken into consideration, the energetic gap
between the symmetric branch at Pcr

ud and the asymmetric
branch with Pud = 0 does not vanish, but scales as ∼�2.
In addition, when the system evolves within this transition
region the elastic profiles that were unstable at the linear order,
Eq. (19a), become stable, and allow for a continuous transition
between the two branches.

IV. WEAKLY NONLINEAR ANALYSIS: A NUMERICAL
INVESTIGATION

In this section we investigate the weakly nonlinear region
of the system numerically, i.e., moderate values of the lateral
displacement (� � 0.1), and compare the results with the
analytical solution obtained at the linear order. The numerical
minimization of Eq. (5) is carried out using the conjugate gra-
dient method implemented in MATHEMATICA [37], where the
sheet is discretized into N = 81 equally spaced points. At a
given lateral displacement, �, and a vertical dimension of the
chamber, Ly = 1, we vary the bendo-gases parameter between
η/η� ∈ [0, 2], and at each iteration we record the pressure
difference in the chamber and the spatial configuration of the
sheet.

The section is divided into three subsections. First, we
compare the numerical data with the linear solution. In differ-
ent from the analytical prediction, we show that the pressure
difference changes continuously at the transition between the
symmetric branch and the asymmetric branch with Pud = 0.
Second, we investigate the behavior of the solution close to the
transition as a function of the lateral displacement. We obtain
scaling laws for the width of the transition region and the
energetic gap between the two limiting solutions. Last, based
on our numerical analysis we propose a phenomenological
solution for the evolution of the pressure difference within the
transition region.

A. Comparison with the linear solution

As a first step of examining the solution we fix the lateral
displacement at � = 0.005, and follow the evolution of the
system as a function of η; i.e., we follow the dashed line in
Fig. 2. The results of this investigation are plotted in Fig. 4.
When η → 0 the pressure difference in the chamber vanishes
[Fig. 4(a)], and the height profile converges to the first mode
of buckling [see the corresponding shape in Fig. 4(b)]. When
η = η− the pressure difference reaches a maximum value
that approximately coincides with the critical pressure at the
transition, Pud(η−) = Pcr

ud, where Pcr
ud is given by Eq. (20). We

note that the agreement between Pud(η−) and Pcr
ud goes beyond

the strict limit of the small amplitude approximation and
holds even at moderate values of the lateral displacement (see
Fig. 5). The elastic profile at this point of a maximum pressure
matches the one predicted by the symmetric branch, Eq. (16).
We note that despite the relatively large change in the pressure
difference, the latter configuration barely changes compared
with the first mode of buckling. In between these two limiting
cases, 0 < η < η−, the pressure difference increases almost
linearly and follows the analytical solution, Eq. (17), derived
for the symmetric branch.

When η− < η < η+ the pressure difference drops rapidly,
but yet continuously, to zero. We define η+ as the point where
the pressure difference first vanishes [38]. The elastic profiles
in this narrow region coincide with the ones given by the con-
tinuous family of solutions, Eq. (19a), which were unstable at
the linear order. For example, see point 3 in Fig. 4. Indeed,
the continuous variation of the pressure difference across the
symmetric-to-asymmetric transition contradicts the pressure
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FIG. 4. The evolution of the system when � = 0.005. (a) The normalized pressure difference, Pud, is plotted as a function of η/η� and is
divided into three regions. One is the symmetric branch (purple shaded area), where the pressure difference follows Eq. (17), and ultimately
reaches the critical value Pcr

ud. The second is a narrow asymmetric branch with Pud 	= 0 (white background), marked by δη, in which the
pressure difference rapidly drops to zero, and the third is an asymmetric branch with Pud = 0 (yellow shaded area). (b) The evolution of the
elastic profile. While markers correspond to the numerical profiles, black dashed lines correspond to the analytical solution at the linear order.
The profiles labeled by 1 and 2 correspond to the symmetric branch at Pud = 0 and Pud = Pcr

ud, respectively [see the corresponding circled
numbers in (a)]. The profiles labeled by 3 and 4 correspond respectively to the asymmetric branch with Pud = Pcr

ud/2 [Eq. (19a)] and Pud = 0
[Eq. (19b)].

jump predicted by the linear theory. Instead, the transition
occurs over a narrow, but yet finite, width of the control
parameter, δη = η+ − η−.

Last, beyond the transition region, η > η+, the pressure
difference vanishes and the elastic configuration adopts the
second mode of buckling, as given by Eq. (19b).

B. Energy difference and width of the transition region

In this section we further investigate the effect of the lateral
displacement on the transition. In particular, we measure how
the energetic gap, δE = Eas(η+) − Es(η−), and the width over
which the transition occurs, δη = η+ − η−, scales with �.
The results plotted in Fig. 6 reveal these scalings.

While the energetic gap exhibits quadratic dependence on
the displacement, δE 
 c2�

2 where c2 
 52.0, the width of
the transition region exhibits linear dependence on �, i.e.,
δη/η� 
 c1�, where c1 
 3.6. Consequently, while the en-
ergies of the symmetric branch and asymmetric branch with
Pud = 0 coincide at the linear order, i.e., order �, they deviate

0.00 0.02 0.04 0.06 0.08 0.10
0

10

20

30

40

P u
d(

−)

Numerics

Pud
cr (Eq. (20))

FIG. 5. The maximum pressure difference at Pud(η−) as a func-
tion of the lateral displacement. While open blue circles correspond
to the numerical values, the solid black line corresponds to the
analytical approximation, Eq. (20). Surprisingly, the fit between
the analytical and the numerical data goes beyond the strict limit of
the small amplitude approximation.

when nonlinear terms, i.e., order �2, are taken under con-
sideration. Within this energetic gap the asymmetric branch
with Pud 	= 0 becomes stable. However, its region of stability
shrinks to zero as the lateral displacement diminishes.

Furthermore, we observe that the boundaries of the inter-
mediate region remain approximately symmetric with respect
to η�, i.e., η±/η� 
 1 ± (c1/2)� [see the inset in Fig. 6(a)].
Deviations from the latter symmetric and linear fit are en-
countered at large values of �. These deviations are most
probably due to higher nonlinear contributions to δη and η±,
e.g., corrections of order �2.

C. The pressure difference profile

Using the preceding results we can approximate the pres-
sure difference within the transition region, δη. Since Pud

changes continuously throughout the evolution of the sys-
tem, the transition from the asymmetric branch with Pud 	= 0,
Eq. (19a), to the asymmetric branch with Pud = 0, Eq. (19b),
is of second order. Recalling the universal behavior of super-
critical bifurcations, we anticipate a square-root dependence
between the order parameter, Pud, and the control parameter,
η, close to the transition. Keeping in mind the latter require-
ments, and that Pud(η−) 
 Pcr

ud and Pud(η+) = 0, one possible
profile of the pressure difference is given by

Pud = Pcr
ud

√
η+ − η

η+ − η−
. (22)

Note that this relation implies that Pud/Pcr
ud is independent of

�. Indeed, substituting η+ = 1 + c1�/2 and δη = c1� into
Eq. (22), and rescaling the control parameter such that η =
1 + ε, where ε = c1�(1/2 − x̃) (x̃ ∈ [0, 1]), gives Pud/Pcr

ud =√
x̃. Yet, as � is increased, the width of the transition region,

δη, is increased as well, and a subset of solutions within the
continuous family of solutions is stretched over a wider region
on the η axis. In addition, Eq. (22) suggests that the deriva-
tive dPud/dη in the transition region is mildest at η = η−
and steepest at η → η+. Therefore, close to the first critical
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FIG. 6. The energetic gap and the width of the transition region. In both panels logarithmic scales are used on both axes. In addition,
open blue circles correspond to the numerical data and solid lines to their corresponding interpolation. (a) The normalized energetic gap,
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 3.6. Inset: η+ (orange) and η− (blue) are plotted as a function of �. The fit to both sets of data is given
by η±/η� 
 1 ± (c1/2)�.

transition, i.e., close to η = η−, solutions at the transition
region are easier to access then solutions that are located close
to η = η+.

To verify Eq. (22) numerically we plot the pressure
difference as a function of the bendo-gases parameter,
Pud(η), within the transition region (see Fig. 7). Indeed,
we find that data from different lateral displacements all
collapse on the same master curve when plotted on the
(
√

(η+ − η)/(η+ − η−), Pud/Pcr
ud) plane.

In summary, the pressure difference exhibits three different
solutions as a function of η. One corresponds to the symmetric
branch, Eq. (17), the second corresponds to the profile ob-
tained in the narrow transition region, Eq. (22), and the third
corresponds to Pud = 0 in the purely asymmetric branch.

V. CONCLUSIONS

In this paper we investigated the mutual interaction be-
tween a thin sheet and an ideal gas. Our main results are
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FIG. 7. The normalized pressure difference, Pud/Pcr
ud, as a func-

tion of η for several values of the lateral displacement �. All data
collapse on a single master curve that coincides with the phenomeno-
logical profile considered in Eq. (22).

summarized in the state diagram, Fig. 2, that presents three
different branches of solutions. Depending on the bendo-gases
parameter we showed that asymptotically the system is either
governed by the bending energy of the sheet or the energy of
the gas. While the former region exhibits a symmetric shape,
the latter region favors an asymmetric configuration, which
keeps the volumes in the upper and lower parts of the chamber
equal.

In addition, we investigated the transition between these
two limiting scenarios and highlighted a subtle behavior at
the leading order of the theory. While the small amplitude
approximation yields the three branches of solutions, i.e.,
the height profiles given in Eqs. (16) and (19), it incorrectly
predicts that the asymmetric branch with Pud 	= 0, Eq. (19a),
is always unstable. Indeed, numerical investigation of the non-
linear formulation revealed that the width over which the latter
branch stabilizes is in fact finite. Yet, in the limit of a small
lateral compression it remains relatively narrow and scales
as δη ∝ �. The pressure difference across this region drops
rapidly, but yet continuously to zero; i.e., while the linear
analysis predicts a discontinuous behavior of the pressure
difference at η = η�, the addition of nonlinear terms changes
the nature of the transition from first to second order. Further-
more, we showed that the energetic gap across the transition
region scales as ∼�2; i.e., in this region the system becomes
asymptotically soft to variations in the sheet’s configuration.

With these observations in mind we were able to estimate
the pressure difference throughout the evolution of the system.
This main result of our analysis is summarized in the follow-
ing equation:

Pud(η,�) =
⎧⎨
⎩

Eq. (17), η � η−
Eq. (22), η− � η � η+
0, η � η+,

(23)

where η±/η� 
 1 ± (c1/2)� (c1 
 3.6) are the boundaries of
the transition region. While the pressure differences at η � η−
and η � η+ are predicted by the leading order of the theory, at
the transition region, η− � η � η+, it is only estimated phe-
nomenologically, but yet verified by the numerical analysis.
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Another direction to control the system, and to investigate
its different branches of solutions, is to fix the bendo-gases
parameter and then vary the lateral displacement, i.e., follow
a vertical line in the state diagram, Fig. 2. This direction is
essentially related to the problem of packing a flexible soft
object into a small cavity [39–41]. Let us exploit this direction
to get some physical intuition regarding the magnitude of
the pressure drop that our system can acquire. Consider a
chamber with dimensions Lx = Ly = W = 5 mm (W is the
width) that is divided into two parts by a thin sheet that
is made of polyester with Young’s modulus Ẽ 
 920 MPa,
Poisson’s ratio ν 
 0.3, and thickness t = 120 μm. In addi-
tion, assume that the sheet is hinged to the sidewalls of the
chamber, and that initially � = 0 and Pu = Pd 
 101 kPa,
i.e., Vu = Vd = LxLyW/2 and atmospheric pressure. Under
these conditions, we have that η/η� 
 0.95, where we used
PuVu = NkBT , η = PuVuL/(W B), B = Ẽt3/[12(1 − ν2)], and
η� 
 45.4. Now, suppose that we continuously increase the
lateral displacement. Then, we would expect the sheet to
evolve within the symmetric branch until η coincides with
η−. Using our approximated solution, η−/η� 
 1 − (c1/2)�,
we find that when � 
 0.1 mm (L 
 5.1 mm) the system is
expected to undergo a transition from the symmetric branch to
the asymmetric branch with Pud 	= 0. At that point, the pres-
sure drop in the system is approximately given by Eq. (20),
i.e., Pud 
 20B/L3 
 22 kPa. Had we further increased the
lateral displacement the system would have evolved within the
intermediate region.

While our study only focused on quasistatic deforma-
tions of the sheet, which keep the temperature constant, any

experimental realization of the system is expected to exhibit
temperature fluctuations, and possibly energy dissipation. In
regard to these interesting phenomena we suggest two systems
that could be considered in future extensions. First, simulating
the ideal fluid as granular gases, composed of macroscopic
rigid particles that undergo instantaneous collisions [42,43],
could be useful to elucidate the time-dependent temperature
variations that take place due to the expansion or compres-
sion of the gas. In addition, it would also be interesting to
investigate how the velocity distribution function of the gas is
correlated with the sheet’s trajectory, especially in the transi-
tion region, where small variations in the number of particles
is expected to yield large changes in the pressure difference.
The second extension that could be of interest is a dynamical
system that allows the gas to exchange freely between the two
sides of the chamber. This system will be useful to elucidate
the energetic interplay between the sheet and the fluid during
the system’s evolution. For example, given the initial and final
states of the sheet, one can ask how much of this energy is
ultimately converted to displace the fluid from rest. Last, we
hope that the study of this system and its dynamic extensions
will lay the groundwork for deeper understanding of the inter-
action between thin sheets and a compressible fluid medium.
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